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21 Smarter heating

In the last chapter, we learned that electrification could shrink transport’s
energy consumption to one fifth of its current levels; and that public trans-
port and cycling can be about 40 times more energy-efficient than car-
driving. How about heating? What sort of energy-savings can technology
or lifestyle-change offer?

The power used to heat a building is given by multiplying together
three quantities:

power used =
average temperature difference× leakiness of building

efficiency of heating system
.

Let me explain this formula (which is discussed in detail in Chapter E)
with an example. My house is a three-bedroom semi-detached house built

Figure 21.1. My house.

about 1940 (figure 21.1). The average temperature difference between the
inside and outside of the house depends on the setting of the thermostat
and on the weather. If the thermostat is permanently at 20 ◦C, the aver-
age temperature difference might be 9 ◦C. The leakiness of the building
describes how quickly heat gets out through walls, windows, and cracks,
in response to a temperature difference. The leakiness is sometimes called
the heat-loss coefficient of the building. It is measured in kWh per day
per degree of temperature difference. In Chapter E, I calculate that the
leakiness of my house in 2006 was 7.7 kWh/d/◦C. The product

average temperature difference× leakiness of building

is the rate at which heat flows out of the house by conduction and venti-
lation. For example, if the average temperature difference is 9 ◦C then the
heat loss is

9 ◦C× 7.7 kWh/d/◦C ≃ 70 kWh/d.

Finally, to calculate the power required, we divide this heat loss by the
efficiency of the heating system. In my house, the condensing gas boiler
has an efficiency of 90%, so we find:

power used =
9 ◦C× 7.7 kWh/d/◦C

0.9
= 77 kWh/d.

That’s bigger than the space-heating requirement we estimated in Chapter
7. It’s bigger for two reasons: first, this formula assumes that all the heat is
supplied by the boiler, whereas in fact some heat is supplied by incidental
heat gains from occupants, gadgets, and the sun; second, in Chapter 7 we
assumed that a person kept just two rooms at 20 ◦C all the time; keeping
an entire house at this temperature all the time would require more.

OK, how can we reduce the power used by heating? Well, obviously,
there are three lines of attack.

140
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1. Reduce the average temperature difference. This can be achieved by
turning thermostats down (or, if you have friends in high places, by
changing the weather).

2. Reduce the leakiness of the building. This can be done by improv-
ing the building’s insulation – think triple glazing, draught-proofing,
and fluffy blankets in the loft – or, more radically, by demolishing the
building and replacing it with a better insulated building; or perhaps
by living in a building of smaller size per person. (Leakiness tends
to be bigger, the larger a building’s floor area, because the areas of
external wall, window, and roof tend to be bigger too.)

3. Increase the efficiency of the heating system. You might think that
90% sounds hard to beat, but actually we can do much better.

Cool technology: the thermostat

The thermostat (accompanied by woolly jumpers) is hard to beat, when it
comes to value-for-money technology. You turn it down, and your build-
ing uses less energy. Magic! In Britain, for every degree that you turn the
thermostat down, the heat loss decreases by about 10%. Turning the ther-
mostat down from 20 ◦C to 15 ◦C would nearly halve the heat loss. Thanks
to incidental heat gains by the building, the savings in heating power will
be even bigger than these reductions in heat loss.

Unfortunately, however, this remarkable energy-saving technology has
side-effects. Some humans call turning the thermostat down a lifestyle
change, and are not happy with it. I’ll make some suggestions later about
how to sidestep this lifestyle issue. Meanwhile, as proof that “the most
important smart component in a building with smart heating is the occu-
pant,” figure 21.2 shows data from a Carbon Trust study, observing the
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Figure 21.2. Actual heat consumption
in 12 identical houses with identical
heating systems. All houses had floor
area 86 m2 and were designed to have
a leakiness of 2.7 kWh/d/◦C. Source:
Carbon Trust (2007).

heat consumption in twelve identical modern houses. This study permits
us to gawp at the family at number 1, whose heat consumption is twice
as big as that of Mr. and Mrs. Woolly at number 12. However, we should
pay attention to the numbers: the family at number 1 are using 43 kWh
per day. But if this is shocking, hang on – a moment ago, didn’t I esti-
mate that my house might use more than that? Indeed, my average gas
consumption from 1993 to 2003 was a little more than 43 kWh per day (fig-
ure 7.10, p53), and I thought I was a frugal person! The problem is the
house. All the modern houses in the Carbon Trust study had a leakiness
of 2.7 kWh/d/◦C, but my house had a leakiness of 7.7 kWh/d/◦C! People
who live in leaky houses. . .

The war on leakiness

What can be done with leaky old houses, apart from calling in the bull-
dozers? Figure 21.3 shows estimates of the space heating required in old
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Terraced,
no insulation

30 kWh/d

+ loft
insulation
23 kWh/d

+ cavity
insulation

18.5 kWh/d

+ double
glazing

17 kWh/d

Semi-detach’d,
no insulation

37 kWh/d

+ loft
insulation
29 kWh/d

+ cavity
insulation

20.5 kWh/d

+ double
glazing

19 kWh/d

Detached,
no insulation

53 kWh/d
+ loft

insulation
43 kWh/d + cavity

insulation
30 kWh/d

+ double
glazing

27 kWh/d

Figure 21.3. Estimates of the space
heating required in a range of UK
houses. From Eden and Bending
(1985).

detached, semi-detached, and terraced houses as progressively more effort
is put into patching them up. Adding loft insulation and cavity-wall in-
sulation reduces heat loss in a typical old house by about 25%. Thanks
to incidental heat gains, this 25% reduction in heat loss translates into
roughly a 40% reduction in heating consumption.

Let’s put these ideas to the test.

A case study

I introduced you to my house on page 53. Let’s pick up the story. In 2004 I
had a condensing boiler installed, replacing the old gas boiler. (Condens-
ing boilers use a heat-exchanger to transfer heat from the exhaust gases
to incoming air.) At the same time I removed the house’s hot-water tank
(so hot water is now made only on demand), and I put thermostats on
all the bedroom radiators. Along with the new condensing boiler came a
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Figure 21.4. My domestic gas
consumption, each year from 1993 to
2007. Each line shows the cumulative
consumption during one year in kWh.
The number at the end of each year is
the average rate of consumption for
that year, in kWh per day.
Meter-readings are indicated by the
blue points. Evidently, the more
frequently I read my meter, the less
gas I use!

new heating controller that allows me to set different target temperatures
for different times of day. With these changes, my consumption decreased
from an average of 50 kWh/d to about 32 kWh/d.

This reduction from 50 to 32 kWh/d is quite satisfying, but it’s not
enough, if the aim is to reduce one’s fossil fuel footprint below one ton of
CO2 per year. 32 kWh/d of gas corresponds to over 2 tons CO2 per year.

In 2007, I started paying more careful attention to my energy meters.
I had cavity-wall insulation installed (figure 21.5) and improved my loft
insulation. I replaced the single-glazed back door by a double-glazed door,
and added an extra double-glazed door to the front porch (figure 21.6).
Most important of all, I paid more attention to my thermostat settings.

Figure 21.5. Cavity-wall insulation
going in.

Figure 21.6. A new front door.

This attentiveness has led to a further halving in gas consumption. The
latest year’s consumption was 13 kWh/d!

Because this case study is such a hodge-podge of building modifica-
tions and behaviour changes, it’s hard to be sure which changes were the
most important. According to my calculations (in Chapter E), the improve-
ments in insulation reduced the leakiness by 25%, from 7.7 kWh/d/◦C to
5.8 kWh/d/◦C. This is still much leakier than any modern house. It’s frus-
tratingly difficult to reduce the leakiness of an already-built house!

So, my main tip is cunning thermostat management. What’s a reason-
able thermostat setting to aim for? Nowadays many people seem to think
that 17 ◦C is unbearably cold. However, the average winter-time tempera-
ture in British houses in 1970 was 13 ◦C! A human’s perception of whether
they feel warm depends on what they are doing, and what they’ve been
doing for the last hour or so. My suggestion is, don’t think in terms of a ther-
mostat setting. Rather than fixing the thermostat to a single value, try just
leaving it at a really low value most of the time (say 13 or 15 ◦C), and turn
it up temporarily whenever you feel cold. It’s like the lights in a library.
If you allow yourself to ask the question “what is the right light level in
the bookshelves?” then you’ll no doubt answer “bright enough to read the
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book titles,” and you’ll have bright lights on all the time. But that question
presumes that we have to fix the light level; and we don’t have to. We can
fit light switches that the reader can turn on, and that switch themselves
off again after an appropriate time. Similarly, thermostats don’t need to be
left up at 20 ◦C all the time.

Before leaving the topic of thermostat settings, I should mention air-
conditioning. Doesn’t it drive you crazy to go into a building in summer
where the thermostat of the air-conditioning is set to 18 ◦C? These loony
building managers are subjecting everyone to temperatures that in winter-
time they would whinge are too cold! In Japan, the government’s “Cool-
Biz” guidelines recommend that air-conditioning be set to 28 ◦C (82 F).

Better buildings

If you get the chance to build a new building then there are lots of ways to
ensure its heating consumption is much smaller than that of an old build-
ing. Figure 21.2 gave evidence that modern houses are built to much better
insulation standards than those of the 1940s. But the building standards
in Britain could be still better, as Chapter E discusses. The three key ideas
for the best results are: (1) have really thick insulation in floors, walls, and
roofs; (2) ensure the building is completely sealed and use active venti-
lation to introduce fresh air and remove stale and humid air, with heat
exchangers passively recovering much of the heat from the removed air;
(3) design the building to exploit sunshine as much as possible.

The energy cost of heat

So far, this chapter has focused on temperature control and leakiness. Now
we turn to the third factor in the equation:

power used =
average temperature difference× leakiness of building

efficiency of heating system
.

How efficiently can heat be produced? Can we obtain heat on the cheap?
Today, building-heating in Britain is primarily delivered by burning a fossil
fuel, natural gas, in boilers with efficiencies of 78%–90%. Can we get off
fossil fuels at the same time as making building-heating more efficient?

One technology that is held up as an answer to Britain’s heating prob-
lem is called “combined heat and power” (CHP), or its cousin, “micro-
CHP.” I will explain combined heat and power now, but I’ve come to the
conclusion that it’s a bad idea, because there’s a better technology for heat-
ing, called heat pumps, which I’ll describe in a few pages.

Figure 21.7. Eggborough. Not a
power station participating in smart
heating.
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Figure 21.8. How a power station
works. There has to be a cold place to
condense the steam to make the
turbine go round. The cold place is
usually a cooling tower or river.

Combined heat and power

The standard view of conventional big centralised power stations is that
they are terribly inefficient, chucking heat willy-nilly up chimneys and
cooling towers. A more sophisticated view recognizes that to turn thermal
energy into electricity, we inevitably have to dump heat in a cold place (fig-
ure 21.8). That is how heat engines work. There has to be a cold place. But
surely, it’s argued, we could use buildings as the dumping place for this
“waste” heat instead of cooling towers or sea water? This idea is called
“combined heat and power” (CHP) or cogeneration, and it’s been widely
used in continental Europe for decades – in many cities, a big power sta-
tion is integrated with a district heating system. Proponents of the modern
incarnation of combined heat and power, “micro-CHP,” suggest that tiny
power stations should be created within single buildings or small collec-
tions of buildings, delivering heat and electricity to those buildings, and
exporting some electricity to the grid.

Figure 21.9. Combined heat and
power. District heating absorbs heat
that would have been chucked up a
cooling tower.

There’s certainly some truth in the view that Britain is rather backward
when it comes to district heating and combined heat and power, but dis-
cussion is hampered by a general lack of numbers, and by two particular
errors. First, when comparing different ways of using fuel, the wrong mea-
sure of “efficiency” is used, namely one that weights electricity as having
equal value to heat. The truth is, electricity is more valuable than heat.
Second, it’s widely assumed that the “waste” heat in a traditional power
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Figure 21.10. Heat pumps.

station could be captured for a useful purpose without impairing the power
station’s electricity production. This sadly is not true, as the numbers will
show. Delivering useful heat to a customer always reduces the electricity
produced to some degree. The true net gains from combined heat and
power are often much smaller than the hype would lead you to believe.

A final impediment to rational discussion of combined heat and power
is a myth that has grown up recently, that decentralizing a technology
somehow makes it greener. So whereas big centralized fossil fuel power
stations are “bad,” flocks of local micro-power stations are imbued with
goodness. But if decentralization is actually a good idea then “small is
beautiful” should be evident in the numbers. Decentralization should be
able to stand on its own two feet. And what the numbers actually show is
that centralized electricity generation has many benefits in both economic
and energy terms. Only in large buildings is there any benefit to local
generation, and usually that benefit is only about 10% or 20%.

The government has a target for growth of combined heat and power
to 10 GW of electrical capacity by 2010, but I think that growth of gas-
powered combined heat and power would be a mistake. Such combined
heat and power is not green: it uses fossil fuel, and it locks us into con-
tinued use of fossil fuel. Given that heat pumps are a better technology,
I believe we should leapfrog over gas-powered combined heat and power
and go directly for heat pumps.

Heat pumps

Like district heating and combined heat and power, heat pumps are al-
ready widely used in continental Europe, but strangely rare in Britain.
Heat pumps are back-to-front refrigerators. Feel the back of your refrig-
erator: it’s warm. A refrigerator moves heat from one place (its inside) to
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another (its back panel). So one way to heat a building is to turn a re-
frigerator inside-out – put the inside of the refrigerator in the garden, thus
cooling the garden down; and leave the back panel of the refrigerator in
your kitchen, thus warming the house up. What isn’t obvious about this
whacky idea is that it is a really efficient way to warm your house. For
every kilowatt of power drawn from the electricity grid, the back-to-front
refrigerator can pump three kilowatts of heat from the garden, so that a
total of four kilowatts of heat gets into your house. So heat pumps are
roughly four times as efficient as a standard electrical bar-fire. Whereas
the bar-fire’s efficiency is 100%, the heat pump’s is 400%. The efficiency of
a heat pump is usually called its coefficient of performance or CoP. If the
efficiency is 400%, the coefficient of performance is 4.

Heat pumps can be configured in various ways (figure 21.10). A heat
pump can cool down the air in your garden using a heat-exchanger (typ-
ically a 1-metre tall white box, figure 21.11), in which case it’s called an

Figure 21.11. The inner and outer bits
of an air-source heat pump that has a
coefficient of performance of 4. The
inner bit is accompanied by a
ball-point pen, for scale. One of these
Fujitsu units can deliver 3.6 kW of
heating when using just 0.845 kW of
electricity. It can also run in reverse,
delivering 2.6 kW of cooling when
using 0.655 kW of electricity.

air-source heat pump. Alternatively, the pump may cool down the ground
using big loops of underground plumbing (many tens of metres long),
in which case it’s called a ground-source heat pump. Heat can also be
pumped from rivers and lakes.

Some heat pumps can pump heat in either direction. When an air-
source heat pump runs in reverse, it uses electricity to warm up the out-
side air and cool down the air inside your building. This is called air-
conditioning. Many air-conditioners are indeed heat-pumps working in
precisely this way. Ground-source heat pumps can also work as air-con-
ditioners. So a single piece of hardware can be used to provide winter
heating and summer cooling.

People sometimes say that ground-source heat pumps use “geother-
mal energy,” but that’s not the right name. As we saw in Chapter 16,
geothermal energy offers only a tiny trickle of power per unit area (about
50 mW/m2), in most parts of the world; heat pumps have nothing to do
with this trickle, and they can be used both for heating and for cooling.
Heat pumps simply use the ground as a place to suck heat from, or to
dump heat into. When they steadily suck heat, that heat is actually being
replenished by warmth from the sun.

There’s two things left to do in this chapter. We need to compare heat
pumps with combined heat and power. Then we need to discuss what are
the limits to ground-source heat pumps.

Heat pumps, compared with combined heat and power

I used to think that combined heat and power was a no-brainer. “Obvi-
ously, we should use the discarded heat from power stations to heat build-
ings rather than just chucking it up a cooling tower!” However, looking
carefully at the numbers describing the performance of real CHP systems,
I’ve come to the conclusion that there are better ways of providing electric-
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ity and building-heating.

I’m going to build up a diagram in three steps. The diagram shows
how much electrical energy or heat energy can be delivered from chemical
energy. The horizontal axis shows the electrical efficiency and the vertical
axis shows the heat efficiency.

The standard solution with no CHP

In the first step, we show simple power stations and heating systems that
deliver pure electricity or pure heat.
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Condensing boilers (the top-left dot, A) are 90% efficient because 10%
of the heat goes up the chimney. Britain’s gas power stations (the bottom-
right dot, B) are currently 49% efficient at turning the chemical energy of
gas into electricity. If you want any mix of electricity and heat from natu-
ral gas, you can obtain it by burning appropriate quantities of gas in the
electricity power station and in the boiler. Thus the new standard solution
can deliver any electrical efficiency and heat efficiency on the line A–B by
making the electricity and heat using two separate pieces of hardware.

To give historical perspective, the diagram also shows the old standard
heating solution (an ordinary non-condensing boiler, with an efficiency of
79%) and the standard way of making electricity a few decades ago (a coal
power station with an electrical efficiency of 37% or so).

Combined heat and power

Next we add combined heat and power systems to the diagram. These
simultaneously deliver, from chemical energy, both electricity and heat.
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Each of the filled dots shows actual average performances of CHP sys-
tems in the UK, grouped by type. The hollow dots marked “CT” show
the performances of ideal CHP systems quoted by the Carbon Trust; the
hollow dots marked “Nimbus” are from a manufacturer’s product specifi-
cations. The dots marked “ct” are the performances quoted by the Carbon
Trust for two real systems (at Freeman Hospital and Elizabeth House).

The main thing to notice in this diagram is that the electrical efficien-
cies of the CHP systems are significantly smaller than the 49% efficiency
delivered by single-minded electricity-only gas power stations. So the heat
is not a “free by-product.” Increasing the heat production hurts the elec-
tricity production.

It’s common practice to lump together the two numbers (the efficiency
of electricity production and heat production) into a single “total effi-
ciency” – for example, the back pressure steam turbines delivering 10%
electricity and 66% heat would be called “76% efficient,” but I think this
is a misleading summary of performance. After all, by this measure, the
90%-efficient condensing boiler is “more efficient” than all the CHP sys-
tems! The fact is, electrical energy is more valuable than heat.

Many of the CHP points in this figure are superior to the “old stan-
dard way of doing things” (getting electricity from coal and heat from
standard boilers). And the ideal CHP systems are slightly superior to the
“new standard way of doing things” (getting electricity from gas and heat
from condensing boilers). But we must bear in mind that this slight su-
periority comes with some drawbacks – a CHP system delivers heat only
to the places it’s connected to, whereas condensing boilers can be planted
anywhere with a gas main; and compared to the standard way of doing
things, CHP systems are not so flexible in the mix of electricity and heat
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they deliver; a CHP system will work best only when delivering a particu-
lar mix; this inflexibility leads to inefficiencies at times when, for example,
excess heat is produced; in a typical house, much of the electricity demand
comes in relatively brief spikes, bearing little relation to heating demand.
A final problem with some micro-CHP systems is that when they have ex-
cess electricity to share, they may do a poor job of delivering power to the
network.

Finally we add in heat pumps, which use electricity from the grid to
pump ambient heat into buildings.
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The steep green lines show the combinations of electricity and heat
that you can obtain assuming that heat pumps have a coefficient of per-
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formance of 3 or 4, assuming that the extra electricity for the heat pumps
is generated by an average gas power station or by a top-of-the-line gas
power station, and allowing for 8% loss in the national electricity network
between the power station and the building where the heat pumps pump
heat. The top-of-the-line gas power station’s efficiency is 53%, assuming
it’s running optimally. (I imagine the Carbon Trust and Nimbus made a
similar assumption when providing the numbers used in this diagram for
CHP systems.) In the future, heat pumps will probably get even better
than I assumed here. In Japan, thanks to strong legislation favouring effi-
ciency improvements, heat pumps are now available with a coefficient of
performance of 4.9.

Notice that heat pumps offer a system that can be “better than 100%-
efficient.” For example the “best gas” power station, feeding electricity to
heat pumps can deliver a combination of 30%-efficient electricity and 80%-
efficient heat, a “total efficiency” of 110%. No plain CHP system could
ever match this performance.

Let me spell this out. Heat pumps are superior in efficiency to con-
densing boilers, even if the heat pumps are powered by electricity from a
power station burning natural gas. If you want to heat lots of buildings
using natural gas, you could install condensing boilers, which are “90% ef-
ficient,” or you could send the same gas to a new gas power station making
electricity and install electricity-powered heat pumps in all the buildings;
the second solution’s efficiency would be somewhere between 140% and
185%. It’s not necessary to dig big holes in the garden and install under-
floor heating to get the benefits of heat pumps; the best air-source heat
pumps (which require just a small external box, like an air-conditioner’s)
can deliver hot water to normal radiators with a coefficient of performance
above 3. The air-source heat pump in figure 21.11 (p147) directly delivers
warm air to an office.

I thus conclude that combined heat and power, even though it sounds
a good idea, is probably not the best way to heat buildings and make
electricity using natural gas, assuming that air-source or ground-source
heat pumps can be installed in the buildings. The heat-pump solution has
further advantages that should be emphasized: heat pumps can be located
in any buildings where there is an electricity supply; they can be driven by
any electricity source, so they keep on working when the gas runs out or
the gas price goes through the roof; and heat pumps are flexible: they can
be turned on and off to suit the demand of the building occupants.

I emphasize that this critical comparison does not mean that CHP is
always a bad idea. What I’m comparing here are methods for heating
ordinary buildings, which requires only very low-grade heat. CHP can
also be used to deliver higher-grade heat to industrial users (at 200 ◦C, for
example). In such industrial settings, heat pumps are unlikely to compete
so well because their coefficient of performance would be lower.
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Figure 21.12. How close together can
ground-source heat pumps be
packed?

Limits to growth (of heat pumps)

Because the temperature of the ground, a few metres down, stays slug-
gishly close to 11 ◦C, whether it’s summer or winter, the ground is theoret-
ically a better place for a heat pump to grab its heat than the air, which in
midwinter may be 10 or 15 ◦C colder than the ground. So heat-pump ad-
visors encourage the choice of ground-source over air-source heat pumps,
where possible. (Heat pumps work less efficiently when there’s a big tem-
perature difference between the inside and outside.)

However, the ground is not a limitless source of heat. The heat has to
come from somewhere, and ground is not a very good thermal conductor.
If we suck heat too fast from the ground, the ground will become as cold as
ice, and the advantage of the ground-source heat pump will be diminished.

In Britain, the main purpose of heat pumps would be to get heat
into buildings in the winter. The ultimate source of this heat is the sun,
which replenishes heat in the ground by direct radiation and by conduc-
tion through the air. The rate at which heat is sucked from the ground
must satisfy two constraints: it must not cause the ground’s temperature
to drop too low during the winter; and the heat sucked in the winter must
be replenished somehow during the summer. If there’s any risk that the
natural trickling of heat in the summer won’t make up for the heat removed
in the winter, then the replenishment must be driven actively – for example
by running the system in reverse in summer, putting heat down into the
ground (and thus providing air-conditioning up top).

Let’s put some numbers into this discussion. How big a piece of ground
does a ground-source heat pump need? Assume that we have a neigh-
bourhood with quite a high population density – say 6200 people per km2

(160 m2 per person), the density of a typical British suburb. Can everyone

area per person (m2)

Bangalore 37

Manhattan 39

Paris 40

Chelsea 66

Tokyo 72

Moscow 97

Taipei 104

The Hague 152

San Francisco 156

Singapore 156

Cambridge MA 164

Sydney 174

Portsmouth 213

Table 21.13. Some urban areas per
person.

use ground-source heat pumps, without using active summer replenish-
ment? A calculation in Chapter E (p303) gives a tentative answer of no:
if we wanted everyone in the neighbourhood to be able to pull from the
ground a heat flow of about 48 kWh/d per person (my estimate of our
typical winter heat demand), we’d end up freezing the ground in the win-
ter. Avoiding unreasonable cooling of the ground requires that the sucking
rate be less than 12 kWh/d per person. So if we switch to ground-source
heat pumps, we should plan to include substantial summer heat-dumping
in the design, so as to refill the ground with heat for use in the winter. This
summer heat-dumping could use heat from air-conditioning, or heat from
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roof-mounted solar water-heating panels. (Summer solar heat is stored in
the ground for subsequent use in winter by Drake Landing Solar Com-
munity in Canada [www.dlsc.ca].) Alternatively, we should expect to need
to use some air-source heat pumps too, and then we’ll be able to get all
the heat we want – as long as we have the electricity to pump it. In the
UK, air temperatures don’t go very far below freezing, so concerns about
poor winter-time performance of air-source pumps, which might apply in
North America and Scandanavia, probably do not apply in Britain.

My conclusion: can we reduce the energy we consume for heating?
Yes. Can we get off fossil fuels at the same time? Yes. Not forgetting
the low-hanging fruit – building-insulation and thermostat shenanigans
– we should replace all our fossil-fuel heaters with electric-powered heat
pumps; we can reduce the energy required to 25% of today’s levels. Of
course this plan for electrification would require more electricity. But even
if the extra electricity came from gas-fired power stations, that would still
be a much better way to get heating than what we do today, simply setting
fire to the gas. Heat pumps are future-proof, allowing us to heat buildings
efficiently with electricity from any source.

Nay-sayers object that the coefficient of performance of air-source heat
pumps is lousy – just 2 or 3. But their information is out of date. If
we are careful to buy top-of-the-line heat pumps, we can do much better.
The Japanese government legislated a decade-long efficiency drive that has
greatly improved the performance of air-conditioners; thanks to this drive,
there are now air-source heat pumps with a coefficient of performance of
4.9; these heat pumps can make hot water as well as hot air.

Another objection to heat pumps is “oh, we can’t approve of people
fitting efficient air-source heaters, because they might use them for air-
conditioning in the summer.” Come on – I hate gratuitous air-conditioning
as much as anyone, but these heat pumps are four times more efficient
than any other winter heating method! Show me a better choice. Wood
pellets? Sure, a few wood-scavengers can burn wood. But there is not
enough wood for everyone to do so. For forest-dwellers, there’s wood. For
everyone else, there’s heat pumps.

Notes and further reading

page no.

142 Loft and cavity insulation reduces heat loss in a typical old house by about a
quarter. Eden and Bending (1985).

143 The average internal temperature in British houses in 1970 was 13 ◦C! Source:

Dept. of Trade and Industry (2002a, para 3.11)

145 Britain is rather backward when it comes to district heating and combined
heat and power. The rejected heat from UK power stations could meet the
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heating needs of the entire country (Wood, 1985). In Denmark in 1985, dis-

trict heating systems supplied 42% of space heating, with heat being trans-

mitted 20 km or more in hot pressurized water. In West Germany in 1985,

4 million dwellings received 7 kW per dwelling from district heating. Two

thirds of the heat supplied was from power stations. In Vasteras, Sweden in

1985, 98% of the city’s heat was supplied from power stations.

147 Heat pumps are roughly four times as efficient as a standard electrical bar-
fire. See www.gshp.org.uk.

Some heat pumps available in the UK already have a coefficient of pefor-

mance bigger than 4.0 [yok2nw]. Indeed there is a government subsidy for

water-source heat pumps that applies only to pumps with a coefficient of

peformance better than 4.4 [2dtx8z].

Commercial ground-source heat pumps are available with a coefficient of

performance of 5.4 for cooling and 4.9 for heating [2fd8ar].

153 Air-source heat pumps with a coefficient of performance of 4.9. . . According

to HPTCJ (2007), heat pumps with a coefficient of performance of 6.6 have

been available in Japan since 2006. The performance of heat pumps in Japan

improved from 3 to 6 within a decade thanks to government regulations.

HPTCJ (2007) describe an air-source-heat-pump water-heater called Eco Cute

with a coefficient of performance of 4.9. The Eco Cute came on the market

in 2001. www.ecosystem-japan.com.

Further reading on heat pumps: European Heat Pump Network

ehpn.fiz-karlsruhe.de/en/,

www.kensaengineering.com,

www.heatking.co.uk,

www.iceenergy.co.uk.

Figure 21.14. Advertisement from the
Mayor of London’s “DIY planet
repairs” campaign of 2007. The text
reads “Turn down. If every London
household turned down their
thermostat by one degree, we could
save 837 000 tons of CO2 and £110m
per year.” [london.gov.uk/diy]
Expressed in savings per person,
that’s 0.12 t CO2 per year per person.
That’s about 1% of one person’s total
(11 t), so this is good advice. Well
done, Ken!




