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C Planes II

What we need to do is to look at how you make air travel more energy
efficient, how you develop the new fuels that will allow us to burn less

energy and emit less.

Tony Blair

Hoping for the best is not a policy, it is a delusion.

Emily Armistead, Greenpeace

Figure C.1. Birds: two Arctic terns, a
bar-tailed godwit, and a Boeing 747.

What are the fundamental limits of travel by flying? Does the physics of
flight require an unavoidable use of a certain amount of energy, per ton,
per kilometre flown? What’s the maximum distance a 300-ton Boeing 747
can fly? What about a 1-kg bar-tailed godwit or a 100-gram Arctic tern?

Just as Chapter 3, in which we estimated consumption by cars, was
followed by Chapter A, offering a model of where the energy goes in cars,
this chapter fills out Chapter 5, discussing where the energy goes in planes.
The only physics required is Newton’s laws of motion, which I’ll describe
when they’re needed.

This discussion will allow us to answer questions such as “would air
travel consume much less energy if we travelled in slower propellor-driven
planes?” There’s a lot of equations ahead: I hope you enjoy them!

How to fly

Planes (and birds) move through air, so, just like cars and trains, they
experience a drag force, and much of the energy guzzled by a plane goes
into pushing the plane along against this force. Additionally, unlike cars
and trains, planes have to expend energy in order to stay up.

Planes stay up by throwing air down. When the plane pushes down
on air, the air pushes up on the plane (because Newton’s third law tells
it to). As long as this upward push, which is called lift, is big enough to
balance the downward weight of the plane, the plane avoids plummeting
downwards.

When the plane throws air down, it gives that air kinetic energy. So
creating lift requires energy. The total power required by the plane is
the sum of the power required to create lift and the power required to
overcome ordinary drag. (The power required to create lift is usually called
“induced drag,” by the way. But I’ll call it the lift power, Plift.)

The two equations we’ll need, in order to work out a theory of flight,
are Newton’s second law:

force = rate of change of momentum, (C.1)
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Before

After

Figure C.2. A plane encounters a
stationary tube of air. Once the plane
has passed by, the air has been
thrown downwards by the plane. The
force exerted by the plane on the air
to accelerate it downwards is equal
and opposite to the upwards force
exerted on the plane by the air.

Cartoon A little closer to reality

Figure C.3. Our cartoon assumes that
the plane leaves a sausage of air
moving down in its wake. A realistic
picture involves a more complex
swirling flow. For the real thing, see
figure C.4.

and Newton’s third law, which I just mentioned:

force exerted on A by B = − force exerted on B by A. (C.2)

If you don’t like equations, I can tell you the punchline now: we’re going
to find that the power required to create lift turns out to be equal to the
power required to overcome drag. So the requirement to “stay up” doubles
the power required.

Let’s make a cartoon of the lift force on a plane moving at speed v. In
a time t the plane moves a distance vt and leaves behind it a sausage of
downward-moving air (figure C.2). We’ll call the cross-sectional area of
this sausage As. This sausage’s diameter is roughly equal to the wingspan
w of the plane. (Within this large sausage is a smaller sausage of swirling
turbulent air with cross-sectional area similar to the frontal area of the
plane’s body.) Actually, the details of the air flow are much more interest-
ing than this sausage picture: each wing tip leaves behind it a vortex, with
the air between the wingtips moving down fast, and the air beyond (out-
side) the wingtips moving up (figures C.3 & C.4). This upward-moving
air is exploited by birds flying in formation: just behind the tip of a bird’s
wing is a sweet little updraft. Anyway, let’s get back to our sausage.

Figure C.4. Air flow behind a plane.
Photo by NASA Langley Research
Center.

The sausage’s mass is

msausage = density× volume = ρvtAs. (C.3)

Let’s say the whole sausage is moving down with speed u, and figure out
what u needs to be in order for the plane to experience a lift force equal to
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its weight mg. The downward momentum of the sausage created in time t
is

mass× velocity = msausageu = ρvtAsu. (C.4)

And by Newton’s laws this must equal the momentum delivered by the
plane’s weight in time t, namely,

mgt. (C.5)

Rearranging this equation,

ρvtAsu = mgt, (C.6)

we can solve for the required downward sausage speed,

u =
mg

ρvAs
.

Interesting! The sausage speed is inversely related to the plane’s speed v.
A slow-moving plane has to throw down air harder than a fast-moving
plane, because it encounters less air per unit time. That’s why landing
planes, travelling slowly, have to extend their flaps: so as to create a larger
and steeper wing that deflects air more.

What’s the energetic cost of pushing the sausage down at the required
speed u? The power required is

Plift =
kinetic energy of sausage

time
(C.7)

=
1

t

1

2
msausageu

2 (C.8)

=
1

2t
ρvtAs

(

mg

ρvAs

)2

(C.9)

=
1

2

(mg)2

ρvAs
. (C.10)

The total power required to keep the plane going is the sum of the drag
power and the lift power:

Ptotal = Pdrag + Plift (C.11)

=
1

2
cdρApv

3 +
1

2

(mg)2

ρvAs
, (C.12)

where Ap is the frontal area of the plane and cd is its drag coefficient (as
in Chapter A).

The fuel-efficiency of the plane, expressed as the energy per distance
travelled, would be

energy

distance

∣

∣

∣

ideal
=
Ptotal

v
=

1

2
cdρApv

2 +
1

2

(mg)2

ρv2As
, (C.13)
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if the plane turned its fuel’s power into drag power and lift power per-
fectly efficiently. (Incidentally, another name for “energy per distance trav-
elled” is “force,” and we can recognize the two terms above as the drag

force 1
2 cdρApv

2 and the lift-related force 1
2

(mg)2

ρv2As
. The sum is the force, or

“thrust,” that specifies exactly how hard the engines have to push.)
thrust (kN)
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Figure C.5. The force required to keep
a plane moving, as a function of its
speed v, is the sum of an ordinary

drag force 1
2 cdρApv

2 – which
increases with speed – and the
lift-related force (also known as the

induced drag) 1
2

(mg)2

ρv2As
– which

decreases with speed. There is an
ideal speed, voptimal, at which the
force required is minimized. The
force is an energy per distance, so
minimizing the force also minimizes
the fuel per distance. To optimize the
fuel efficiency, fly at voptimal. This
graph shows our cartoon’s estimate of
the thrust required, in kilonewtons,
for a Boeing 747 of mass 319 t,
wingspan 64.4 m, drag coefficient 0.03,
and frontal area 180 m2, travelling in
air of density ρ = 0.41 kg/m3 (the
density at a height of 10 km), as a
function of its speed v in m/s. Our
model has an optimal speed
voptimal = 220 m/s (540 mph). For a
cartoon based on sausages, this is a
good match to real life!

Real jet engines have an efficiency of about ǫ = 1/3, so the energy-per-
distance of a plane travelling at speed v is

energy

distance
=

1

ǫ

(

1

2
cdρApv

2 +
1

2

(mg)2

ρv2As

)

. (C.14)

This energy-per-distance is fairly complicated; but it simplifies greatly if
we assume that the plane is designed to fly at the speed that minimizes the
energy-per-distance. The energy-per-distance, you see, has got a sweet-
spot as a function of v (figure C.5). The sum of the two quantities 1

2 cdρApv
2

and 1
2

(mg)2

ρv2As
is smallest when the two quantities are equal. This phenomenon

is delightfully common in physics and engineering: two things that don’t
obviously have to be equal are actually equal, or equal within a factor of 2.

So, this equality principle tells us that the optimum speed for the plane
is such that

cdρApv
2 =

(mg)2

ρv2As
, (C.15)

i.e.,

ρv2
opt =

mg
√

cdApAs
, (C.16)

This defines the optimum speed if our cartoon of flight is accurate; the
cartoon breaks down if the engine efficiency ǫ depends significantly on
speed, or if the speed of the plane exceeds the speed of sound (330 m/s);
above the speed of sound, we would need a different model of drag and
lift.

Let’s check our model by seeing what it predicts is the optimum speed
for a 747 and for an albatross. We must take care to use the correct air-
density: if we want to estimate the optimum cruising speed for a 747 at
30 000 feet, we must remember that air density drops with increasing al-
titude z as exp(−mgz/kT), where m is the mass of nitrogen or oxygen
molecules, and kT is the thermal energy (Boltzmann’s constant times ab-
solute temperature). The density is about 3 times smaller at that altitude.

The predicted optimal speeds (table C.6) are more accurate than we
have a right to expect! The 747’s optimal speed is predicted to be 540 mph,
and the albatross’s, 32 mph – both very close to the true cruising speeds of
the two birds (560 mph and 30–55 mph respectively).

Let’s explore a few more predictions of our cartoon. We can check
whether the force (C.13) is compatible with the known thrust of the 747.
Remembering that at the optimal speed, the two forces are equal, we just
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Bird 747 Albatross

Designer Boeing natural selection
Mass (fully-laden) m 363 000 kg 8 kg
Wingspan w 64.4 m 3.3 m
Area⋆ Ap 180 m2 0.09 m2

Density ρ 0.4 kg/m3 1.2 kg/m3

Drag coefficient cd 0.03 0.1

Optimum speed vopt 220 m/s 14 m/s
= 540 mph = 32 mph

Table C.6. Estimating the optimal
speeds for a jumbo jet and an
albatross.
⋆ Frontal area estimated for 747 by
taking cabin width (6.1 m) times
estimated height of body (10 m) and
adding double to allow for the frontal
area of engines, wings, and tail; for
albatross, frontal area of 1 square foot
estimated from a photograph.

need to pick one of them and double it:

force =
energy

distance

∣

∣

∣

ideal
=

1

2
cdρApv

2 +
1

2

(mg)2

ρv2As
(C.17)

= cdρApv
2
opt (C.18)

= cdρAp
mg

ρ(cdApAs)1/2
(C.19)

=

(

cdAp

As

)1/2

mg. (C.20)

Let’s define the filling factor fA to be the area ratio:

fA =
Ap

As
. (C.21)

(Think of fA as the fraction of the square occupied by the plane in figure

Figure C.7. Frontal view of a Boeing
747, used to estimate the frontal area
Ap of the plane. The square has area
As (the square of the wingspan).

C.7.) Then

force = (cd fA)
1/2(mg). (C.22)

Interesting! Independent of the density of the fluid through which the
plane flies, the required thrust (for a plane travelling at the optimal speed)
is just a dimensionless constant (cd fA)1/2 times the weight of the plane.
This constant, by the way, is known as the drag-to-lift ratio of the plane.
(The lift-to-drag ratio has a few other names: the glide number, glide ratio,
aerodynamic efficiency, or finesse; typical values are shown in table C.8.)

Airbus A320 17
Boeing 767-200 19
Boeing 747-100 18
Common Tern 12
Albatross 20

Table C.8. Lift-to-drag ratios.

Taking the jumbo jet’s figures, cd ≃ 0.03 and fA ≃ 0.04, we find the
required thrust is

(cd fA)1/2mg = 0.036mg = 130 kN. (C.23)

How does this agree with the 747’s spec sheets? In fact each of the 4
engines has a maximum thrust of about 250 kN, but this maximum thrust
is used only during take-off. During cruise, the thrust is much smaller:
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the thrust of a cruising 747 is 200 kN, just 50% more than our cartoon
suggested. Our cartoon is a little bit off because our estimate of the drag-
to-lift ratio was a little bit low.

Figure C.9. Cessna 310N: 60 kWh per
100 passenger-km. A Cessna 310
Turbo carries 6 passengers (including
1 pilot) at a speed of 370 km/h.
Photograph by Adrian Pingstone.

This thrust can be used directly to deduce the transport efficiency
achieved by any plane. We can work out two sorts of transport effi-
ciency: the energy cost of moving weight around, measured in kWh per
ton-kilometre; and the energy cost of moving people, measured in kWh
per 100 passenger-kilometres.

Efficiency in weight terms

Thrust is a force, and a force is an energy per unit distance. The total
energy used per unit distance is bigger by a factor (1/ǫ), where ǫ is the
efficiency of the engine, which we’ll take to be 1/3.

Here’s the gross transport cost, defined to be the energy per unit weight
(of the entire craft) per unit distance:

transport cost =
1

ǫ

force

mass
(C.24)

=
1

ǫ

(cd fA)
1/2mg

m
(C.25)

=
(cd fA)1/2

ǫ
g. (C.26)

So the transport cost is just a dimensionless quantity (related to a plane’s
shape and its engine’s efficiency), multiplied by g, the acceleration due
to gravity. Notice that this gross transport cost applies to all planes, but
depends only on three simple properties of the plane: its drag coefficient,
the shape of the plane, and its engine efficiency. It doesn’t depend on the
size of the plane, nor on its weight, nor on the density of air. If we plug in
ǫ = 1/3 and assume a lift-to-drag ratio of 20 we find the gross transport
cost of any plane, according to our cartoon, is

0.15 g

or

0.4 kWh/ton-km.

Can planes be improved?

If engine efficiency can be boosted only a tiny bit by technological progress,
and if the shape of the plane has already been essentially perfected, then
there is little that can be done about the dimensionless quantity. The trans-
port efficiency is close to its physical limit. The aerodynamics commu-
nity say that the shape of planes could be improved a little by a switch
to blended-wing bodies, and that the drag coefficient could be reduced a
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little by laminar flow control, a technology that reduces the growth of tur-
bulence over a wing by sucking a little air through small perforations in
the surface (Braslow, 1999). Adding laminar flow control to existing planes
would deliver a 15% improvement in drag coefficient, and the change of
shape to blended-wing bodies is predicted to improve the drag coefficient
by about 18% (Green, 2006). And equation (C.26) says that the transport
cost is proportional to the square root of the drag coefficient, so improve-
ments of cd by 15% or 18% would improve transport cost by 7.5% and 9%
respectively. Figure C.10. “Fasten your cufflinks.”

A Bombardier Learjet 60XR carrying 8
passengers at 780 km/h has a
transport cost of 150 kWh per 100
passenger-km. Photograph by Adrian
Pingstone.

This gross transport cost is the energy cost of moving weight around,
including the weight of the plane itself. To estimate the energy required to
move freight by plane, per unit weight of freight, we need to divide by
the fraction that is cargo. For example, if a full 747 freighter is about 1/3
cargo, then its transport cost is

0.45 g,

or roughly 1.2 kWh/ton-km. This is just a little bigger than the transport
cost of a truck, which is 1 kWh/ton-km.

Transport efficiency in terms of bodies

Similarly, we can estimate a passenger transport-efficiency for a 747.

transport efficiency (passenger–km per litre of fuel)

= number of passengers× energy per litre

thrust
ǫ

(C.27)

= number of passengers× ǫ× energy per litre

thrust
(C.28)

= 400× 1

3

38 MJ/litre

200 000 N
(C.29)

= 25 passenger–km per litre (C.30)

This is a bit more efficient than a typical single-occupant car (12 km per
litre). So travelling by plane is more energy-efficient than car if there are
only one or two people in the car; and cars are more efficient if there are
three or more passengers in the vehicle.

Key points

We’ve covered quite a lot of ground! Let’s recap the key ideas. Half of the
work done by a plane goes into staying up; the other half goes into keeping
going. The fuel efficiency at the optimal speed, expressed as an energy-
per-distance-travelled, was found in the force (C.22), and it was simply
proportional to the weight of the plane; the constant of proportionality
is the drag-to-lift ratio, which is determined by the shape of the plane.
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So whereas lowering speed-limits for cars would reduce the energy con-
sumed per distance travelled, there is no point in considering speed-limits
for planes. Planes that are up in the air have optimal speeds, different for
each plane, depending on its weight, and they already go at their optimal
speeds. If you ordered a plane to go slower, its energy consumption would
increase. The only way to make a plane consume fuel more efficiently is to
put it on the ground and stop it. Planes have been fantastically optimized,
and there is no prospect of significant improvements in plane efficiency.
(See pages 37 and 132 for further discussion of the notion that new super-
jumbos are “far more efficient” than old jumbos; and p35 for discussion of
the notion that turboprops are “far more efficient” than jets.)

Figure C.11. Boeing 737-700: 30 kWh
per 100 passenger-km. Photograph ©
Tom Collins.

Range

Another prediction we can make is, what’s the range of a plane or bird –
the biggest distance it can go without refuelling? You might think that
bigger planes have a bigger range, but the prediction of our model is
startlingly simple. The range of the plane, the maximum distance it can go
before refuelling, is proportional to its velocity and to the total energy of
the fuel, and inversely proportional to the rate at which it guzzles fuel:

range = vopt
energy

power
=

energy× ǫ

force
. (C.31)

Now, the total energy of fuel is the calorific value of the fuel, C (in joules
per kilogram), times its mass; and the mass of fuel is some fraction ffuel of
the total mass of the plane. So

range =
energy ǫ

force
=

Cmǫ ffuel

(cd fA)1/2(mg)
=

ǫ ffuel

(cd fA)1/2

C

g
. (C.32)

It’s hard to imagine a simpler prediction: the range of any bird or plane is

the product of a dimensionless factor
(

ǫ ffuel

(cd fA)1/2

)

which takes into account

the engine efficiency, the drag coefficient, and the bird’s geometry, with a
fundamental distance,

C

g
,

which is a property of the fuel and gravity, and nothing else. No bird size,
no bird mass, no bird length, no bird width; no dependence on the fluid
density.

So what is this magic length? It’s the same distance whether the fuel is
goose fat or jet fuel: both these fuels are essentially hydrocarbons (CH2)n.
Jet fuel has a calorific value of C = 40 MJ per kg. The distance associated
with jet fuel is

dFuel =
C

g
= 4000 km. (C.33)
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The range of the bird is the intrinsic range of the fuel, 4000 km, times a
You can think of dFuel as the distance

that the fuel could throw itself if it

suddenly converted all its chemical

energy to kinetic energy and launched

itself on a parabolic trajectory with no

air resistance. [To be precise, the

distance achieved by the optimal

parabola is twice C/g.] This distance

is also the vertical height to which the

fuel could throw itself if there were no

air resistance. Another amusing thing

to notice is that the calorific value of a

fuel C, which I gave in joules per

kilogram, is also a squared-velocity

(just as the energy-to-mass ratio E/m

in Einstein’s E = mc2 is a

squared-velocity, c2): 40× 106 J per kg

is (6000 m/s)2. So one way to think

about fat is “fat is 6000 metres per

second.” If you want to lose weight

by going jogging, 6000 m/s (12 000

mph) is the speed you should aim for

in order to lose it all in one giant leap.

factor
(

ǫ ffuel

(cd fA)1/2

)

. If our bird has engine efficiency ǫ = 1/3 and drag-to-lift

ratio (cd fA)1/2 ≃ 1/20, and if nearly half of the bird is fuel (a fully-laden
747 is 46% fuel), we find that all birds and planes, of whatever size, have
the same range: about three times the fuel’s distance – roughly 13 000 km.

This figure is again close to the true answer: the nonstop flight record
for a 747 (set on March 23–24, 1989) was a distance of 16 560 km.

And the claim that the range is independent of bird size is supported
by the observation that birds of all sizes, from great geese down to dainty
swallows and arctic tern migrate intercontinental distances. The longest
recorded non-stop flight by a bird was a distance of 11 000 km, by a bar-
tailed godwit.

How far did Steve Fossett go in the specially-designed Scaled Com-
posites Model 311 Virgin Atlantic GlobalFlyer? 41 467 km. [33ptcg] An
unusual plane: 83% of its take-off weight was fuel; the flight made careful
use of the jet-stream to boost its distance. Fragile, the plane had several
failures along the way.

One interesting point brought out by this cartoon: if we ask “what’s
the optimum air-density to fly in?”, we find that the thrust required (C.20)
at the optimum speed is independent of the density. So our cartoon plane
would be equally happy to fly at any height; there isn’t an optimum den-
sity; the plane could achieve the same miles-per-gallon in any density; but
the optimum speed does depend on the density (v2 ∼ 1/ρ, equation (C.16)).
So all else being equal, our cartoon plane would have the shortest journey
time if it flew in the lowest-density air possible. Now real engines’ efficien-
cies aren’t independent of speed and air density. As a plane gets lighter by
burning fuel, our cartoon says its optimal speed at a given density would
reduce (v2 ∼ mg/(ρ(cdApAs)1/2)). So a plane travelling in air of constant
density should slow down a little as it gets lighter. But a plane can both
keep going at a constant speed and continue flying at its optimal speed if
it increases its altitude so as to reduce the air density. Next time you’re
on a long-distance flight, you could check whether the pilot increases the
cruising height from, say, 31 000 feet to 39 000 feet by the end of the flight.

How would a hydrogen plane perform?

We’ve already argued that the efficiency of flight, in terms of energy per
ton-km, is just a simple dimensionless number times g. Changing the
fuel isn’t going to change this fundamental argument. Hydrogen-powered
planes are worth discussing if we’re hoping to reduce climate-changing
emissions. They might also have better range. But don’t expect them to be
radically more energy-efficient.
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Possible areas for improvement of plane efficiency

Formation flying in the style of geese could give a 10% improvement in fuel
efficiency (because the lift-to-drag ratio of the formation is higher than that
of a single aircraft), but this trick relies, of course, on the geese wanting to
migrate to the same destination at the same time.

Optimizing the hop lengths: long-range planes (designed for a range
of say 15 000 km) are not quite as fuel-efficient as shorter-range planes,
because they have to carry extra fuel, which makes less space for cargo
and passengers. It would be more energy-efficient to fly shorter hops in
shorter-range planes. The sweet spot is when the hops are about 5000 km
long, so typical long-distance journeys would have one or two refuelling
stops (Green, 2006). Multi-stage long-distance flying might be about 15%
more fuel-efficient; but of course it would introduce other costs.

Eco-friendly aeroplanes

Occasionally you may hear about people making eco-friendly aeroplanes.
Earlier in this chapter, however, our cartoon made the assertion that the
transport cost of any plane is about

0.4 kWh/ton-km.

According to the cartoon, the only ways in which a plane could signifi-
cantly improve on this figure are to reduce air resistance (perhaps by some
new-fangled vacuum-cleaners-in-the-wings trick) or to change the geome-
try of the plane (making it look more like a glider, with immensely wide
wings compared to the fuselage, or getting rid of the fuselage altogether).

So, let’s look at the latest news story about “eco-friendly aviation” and
see whether one of these planes can beat the 0.4 kWh per ton-km bench-
mark. If a plane uses less than 0.4 kWh per ton-km, we might conclude
that the cartoon is defective.

Figure C.12. The Electra F-WMDJ:
11 kWh per 100 p-km. Photo by
Jean–Bernard Gache. www.apame.eu

The Electra, a wood-and-fabric single-seater, flew for 48 minutes for
50 km around the southern Alps [6r32hf]. The Electra has a 9-m wingspan
and an 18-kW electric motor powered by 48 kg of lithium-polymer bat-
teries. The aircraft’s take-off weight is 265 kg (134 kg of aircraft, 47 kg of
batteries, and 84 kg of human cargo). On 23rd December, 2007 it flew
a distance of 50 km. If we assume that the battery’s energy density was
130 Wh/kg, and that the flight used 90% of a full charge (5.5 kWh), the
transport cost was roughly

0.4 kWh/ton-km,

which exactly matches our cartoon. This electrical plane is not a lower-
energy plane than a normal fossil-sucker.

Of course, this doesn’t mean that electric planes are not interesting.
If one could replace traditional planes by alternatives with equal energy
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wing

side view front view

Figure C.13. Hydrofoil.
Photograph by Georgios Pazios.

consumption but no carbon emissions, that would certainly be a useful
technology. And, as a person-transporter, the Electra delivers a respectable
11 kWh per 100 p-km, similar to the electric car in our transport diagram
on p128. But in this book the bottom line is always: “where is the energy
to come from?”

Many boats are birds too

Some time after writing this cartoon of flight, I realized that it applies to
more than just the birds of the air – it applies to hydrofoils, and to other
high-speed watercraft too – all those that ride higher in the water when
moving.

Figure C.13 shows the principle of the hydrofoil. The weight of the
craft is supported by a tilted underwater wing, which may be quite tiny
compared with the craft. The wing generates lift by throwing fluid down,
just like the plane of figure C.2. If we assume that the drag is dominated by
the drag on the wing, and that the wing dimensions and vessel speed have
been optimized to minimize the energy expended per unit distance, then
the best possible transport cost, in the sense of energy per ton-kilometre,
will be just the same as in equation (C.26):

(cd fA)1/2

ǫ
g, (C.34)

where cd is the drag coefficient of the underwater wing, fA is the dimen-
sionless area ratio defined before, ǫ is the engine efficiency, and g is the
acceleration due to gravity.
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Perhaps cd and fA are not quite the same as those of an optimized
aeroplane. But the remarkable thing about this theory is that it has no
dependence on the density of the fluid through which the wing is flying.
So our ballpark prediction is that the transport cost (energy-per-distance-
per-weight, including the vehicle weight) of a hydrofoil is the same as the
transport cost of an aeroplane! Namely, roughly 0.4 kWh per ton-km.

For vessels that skim the water surface, such as high-speed catamarans
and water-skiers, an accurate cartoon should also include the energy going
into making waves, but I’m tempted to guess that this hydrofoil theory is
still roughly right.

I’ve not yet found data on the transport-cost of a hydrofoil, but some
data for a passenger-carrying catamaran travelling at 41 km/h seem to
agree pretty well: it consumes roughly 1 kWh per ton-km.

It’s quite a surprise to me to learn that an island hopper who goes from
island to island by plane not only gets there faster than someone who hops
by boat – he quite probably uses less energy too.

Other ways of staying up

Airships

This chapter has emphasized that planes can’t be made more energy-
efficient by slowing them down, because any benefit from reduced air-

Figure C.14. The 239 m-long USS
Akron (ZRS-4) flying over Manhattan.
It weighed 100 t and could carry 83 t.
Its engines had a total power of
3.4 MW, and it could transport 89
personnel and a stack of weapons at
93 km/h. It was also used as an
aircraft carrier.

resistance is more than cancelled by having to chuck air down harder. Can
this problem be solved by switching strategy: not throwing air down, but
being as light as air instead? An airship, blimp, zeppelin, or dirigible uses
an enormous helium-filled balloon, which is lighter than air, to counteract
the weight of its little cabin. The disadvantage of this strategy is that the
enormous balloon greatly increases the air resistance of the vehicle.

The way to keep the energy cost of an airship (per weight, per distance)
low is to move slowly, to be fish-shaped, and to be very large and long.
Let’s work out a cartoon of the energy required by an idealized airship.

I’ll assume the balloon is ellipsoidal, with cross-sectional area A and
length L. The volume is V = 2

3AL. If the airship floats stably in air of

L

A

Figure C.15. An ellipsoidal airship.

density ρ, the total mass of the airship, including its cargo and its helium,
must be mtotal = ρV. If it moves at speed v, the force of air resistance is

F =
1

2
cdAρv2, (C.35)

where cd is the drag coefficient, which, based on aeroplanes, we might
expect to be about 0.03. The energy expended, per unit distance, is equal
to F divided by the efficiency ǫ of the engines. So the gross transport cost
– the energy used per unit distance per unit mass – is

F

ǫmtotal
=

1
2 cdAρv2

ǫρ 2
3AL

(C.36)
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=
3

4ǫ
cd
v2

L
(C.37)

That’s a rather nice result! The gross transport cost of this idealized
airship depends only its speed v and length L, not on the density ρ of the
air, nor on the airship’s frontal area A.

This cartoon also applies without modification to submarines. The
gross transport cost (in kWh per ton-km) of an airship is just the same
as the gross transport cost of a submarine of identical length and speed.
The submarine will contain 1000 times more mass, since water is 1000
times denser than air; and it will cost 1000 times more to move it along.
The only difference between the two will be the advertising revenue.

So, let’s plug in some numbers. Let’s assume we desire to travel at a
speed of 80 km/h (so that crossing the Atlantic takes three days). In SI
units, that’s 22 m/s. Let’s assume an efficiency ǫ of 1/4. To get the best
possible transport cost, what is the longest blimp we can imagine? The
Hindenburg was 245 m long. If we say L = 400 m, we find the transport
cost is:

F

ǫmtotal
= 3× 0.03

(22 m/s)2

400 m
= 0.1 m/s2 = 0.03 kWh/t-km.

If useful cargo made up half of the vessel’s mass, the net transport cost
of this monster airship would be 0.06 kWh/t-km – similar to rail.

Figure C.16. The Lun ekranoplan –
slightly longer and heavier than a
Boeing 747. Photographs: A. Belyaev.

Ekranoplans

The ekranoplan, or water-skimming wingship, is a ground-effect aircraft:
an aircraft that flies very close to the surface of the water, obtaining its lift
not from hurling air down like a plane, nor from hurling water down like a
hydrofoil or speed boat, but by sitting on a cushion of compressed air sand-
wiched between its wings and the nearby surface. You can demonstrate
the ground effect by flicking a piece of card across a flat table. Maintaining
this air-cushion requires very little energy, so the ground-effect aircraft, in
energy terms, is a lot like a surface vehicle with no rolling resistance. Its
main energy expenditure is associated with air resistance. Remember that
for a plane at its optimal speed, half of its energy expenditure is associated
with air resistance, and half with throwing air down.

The Soviet Union developed the ekranoplan as a military transport ve-
hicle and missile launcher in the Khrushchev era. The Lun ekranoplan
could travel at 500 km/h, and the total thrust of its eight engines was
1000 kN, though this total was not required once the vessel had risen clear
of the water. Assuming the cruising thrust was one quarter of the maxi-
mum; that the engines were 30% efficient; and that of its 400-ton weight,
100 tons were cargo, this vehicle had a net freight-transport cost of 2 kWh
per ton-km. I imagine that, if perfected for non-military freight transport,
the ekranoplan might have a freight-transport cost about half that of an
ordinary aeroplane.
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Mythconceptions

The plane was going anyway, so my flying was energy-neutral.

This is false for two reasons. First, your extra weight on the plane
requires extra energy to be consumed in keeping you up. Second, airlines
respond to demand by flying more planes.
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