
Copyright David JC MacKay 2009. This electronic copy is provided, free, for personal use only. See www.withouthotair.com.

G Tide II

Power density of tidal pools

To estimate the power of an artificial tide-pool, imagine that it’s filled
rapidly at high tide, and emptied rapidly at low tide. Power is generated
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Figure G.1. A tide-pool in cross
section. The pool was filled at high
tide, and now it’s low tide. We let the
water out through the electricity
generator to turn the water’s potential
energy into electricity.

in both directions, on the ebb and on the flood. (This is called two-way
generation or double-effect generation.) The change in potential energy
of the water, each six hours, is mgh, where h is the change in height of
the centre of mass of the water, which is half the range. (The range is the
difference in height between low and high tide; figure G.1.) The mass per
unit area covered by tide-pool is ρ× (2h), where ρ is the density of water
(1000 kg/m3). So the power per unit area generated by a tide-pool is

2ρhgh

6 hours
,

assuming perfectly efficient generators. Plugging in h = 2 m (i.e., range
4 m), we find the power per unit area of tide-pool is 3.6 W/m2. Allowing
for an efficiency of 90% for conversion of this power to electricity, we get

power per unit area of tide-pool ≃ 3 W/m2.

So to generate 1 GW of power (on average), we need a tide-pool with an
area of about 300 km2. A circular pool with diameter 20 km would do the
trick. (For comparison, the area of the Severn estuary behind the proposed
barrage is about 550 km2, and the area of the Wash is more than 400 km2.

If a tide-pool produces electricity in one direction only, the power per
unit area is halved. The average power density of the tidal barrage at
La Rance, where the mean tidal range is 10.9 m, has been 2.7 W/m2 for
decades (p87).

The raw tidal resource

The tides around Britain are genuine tidal waves. (Tsunamis, which are
called “tidal waves,” have nothing to do with tides: they are caused by
underwater landslides and earthquakes.) The location of the high tide (the
crest of the tidal wave) moves much faster than the tidal flow – 100 miles
per hour, say, while the water itself moves at just 1 mile per hour.

The energy we can extract from tides, using tidal pools or tide farms,
can never be more than the energy of these tidal waves from the Atlantic.
We can estimate the total power of these great Atlantic tidal waves in the
same way that we estimate the power of ordinary wind-generated waves.
The next section describes a standard model for the power arriving in
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Figure G.2. A shallow-water wave.
Just like a deep-water wave, the wave
has energy in two forms: potential
energy associated with raising water
out of the light-shaded troughs into
the heavy-shaded crests; and kinetic
energy of all the water moving
around as indicated by the small
arrows. The speed of the wave,
travelling from left to right, is
indicated by the much bigger arrow
at the top. For tidal waves, a typical
depth might be 100 m, the crest
velocity 30 m/s, the vertical
amplitude at the surface 1 or 2 m, and
the water velocity amplitude 0.3 or
0.6 m/s.

travelling waves in water of depth d that is shallow compared to the wave-
length of the waves (figure G.2). The power per unit length of wavecrest
of shallow-water tidal waves is

ρg3/2
√
dh2/2. (G.1)

Table G.3 shows the power per unit length of wave crest for some plausible
figures. If d = 100 m, and h = 1 or 2 m, the power per unit length of wave
crest is 150 kW/m or 600 kW/m respectively. These figures are impressive
compared with the raw power per unit length of ordinary Atlantic deep-
water waves, 40 kW/m (Chapter F). Atlantic waves and the Atlantic tide
have similar vertical amplitudes (about 1 m), but the raw power in tides is
roughly 10 times bigger than that of ordinary wind-driven waves.

Taylor (1920) worked out a more detailed model of tidal power that
includes important details such as the Coriolis effect (the effect produced
by the earth’s daily rotation), the existence of tidal waves travelling in the
opposite direction, and the direct effect of the moon on the energy flow in
the Irish Sea. Since then, experimental measurements and computer mod-
els have verified and extended Taylor’s analysis. Flather (1976) built a

h ρg3/2
√
dh2/2

(m) (kW/m)

0.9 125
1.0 155
1.2 220
1.5 345
1.75 470
2.0 600
2.25 780

Table G.3. Power fluxes (power per
unit length of wave crest) for depth
d = 100 m.

detailed numerical model of the lunar tide, chopping the continental shelf
around the British Isles into roughly 1000 square cells. Flather estimated
that the total average power entering this region is 215 GW. According
to his model, 180 GW enters the gap between France and Ireland. From
Northern Ireland round to Shetland, the incoming power is 49 GW. Be-
tween Shetland and Norway there is a net loss of 5 GW. As shown in
figure G.4, Cartwright et al. (1980) found experimentally that the average
power transmission was 60 GW between Malin Head (Ireland) and Florø
(Norway) and 190 GW between Valentia (Ireland) and the Brittany coast
near Ouessant. The power entering the Irish Sea was found to be 45 GW,
and entering the North Sea via the Dover Straits, 16.7 GW.

The power of tidal waves

This section, which can safely be skipped, provides more details behind
the formula for tidal power used in the previous section. I’m going to
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go into this model of tidal power in some detail because most of the offi-
cial estimates of the UK tidal resource have been based on a model that I
believe is incorrect.

Figure G.2 shows a model for a tidal wave travelling across relatively
shallow water. This model is intended as a cartoon, for example, of tidal
crests moving up the English channel or down the North Sea. It’s impor-
tant to distinguish the speed U at which the water itself moves (which
might be about 1 mile per hour) from the speed v at which the high tide
moves, which is typically 100 or 200 miles per hour.

The water has depth d. Crests and troughs of water are injected from
the left hand side by the 12-hourly ocean tides. The crests and troughs
move with velocity

v =
√

gd. (G.2)

We assume that the wavelength is much bigger than the depth, and we
neglect details such as Coriolis forces and density variations in the wa-
ter. Call the vertical amplitude of the tide h. For the standard assump-
tion of nearly-vorticity-free flow, the horizontal velocity of the water is
near-constant with depth. The horizontal velocity U is proportional to the
surface displacement and can be found by conservation of mass:

U = vh/d. (G.3)

If the depth decreases, the wave velocity v reduces (equation (G.2)). For the

Figure G.4. Average tidal powers
measured by Cartwright et al. (1980).

present discussion we’ll assume the depth is constant. Energy flows from
left to right at some rate. How should this total tidal power be estimated?
And what’s the maximum power that could be extracted?

One suggestion is to choose a cross-section and estimate the average
flux of kinetic energy across that plane, then assert that this quantity repre-
sents the power that could be extracted. This kinetic-energy-flux method
was used by consultants Black and Veatch to estimate the UK resource. In
our cartoon model, we can compute the total power by other means. We’ll
see that the kinetic-energy-flux answer is too small by a significant factor.

The peak kinetic-energy flux at any section is

KBV =
1

2
ρAU3, (G.4)

where A is the cross-sectional area. (This is the formula for kinetic energy
flux, which we encountered in Chapter B.)

The true total incident power is not equal to this kinetic-energy flux.
The true total incident power in a shallow-water wave is a standard text-
book calculation; one way to get it is to find the total energy present in one
wavelength and divide by the period. The total energy per wavelength is
the sum of the potential energy and the kinetic energy. The kinetic energy
happens to be identical to the potential energy. (This is a standard feature
of almost all things that wobble, be they masses on springs or children
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on swings.) So to compute the total energy all we need to do is compute
one of the two – the potential energy per wavelength, or the kinetic en-
ergy per wavelength – then double it. The potential energy of a wave (per
wavelength and per unit width of wavefront) is found by integration to be

1

4
ρgh2λ. (G.5)

So, doubling and dividing by the period, the true power of this model
shallow-water tidal wave is

power =
1

2
(ρgh2λ)× w/T =

1

2
ρgh2v× w, (G.6)

where w is the width of the wavefront. Substituting v =
√

gd,

power = ρgh2
√

gd× w/2 = ρg3/2
√
dh2 ×w/2. (G.7)

Let’s compare this power with the kinetic-energy flux KBV. Strikingly, the
two expressions scale differently with the amplitude h. Using the ampli-
tude conversion relation (G.3), the crest velocity (G.2), and A = wd, we can
re-express the kinetic-energy flux as

KBV =
1

2
ρAU3 =

1

2
ρwd(vh/d)3 = ρ

(

g3/2/
√
d
)

h3 × w/2. (G.8)

So the kinetic-energy-flux method suggests that the total power of a shallow-
water wave scales as amplitude cubed (equation (G.8)); but the correct for-
mula shows that the power scales as amplitude squared (equation (G.7)).

The ratio is

KBV

power
=

ρw
(

g3/2/
√
d
)

h3

ρg3/2h2
√
dw

=
h

d
. (G.9)

Because h is usually much smaller than d (h is about 1 m or 2 m, while d
is 100 m or 10 m), estimates of tidal power resources that are based on the
kinetic-energy-flux method may be much too small, at least in cases where
this shallow-water cartoon of tidal waves is appropriate.

Moreover, estimates based on the kinetic-energy-flux method incor-
rectly assert that the total available power at springs (the biggest tides)
is eight times greater than at neaps (the smallest tides), assuming an am-
plitude ratio, springs to neaps, of two to one; but the correct answer is
that the total available power of a travelling wave scales as its amplitude
squared, so the springs-to-neaps ratio of total-incoming-power is four to
one.

Effect of shelving of sea bed, and Coriolis force

If the depth d decreases gradually and the width remains constant such
that there is minimal reflection or absorption of the incoming power, then
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Figure G.5. (a) Tidal current over a
21-day period at a location where the
maximum current at spring tide is
2.9 knots (1.5 m/s) and the maximum
current at neap tide is 1.8 knots
(0.9 m/s).
(b) The power per unit sea-floor area
over a nine-day period extending
from spring tides to neap tides. The
power peaks four times per day, and
has a maximum of about 27 W/m2.
The average power of the tide farm is
6.4 W/m2.

the power of the wave will remain constant. This means
√
dh2 is a constant,

so we deduce that the height of the tide scales with depth as h ∼ 1/d1/4.

This is a crude model. One neglected detail is the Coriolis effect. The
Coriolis force causes tidal crests and troughs to tend to drive on the right –
for example, going up the English Channel, the high tides are higher and
the low tides are lower on the French side of the channel. By neglecting
this effect I may have introduced some error into the estimates.

Power density of tidal stream farms

Imagine sticking underwater windmills on the sea-bed. The flow of water
will turn the windmills. Because the density of water is roughly 1000 times
that of air, the power of water flow is 1000 times greater than the power of
wind at the same speed.

What power could tidal stream farms extract? It depends crucially
on whether or not we can add up the power contributions of tidefarms on
adjacent pieces of sea-floor. For wind, this additivity assumption is believed
to work fine: as long as the wind turbines are spaced a standard distance
apart from each other, the total power delivered by 10 adjacent wind farms
is the sum of the powers that each would deliver if it were alone.

Does the same go for tide farms? Or do underwater windmills inter-
fere with each other’s power extraction in a different way? I don’t think
the answer to this question is known in general. We can name two alterna-
tive assumptions, however, and identify cartoon situations in which each
assumption seems valid. The “tide is like wind” assumption says that you
can put tide-turbines all over the sea-bed, spaced about 5 diameters apart
from each other, and they won’t interfere with each other, no matter how
much of the sea-bed you cover with such tide farms.

The “you can have only one row” assumption, in contrast, asserts that
the maximum power extractable in a region is the power that would be
delivered by a single row of turbines facing the flow. A situation where
this assumption is correct is the special case of a hydroelectric dam: if the
water from the dam passes through a single well-designed turbine, there’s
no point putting any more turbines behind that one. You can’t get 100
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times more power by putting 99 more turbines downstream from the first.
The oomph gets extracted by the first one, and there isn’t any more oomph
left for the others. The “you can have only one row” assumption is the right
assumption for estimating the extractable power in a place where water
flows through a narrow channel from approximately stationary water at
one height into another body of water at a lower height. (This case is
analysed by Garrett and Cummins (2005, 2007).)

I’m now going to nail my colours to a mast. I think that in many
places round the British Isles, the “tide is like wind” assumption is a good
approximation. Perhaps some spots have some of the character of a narrow
channel. In those spots, my estimates may be over-estimates.

Let’s assume that the rules for laying out a sensible tide farm will be
similar to those for wind farms, and that the efficiency of the tidemills will
be like that of the best windmills, about 1/2. We can then steal the formula
for the power of a wind farm (per unit land area) from p265. The power
per unit sea-floor area is

power per tidemill

area per tidemill
=

π

200

1

2
ρU3

Using this formula, table G.6 shows this tide farm power for a few tidal
currents.

U tide farm
(m/s) (knots) power

(W/m2)

0.5 1 1
1 2 8
2 4 60
3 6 200
4 8 500
5 10 1000

Table G.6. Tide farm power density
(in watts per square metre of
sea-floor) as a function of flow speed
U. (1 knot = 1 nautical mile per hour
= 0.514 m/s.) The power density is

computed using π
200

1
2 ρU3

(equation (G.10)).

Now, what are typical tidal currents? Tidal charts usually give the
currents associated with the tides with the largest range (called spring
tides) and the tides with the smallest range (called neap tides). Spring
tides occur shortly after each full moon and each new moon. Neap tides
occur shortly after the first and third quarters of the moon. The power
of a tide farm would vary throughout the day in a completely predictable
manner. Figure G.5 illustrates the variation of power density of a tide farm
with a maximum current of 1.5 m/s. The average power density of this tide
farm would be 6.4 W/m2. There are many places around the British Isles
where the power per unit area of tide farm would be 6 W/m2 or more. This
power density is similar to our estimates of the power densities of wind
farms (2–3 W/m2) and of photovoltaic solar farms (5–10 W/m2).

We’ll now use this “tide farms are like wind farms” theory to estimate
the extractable power from tidal streams in promising regions around the
British Isles. As a sanity check, we’ll also work out the total tidal power
crossing each of these regions, using the “power of tidal waves” theory,
to check our tide farm’s estimated power isn’t bigger than the total power
available. The main locations around the British Isles where tidal currents
are large are shown in figure G.7.

I estimated the typical peak currents at six locations with large currents
by looking at tidal charts in Reed’s Nautical Almanac. (These estimates could
easily be off by 30%.) Have I over-estimated or under-estimated the area
of each region? I haven’t surveyed the sea floor so I don’t know if some
regions might be unsuitable in some way – too deep, or too shallow, or too
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Figure G.7. Regions around the British Isles where peak
tidal flows exceed 1 m/s. The six darkly-coloured
regions are included in table G.8:

1. the English channel (south of the Isle of Wight);

2. the Bristol channel;

3. to the north of Anglesey;

4. to the north of the Isle of Man;

5. between Northern Ireland, the Mull of Kintyre,
and Islay; and

6. the Pentland Firth (between Orkney and mainland
Scotland), and within the Orkneys.

There are also enormous currents around the Channel
Islands, but they are not governed by the UK.
Runner-up regions include the North Sea, from the
Thames (London) to the Wash (Kings Lynn).
The contours show water depths greater than 100 m.
Tidal data are from Reed’s Nautical Almanac and DTI
Atlas of UK Marine Renewable Energy Resources (2004).

tricky to build on.

Admitting all these uncertainties, I arrive at an estimated total power
of 9 kWh/d per person from tidal stream-farms. This corresponds to 9% of
the raw incoming power mentioned on p83, 100 kWh per day per person.
(The extraction of 1.1 kWh/d/p in the Bristol channel, region 2, might
conflict with power generation by the Severn barrage; it would depend
on whether the tide farm significantly adds to the existing natural friction
created by the channel, or replaces it.)

Region U power area average

(knots) density power

N S (W/m2) (km2) (kWh/d/p)

1 1.7 3.1 7 400 1.1

2 1.8 3.2 8 350 1.1

3 1.3 2.3 2.9 1000 1.2

4 1.7 3.4 9 400 1.4

5 1.7 3.1 7 300 0.8

6 5.0 9.0 170 50 3.5

Total 9

raw power

d w N S

(m) (km) (kWh/d/p)

30 30 2.3 7.8

30 17 1.5 4.7

50 30 3.0 9.3

30 20 1.5 6.3

40 10 1.2 4.0

70 10 24 78

(a) (b)

Table G.8. (a) Tidal power estimates
assuming that stream farms are like
wind farms. The power density is the
average power per unit area of sea
floor. The six regions are indicated in
figure G.7. N = Neaps. S = Springs.
(b) For comparison, this table shows
the raw incoming power estimated
using equation (G.1) (p312).
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v v Friction power tide farm power
(m/s) (knots) density (W/m2) density

R1 = 0.01 R1 = 0.003 (W/m2)

0.5 1 1.25 0.4 1
1 2 10 3 8
2 4 80 24 60
3 6 270 80 200
4 8 640 190 500
5 10 1250 375 1000

Table G.9. Friction power density
R1ρU3 (in watts per square metre of
sea-floor) as a function of flow speed,
assuming R1 = 0.01 or 0.003. Flather
(1976) uses R1 = 0.0025–0.003; Taylor
(1920) uses 0.002. (1 knot = 1 nautical
mile per hour = 0.514 m/s.) The final
column shows the tide farm power
estimated in table G.6. For further
reading see Kowalik (2004), Sleath
(1984).

Estimating the tidal resource via bottom friction

Another way to estimate the power available from tide is to compute how
much power is already dissipated by friction on the sea floor. A coating of
turbines placed just above the sea floor could act as a substitute bottom,
exerting roughly the same drag on the passing water as the sea floor used
to exert, and extracting roughly the same amount of power as friction used
to dissipate, without significantly altering the tidal flows.

So, what’s the power dissipated by “bottom friction”? Unfortunately,
there isn’t a straightforward model of bottom friction. It depends on the
roughness of the sea bed and the material that the bed is made from –
and even given this information, the correct formula to use is not settled.
One widely used model says that the magnitude of the stress (force per
unit area) is R1ρU2, where U is the average flow velocity and R1 is a di-
mensionless quantity called the shear friction coefficient. We can estimate
the power dissipated per unit area by multiplying the stress by the veloc-
ity. Table G.9 shows the power dissipated in friction, R1ρU3, assuming
R1 = 0.01 or R1 = 0.003. For values of the shear friction coefficient in this
range, the friction power is very similar to the estimated power that a tide
farm would deliver. This is good news, because it suggests that planting a
forest of underwater windmills on the sea-bottom, spaced five diameters
apart, won’t radically alter the flow. The natural friction already has an
effect that is in the same ballpark.

Tidal pools with pumping

“The pumping trick” artificially increases the amplitude of the tides in a
tidal pool so as to amplify the power obtained. The energy cost of pumping
in extra water at high tide is repaid with interest when the same water is
let out at low tide; similarly, extra water can be pumped out at low tide,
then let back in at high tide. The pumping trick is sometimes used at La
Rance, boosting its net power generation by about 10% (Wilson and Balls,
1990). Let’s work out the theoretical limit for this technology. I’ll assume
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tidal amplitude optimal boost power power
(half-range) h height b with pumping without pumping

(m) (m) (W/m2) (W/m2)

1.0 6.5 3.5 0.8
2.0 13 14 3.3
3.0 20 31 7.4
4.0 26 56 13

Table G.10. Theoretical power density
from tidal power using the pumping
trick, assuming no constraint on the
height of the basin’s walls.

that generation has an efficiency of ǫg = 0.9 and that pumping has an
efficiency of ǫp = 0.85. Let the tidal range be 2h. I’ll assume for simplicity
that the prices of buying and selling electricity are the same at all times, so
that the optimal height boost b to which the pool is pumped above high
water is given by (marginal cost of extra pumping = marginal return of
extra water):

b/ǫp = ǫg(b+ 2h).

Defining the round-trip efficiency ǫ = ǫgǫp, we have

b = 2h
ǫ

1− ǫ
.

For example, with a tidal range of 2h = 4 m, and a round-trip efficiency of
ǫ = 76%, the optimal boost is b = 13 m. This is the maximum height to
which pumping can be justified if the price of electricity is constant.

Let’s assume the complementary trick is used at low tide. (This requires
the basin to have a vertical range of 30 m!) The delivered power per unit
area is then

(

1

2
ρgǫg(b+ 2h)2 − 1

2
ρg

1

ǫp
b2
)/

T,

where T is the time from high tide to low tide. We can express this as the
maximum possible power density without pumping, ǫg2ρgh2/T, scaled up
by a boost factor

(

1

1− ǫ

)

,

which is roughly a factor of 4. Table G.10 shows the theoretical power
density that pumping could deliver. Unfortunately, this pumping trick
will rarely be exploited to the full because of the economics of basin con-
struction: full exploitation of pumping requires the total height of the pool
to be roughly 4 times the tidal range, and increases the delivered power
four-fold. But the amount of material in a sea-wall of height H scales as
H2, so the cost of constructing a wall four times as high will be more than
four times as big. Extra cash would probably be better spent on enlarging
a tidal pool horizontally rather than vertically.

The pumping trick can nevertheless be used for free on any day when
the range of natural tides is smaller than the maximum range: the water
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tidal amplitude boost height power power
(half-range) h b with pumping without pumping

(m) (m) (W/m2) (W/m2)

1.0 1.0 1.6 0.8
2.0 2.0 6.3 3.3
3.0 3.0 14 7.4
4.0 4.0 25 13

Table G.11. Power density offered by
the pumping trick, assuming the
boost height is constrained to be the
same as the tidal amplitude. This
assumption applies, for example, at
neap tides, if the pumping pushes the
tidal range up to the springs range.

level at high tide can be pumped up to the maximum. Table G.11 gives
the power delivered if the boost height is set to h, that is, the range in the
pool is just double the external range. A doubling of vertical range is easy
at neap tides, since neap tides are typically about half as high as spring
tides. Pumping the pool at neaps so that the full springs range is used
thus allows neap tides to deliver roughly twice as much power as they
would offer without pumping. So a system with pumping would show
two-weekly variations in power of just a factor of 2 instead of 4.

Getting “always-on” tidal power by using two basins

Here’s a neat idea: have two basins, one of which is the “full” basin and
one the “empty” basin; every high tide, the full basin is topped up; every
low tide, the empty basin is emptied. These toppings-up and emptyings
could be done either passively through sluices, or actively by pumps (using
the trick mentioned above). Whenever power is required, water is allowed
to flow from the full basin to the empty basin, or (better in power terms)
between one of the basins and the sea. The capital cost of a two-basin
scheme may be bigger because of the need for extra walls; the big win is
that power is available all the time, so the facility can follow demand.

We can use power generated from the empty basin to pump extra water
into the full basin at high tide, and similarly use power from the full basin
to pump down the empty basin at low tide. This self-pumping would
boost the total power delivered by the facility without ever needing to buy
energy from the grid. It’s a delightful feature of a two-pool solution that
the optimal time to pump water into the high pool is high tide, which is
also the optimal time to generate power from the low pool. Similarly, low
tide is the perfect time to pump down the low pool, and it’s the perfect
time to generate power from the high pool. In a simple simulation, I’ve
found that a two-lagoon system in a location with a natural tidal range of
4 m can, with an appropriate pumping schedule, deliver a steady power of
4.5 W/m2 (MacKay, 2007a). One lagoon’s water level is always kept above
mean sea-level; the other lagoon’s level is always kept below mean sea-
level. This power density of 4.5 W/m2 is 50% bigger than the maximum
possible average power density of an ordinary tide-pool in the same lo-
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Figure G.12. Different ways to use the
tidal pumping trick. Two lagoons are
located at sea-level. (a) One simple
way of using two lagoons is to label
one the high pool and the other the
low pool; when the surrounding sea
level is near to high tide, let water
into the high pool, or actively pump it
in (using electricity from other
sources); and similarly, when the sea
level is near to low tide, empty the
low pool, either passively or by active
pumping; then whenever power is
sufficiently valuable, generate power
on demand by letting water from the
high pool to the low pool. (b) Another
arrangement that might deliver more
power per unit area has no flow of
water between the two lagoons. While
one lagoon is being pumped full or
pumped empty, the other lagoon can
deliver steady, demand-following
power to the grid. Pumping may be
powered by bursty sources such as
wind, by spare power from the grid
(say, nuclear power stations), or by
the other half of the facility, using one
lagoon’s power to pump the other
lagoon up or down.

cation (3 W/m2). The steady power of the lagoon system would be more
valuable than the intermittent and less-flexible power from the ordinary
tide-pool.

A two-basin system could also function as a pumped-storage facility.

Notes

page no.

311 Efficiency of 90%. . . Turbines are about 90% efficient for heads of 3.7 m or

more. Baker et al. (2006).

320 Getting “always-on” tidal power by using two basins. There is a two-basin

tidal power plant at Haishan, Maoyan Island, China. A single generator

located between the two basins, as shown in figure G.12(a), delivers power

continuously, and generates 39 kW on average. [2bqapk].

Further reading: Shaw and Watson (2003b); Blunden and Bahaj (2007); Charlier

(2003a,b).

For further reading on bottom friction and variation of flow with depth, see

Sleath (1984).

For more on the estimation of the UK tidal resource, see MacKay (2007b).

For more on tidal lagoons, see MacKay (2007a).




