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Modeling of natural convection heat transfer

By S. Tieszen, A. Ooi, P. Durbin AND M. Behnia

Results from two-dimensional calculations using the v2 − f and a k − ε model
are compared with data for two geometries, the vertical flat plate and the 5:1
height:width box with a constant temperature hot and cold side wall. The results
show that the v2−f model is at least as good as a k−ε model with a two-layer wall
treatment. The nature of buoyancy/turbulence coupling is discussed, and three
different treatments of it are compared. Preliminary results show that all three
treatments have little effect on the heat transfer in fully turbulent conditions but
that the generalized gradient diffusion hypothesis can make a large difference in the
location of transition with the v2 − f model.

1. Introduction
The progress reported in this study is part of a continuing effort to explore the

predictive capability of the v2 − f elliptic relaxation approach (c.f. Durbin 1991,
Durbin 1993, and Lien & Durbin 1996) as a wall treatment. Of particular interest
to the current study is the determination of the usefulness of the v2−f approach in
predicting heat transfer in flows in which buoyancy plays a large role. The v2 − f
approach has proven useful in predicting heat transfer in forced convective flows
(Durbin 1993, Behnia et al. 1996, 1997).

The prediction of heat transfer in buoyancy influenced flows is important for a
number of engineering applications, including cooling of electronics, heating and
cooling of buildings, process heat transfer (e.g., heat exchangers), and safety ap-
plications (e.g., heat transfer from fires). In many of these applications, mixed
convection exists in which both forced and free convection contribute to the heat
transfer. As a precursor to attempting the complexities of mixed convection heat
transfer, the current study will focus on heat transfer in purely buoyant flows. How-
ever, since our ultimate objective is mixed convection, we will limit our scope of
natural convection to those scenarios that are associated with some definable av-
erage mean flow. Thus, we will not look at turbulent natural convection in boxes
that are uniformly heated from below.

Buoyant flows differ from forced convective flows in some significant aspects. In
particular, in subsonic forced convective flows, the coupling between the momentum
and energy equations tends to be one-way with momentum affecting the advection
term in the energy equation. The energy equation typically does not feed back
into the momentum equation directly. In buoyant flows, the coupling is direct and
two-way with the density gradient in a gravity field appearing in the momentum
equations. There is little disagreement about the effect of buoyancy on the mean
flow.
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On the other hand, the nature of the coupling between buoyancy and turbulence
generation is a matter of considerable speculation (Tieszen et al. 1996). Take a
vertical plume as an example. Vortex dynamicists tend to view buoyancy in terms of
baroclinic vorticity generation (BVG). BVG is proportional to the density gradients
that are normal (perpendicular) to the pressure gradients. Hence, in a gravitational
field, temperature gradients perpendicular to gravity (i.e., horizontal) tend to result
in generation of vorticity. The resulting vorticity field is the gradient of velocity in
which the hot fluid rises and is replaced by transverse inflow. The interaction of
these vortical structures is chaotic and turbulence results. In the more traditional
perspective, density gradients produce vertical momentum. Conservation of mass
requires a transverse inflow to replace the vertically accelerating low-density (high
temperature) fluid. Large-scale instabilities occur as the flow accelerates and a
turbulent cascade results.

In either view, turbulence is not a direct result of buoyancy, but of instabil-
ities (traditional view) or chaotic interactions among vortical structures (vortex
dynamics view). The fundamental question underlying the effect of buoyancy on
turbulence is at what length scales does buoyancy express itself. If buoyancy ex-
presses itself at the global length scales, then it need only be represented in the
mean flow equations. If buoyancy is responsible (in part) for the large-scale insta-
bilities, then perhaps its coupling to the turbulence is present but weak since flow
instabilities will result in a cascade independent of buoyancy. On the other hand,
if buoyancy produces small-scale instabilities (or vortical structures, depending on
your viewpoint) then the buoyancy-produced structures interact directly with the
existing turbulence and the coupling may be strong. The length scales over which
buoyancy expresses itself are not currently well understood. Hence, the difficulty in
modeling their interaction with turbulent momentum.

Turbulence expresses itself in the Reynolds Averaged Navier Stokes (RANS) equa-
tions as long time or ensemble averages of unresolved temporal fluctuations. In the
mean flow equations, these are the Reynold stresses in the momentum equations,
ρ 〈uiuj〉, and turbulent flux in the energy equation, ρ 〈uih〉. In either case, buoy-
ancy does not change this result, i.e., the buoyant term is linear so does not show
up as a non-linear cascade requiring an independent closure term. In RANS mod-
eling, buoyant-turbulence interaction expresses itself as a production term in the
turbulence equations. In the context of the current study, this is in the k, ε, and
f equations. Therefore, in the current modeling strategy, the buoyancy/turbulence
interaction question becomes one of modeling the production term in these equa-
tions.

Hanjalic (1994) gives a good overview of the different levels of buoyancy modeling
that have been attempted. He begins with a second order closure and shows suc-
cessive simplifications that can be made through algebraic stress models to models
compatible with k − ε level approaches. To represent flows without a steady mean
flow, such as the bottom heated box, it is necessary to include temperature fluctua-
tions as a source term. Hence a transport equation for temperature variance and, in
some cases, its dissipation need to be modeled. Since this set of problems is beyond
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the current study’s interest, simpler closures (simple and generalized gradient) will
be adopted as well as leaving the buoyancy only in the mean flow equations. This
approach is more recently justified by the DNS study of Boudjemadi et al. (1998).
For studying heat transfer, the velocity and temperature gradients in the near wall
region are important. The velocity profile in a natural convection boundary layer
is somewhat similar to a wall jet (Tsuji & Nagano 1988). However, the natural
convection boundary layer has an interesting feature in the near wall region not
found in momentum driven flows. From the wall to the velocity maximum, buoyant
production offsets viscous production of u1u2 so that in the near wall region the
absolute value of u1u2 is lower than would be found in a wall jet – nearly zero. As a
result, u1u2 is not correlated well with the mean velocity gradient (∂U/∂x2). Hence
the gradient diffusion approximation for momentum (eddy viscosity) breaks down
in this region. The gradient diffusion approximation is still good for the turbulent
thermal flux, however, in the same region. In the outer flow, from the velocity
peak outward, the turbulence values are similar to those in a wall jet. This near
wall feature indicates that buoyancy does have an effect on the turbulence at small
length scales, sufficiently strong to cause a qualitative difference in the flow.

Since the near wall region is important to heat transfer, it has been found that
the wall treatment is very important to modeling the heat transfer (Ince & Launder
1989, Henkes 1990, Henkes & Hoogendoorn 1989, 1995). For example, Henkes
(1990) found that for a hot plate at Ra = 1011, standard k − ε without a wall
treatment resulted in a prediction 52% over experimental values. With the wall
treatments he tried, the discrepancy was about ± 17%.

Therefore, even though the v2−f approach for wall treatments has proven success-
ful, because of the physical differences between buoyant flow and forced convection
flows, and the sensitivity of heat transfer to wall treatments, it is necessary to test
the v2 − f model in these flows. Two standard tests cases were chosen and will be
discussed in the next section. The models and numerics will be discussed following
the description of the test cases, followed by results and conclusions.

2. Benchmark problems

Two benchmark problems, shown schematically in Fig. 1, were chosen: the first is
the heated vertical plate; the second is the hot wall - cold wall box. These flows have
been studied both experimentally and numerically. As a consequence, comparisons
can be made with both the data and other models.

There are two difficulties with buoyant flows that affect to one degree or another
all the data. The first difficulty is that purely buoyant flows that have been studied
experimentally undergo a laminar to turbulent transition (other than the box heated
from below). Transition is not a challenge experimentally, but computationally it
is difficult because of the complex physics and small scale structures involved. In
the boundary layer problem, numerical transition is usually handled by artificially
tripping the boundary layer at the experimentally determined location. However,
in the box problem, which is elliptic in nature, it is difficult to artificially trip the
solution. Therefore, the comparison is complicated by uncertainties in both the
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Figure 1. Benchmark problems for comparison with v2 − f results. (a) is a
schematic of the vertical flat plate boundary layer problem and (b) is the heated
rectangular box.

turbulent heat transfer prediction and the location of transition, which strongly
affects the flow pattern.

The second difficulty with natural convection flows is that they are generally
low velocity (low momentum) and coupled into the energy equation so they are
difficult to stabilize into a prescribed flow pattern. The experimental studies selected
for benchmarks all attempted to produce two-dimensional flow patterns so as to
facilitate comparison with numerical data. It has proved particularly difficult to
produce a truly two-dimensional flow in the box geometry. Numerically, the low
momentum and tight coupling with the energy equation expresses itself in long
iteration times to reach steady state.

The heated vertical plate is the simplest canonical flow for buoyant heat transfer.
As such it has been studied experimentally by a number of investigators including
Warner & Arpaci (1968), Cheesewright (1968), Pirovanov et al. (1970), Siebers,
Schwind & Moffat (1983), and Tsuji & Nagano (1988a, 1988b). Numerical simula-
tions of the heated plate include Lin & Churchill (1978), Henkes & Hoodendoorn
(1989), and Peeters & Henkes (1992).

The hot wall - cold wall box is more complex than the boundary layer in that it has
a temperature gradient along the vertical centerline and adverse pressure gradients
as the flows approach the corners. Data for box geometries include Cheesewright,
King & Ziai (1986), Cheesewright & Ziai (1986) and King (1989) for a 5:1 vertical to
horizontal aspect ratio and Betts & Bokhari (1995) and Dafa’Alla & Betts (1996)
for a 28.6:1 aspect ratio. Numerical simulations of the hot wall - cold wall box
include Henkes & Hoogendoorn (1995) for the 5:1 box and Bassina et al. (1998),
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for the 28.6:1 aspect ratio.

3. Computational models
For the problems studied, variable density was allowed only in the buoyancy

term (Boussinesq approximation). With this simplification, the RANS mean-flow
equations are:

∂

∂t
(ρUi)+

∂

∂xj
(ρUiUj) =

∂

∂xj

(
µ

(
∂Ui
∂xj

+
∂Uj
∂xi

))
− ∂P
∂xi
−giβ(Θ−Θ∞)+

∂

∂xj
(−ρ 〈uiuj〉)

(1)

∂

∂t
(ρcpΘ) +

∂

∂xi
(ρUicpΘ) =

∂

∂xi

(
k
∂Θ
∂xi

)
+

∂

∂xj
(−ρcp 〈ujθ〉) (2)

where 〈〉 denote ensemble averaging. Θ and θ are the mean temperature and its
fluctuating part respectively. All other symbols have their usual meaning. For the
vertical flat plate, the standard boundary layer approximations are used and the
parabolic equations are solved.

For the momentum equations, the Reynold stress term 〈uiuj〉 is closed with the
usual simple gradient assumption.

ρ 〈uiuj〉 = ρ

(
2
3

)
kδij − µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(3)

This assumption is made for convenience only. The data of Tsuji & Nagano (1988b)
show that from y+ of about 20 to 100 that 〈u1u2〉 is not correlated with the mean
velocity gradient (in this paper 1 & 2 are the streamwise and cross-stream indices
respectively). To correctly model this trend in the data, a more general algebraic
or second order closure model for momentum would be required (Peeters & Henkes
1992). It may be expected that ignoring this trend will produce a difference in the
calculated skin friction. However, for this study, we will assume that the effect of
modeling the momentum transfer in the boundary layer with the simple gradient
diffusion approximation will have little effect on the heat transfer predicted. To
validate this assumption, comparison with experimental data must be made.

The v2 − f model of Durbin (1995) is used to obtain the eddy viscosity and
provide a wall treatment. The eddy viscosity is given by:

µt = ρCµv
2T (4)

where k, ε, v2, and f are given by the solutions of

∂v2

∂t
+ Uj

∂v2

∂xj
= kf − v2 ε

k
+

∂

∂xj

[(
ν +

νt
σk

)
∂v2

∂xj

]
(5)

L2 ∂2f

∂xj∂xj
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[(2/3)− v2/k]
T

− C2
P

k
(6)
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∂k

∂t
+ Uj

∂k

∂xj
= P − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(7)
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with time and length scales given by

L2 = CL max

[
k3

ε2
, C2

η

(
ν3

ε

)1/2
]

(9)

T = max
[
k

ε
, 6
(ν
ε

)1/2
]
. (10)

The model constants are

Cµ = 0.22, Cε2 = 1.9, C1 = 1.4

C2 = 0.3, CL = 0.3, Cη = 70 (11)

σk = 1.0, σε = 1.3

In Eqs. (6), (7), and (8) the production term is given by

P = νt

(
∂Uj
∂xi

+
∂Ui
∂xj

)
∂Uj
∂xi

+G (12)

where G is the buoyant production term and will be subject to several treatments
as described below.

The standard k − ε model is given by Eqs. (7) & (8) with time scale T = k/ε.
The buoyant production term is not included in the ε equation (Eq. (8)). The
eddy viscosity is given by

µt = ρCµ
k2

ε
(13)

The two-layer wall treatment is the one-equation model of Wolfstein (1969). In
the inner layer where

Rey =
k1/2yρ

µ
< 200,

the eddy viscosity is given by

µt = ρCµk
1/2lµ (14)

and
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ε =
k3/2

lε
(15)

lµ = cly

(
1− exp

(
−Rey
Aµ

))
(16)

lε = cly

(
1− exp

(
−Rey
Aε

))
(17)

The constants used to simulate this model can be found in Chen & Patel (1988).
Specification of the turbulent thermal flux is required to close the mean energy

equation (Eq. (2)). In the current study, 〈uiθ〉 is closed by the simple mean gradient
assumption consistent with the eddy viscosity closure for momentum. The ratio of
turbulent to thermal eddy viscosity is the turbulent Prandtl number, Prt. Its value
is 0.9 for the current study. The closure term is

〈uiθ〉 = − νt
Prt

∂Θ
∂xi

(18)

Tsuji & Nagano (1988b) show that the cross-stream thermal flux is correlated with
the mean cross-stream temperature gradient (i.e., it remains positive with a negative
temperature gradient) for a large part of the boundary layer. The turbulent Prandtl
number ranges from 0.9 to about 1.1 before it becomes ill defined from the velocity
peak to the wall, suggesting that this assumption might not be valid in the inner
region of the boundary layer.

In keeping with the uncertainty in the physical coupling of buoyancy and tur-
bulence, several treatments are employed to close the buoyant production term in
Eqs. (6), (7), and (8). In all cases, the buoyant production term is given by,

G = −βg 〈u1θ〉 , (19)

where β is the thermal expansion coefficient. β = 1/T for the cases studied here
(air as the fluid).

In the first level of treatment, G is set equal to zero. This level of treatment is
consistent with the assumption that buoyancy affects only the global length scales
of the problem and expresses itself in turbulence only through velocity gradients
that produce the Reynold stresses.

The second level of treatment is to employ the simple gradient diffusion ap-
proximation for 〈uiθ〉 consistent with the approximations used in the mean flow
equations. This approximation gives

G = − g
T

νt
Prt

∂Θ
∂x1

(20)

This approximation is the most common, and perhaps its use is more for consistency
of approximation in all equations than in its physics representation. In Eq. (20),
the production term is proportional to the temperature gradient in the direction
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of gravity. Therefore, this mechanism only allows buoyancy to be represented by
streamwise temperature gradients. In stratified flows, clearly the vertical temper-
ature gradient will affect the flow (Rodi 1987). However, Eq. (20) suggests that
stratification strongly affects the length scale at which buoyancy expresses itself. If
the flows are not stratified, then buoyancy expresses itself only in the mean flow
equations (global problem length scales). If it is stratified, then buoyancy expresses
itself in turbulent production (length scales within the turbulent spectrum). Typi-
cally, the vertical stratification in many flow situations is small compared to cross-
stream gradients such as in the problems studied here. It is not clear how shallow
vertical temperature gradients could reduce the scale of the buoyant instabilities to
create turbulent production, yet sharp horizontal gradients express themselves only
at global problem length scales (i.e., no production from cross-stream derivatives).

The third level of treatment is to employ the generalized gradient diffusion ap-
proximation (Daly & Harlow 1970 and Ince & Launder 1989) for 〈uiθ〉. This is
the simplest closure known to the authors for which temperature gradients perpen-
dicular to gravity result in buoyant production. The generalized gradient diffusion
hypothesis (GGDH) is

G = −giβcθ
k

ε
〈uiuj〉

∂Θ
∂xj

, (21)

with the Reynold stresses given by Eq. (3). In the boundary layer implementation,
the streamwise derivatives are dropped.

For the vertical plate, a parabolic marching solver is used. The first mesh point
is located at y+ ≈ 1, with 200 mesh points in the cross-stream direction. The
mesh is not evenly distributed, but stretched in the cross-stream direction using
a hyperbolic tangent function. For selected calculations, the mesh was doubled
and no significant changes were found. For the box problem, a commercial code
(FLUENT 4.4) is used. The solver employed was uses the SIMPLE algorithm and
the QUICK second order interpolation scheme. The first mesh point was located at
y+ = 5 with a 150 × 150 mesh grid. The mesh is not evenly distributed. Fine mesh
is used close to the wall and gets coarser towards the center plane of the box. For
selected cases, a 75 × 75 mesh grid was employed and small changes were noted in
the solutions, so subsequent runs were all made at 150 × 150.

4. Results
Solutions using the v2−f model are compared with experimental data in Figs. 2-4

for the vertical plate benchmark. Figure 2 shows the v2 − f model and data sets
for local Nusselt number versus Rayleigh number, where

Rax =
gβ∆Θx3Pr

ν2
= GrxPr (22)

and Grx is the Grashof number. The calculation used the level 1 treatment for
buoyancy, i.e., it was not included in the production terms. The calculation was
started with a laminar profile as the inlet boundary condition and marched up
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Figure 2. Nux vs. Rax for the vertical flat plate boundary layer. v2 − f
turbulence model, × Cheesewright (1968), �Pirvano et al. (1970), ◦ Tsuji & Nagano
(1988), * Warner & Arpaci (1968).

the plate. At Grx ≈ 109 the computation was deliberately tripped to turbulence
by initializing k, ε, and v2 to some small values, and Eqs. (5)-(8) were solved to
simulate the development of the turbulence quantities in the boundary layer.

As is evident from Fig. 2, the v2 − f turbulence model agrees very well with
experimental data. The predictions are well within the scatter of the data from
various experiments. Note that the scatter of the data within each experiment is
less than between experiments. This error indicates that apparatus/measurement
technique dependency (bias error) dominates the uncertainty. Tsuji and Nagano,
(1988a), suspect small gradients in the ambient air temperature.

The mean streamwise velocity profiles at various Grx are shown in Fig. 3. The
v2− f model calculation and the experiments of Tsuji & Nagano (1988) are shown.
Data have been non-dimensionalized by standard wall units. The v2−f calculation
used the level 3 treatment for buoyancy. As will be discussed below, little effect
was noted for the vertical plate problem for the different buoyancy treatments. The
comparison between the v2 − f model and the data is again very good with the
velocity peak predicted in location and amplitude quite closely.

In general, the effect of the different buoyancy treatments was small. Figure 4
shows the comparison of level 1 and level 3 treatments on the thermal eddy viscosity
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Figure 3. U+ vs y+ for the vertical flat plate boundary layer. Lines are data from
the v2−f numerical model ( Grx = 1.56×1010, Grx = 1.80×1011) and
symbols are from experimental data of Tsuji & Nagano (1988a) (◦Grx = 1.56×1010,
• Grx = 1.80× 1011).

as a function of non-dimensional distance from the wall. The GGDH model has an
adjustable constant that was set at 0.05 in Fig. 4. This value is about 1/3 that used
by Ince & Launder (1989). Further adjustment upward would result in a better
fit of the data in the outer part of the boundary layer from y+ of 100 to 1000 but
would degrade the comparison in the inner part of the boundary layer from y+ of
25 to 100. As will be noted later, the value at 0.05 resulted in a good comparison
with the box data. Hence, the constant was left at 0.05.

The small effect of the three treatments on the results that could be interpreted
to mean buoyancy is unimportant as a source of turbulence. However, there is still a
significant discrepancy in the thermal eddy viscosity between the v2−f results and
the data. Another interpretation is that the treatments attempted in this study
are insufficient to represent the effects of buoyancy, and perhaps a more general
treatment such as proposed by Hanjalic (1994), is required. It was reported by
Tsuji & Nagano (1988b) that the eddy viscosity, defined by

νt = −〈uv〉 /∂yU, (23)

has an unusual form (going to ±∞) as a function of y+ for the thermal boundary
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Figure 4. Normalized turbulent thermal viscosity vs. y+. standard v2− f
model, v2 − f model with GGDH and Cg = 0.05, ◦ Tsuji & Nagano (1988).
Data compared at Grx = 9× 1010.

layer. This behavior cannot be represented with a simple gradient diffusion model
for eddy viscosity that has been used in the current study.

The v2− f model results are compared with data in Figs. 5-8 for the 5:1 vertical
box. Figure 5 shows streamlines of the flow in the box from the v2 − f model
with level 1 buoyancy treatment. The flow pattern is basically two separate wall
boundary layers that are not interacting. In the experiment by Cheesewright, King
& Ziai (1986), it was noted that the effects of the hot and cold walls were not
symmetric and that there was re-laminarization as the flow passed across the floor
of the cavity followed by a new transition approximately 20% of the way up the hot
wall. In Fig. 5, the broadening of the boundary layers just past the mid-height of
the box indicated for the level 1 buoyancy treatment that the transition was delayed
in the calculation relative to the experiments.

Figure 6 shows the v2 − f model with two levels of buoyancy treatment (1 and
3), the k − ε model (buoyancy treatment 2) with a two layer wall treatment, and
data sets for Nux/Rax1/3 vs. x/H. Comparing the v2 − f model with level 1
buoyancy and the k − ε model against the hot wall data (King 1989) shows that
the heat transfer is slightly underpredicted by the k − ε model and significantly
underpredicted by the v2 − f model. However, the v2 − f results with GGDH
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Figure 5. Contours of the stream function.
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Figure 6. This figure shows the local Nusselt number divided by the cube root of
the local Rayleigh number vs. non-dimensional height up the wall. ◦ Experimental
data (King 1989), KEPS (level 2), v2 − f (level 1), v2 − f (level
3).

buoyancy treatment provides the best comparison.
The underprediction by the v2−f model without the GGDH buoyancy treatment

is a result of a late transition to turbulence by the model. This can be seen by the
change in slope of the curve around a y/H = 0.6. It is seen more clearly in Fig. 7,
which shows the vertical velocity distribution in the horizontal (cross-stream) direc-
tion. The v2 − f model with the level 1 treatment has a very narrow distribution,
which is characteristic of a laminar boundary layer. With the introduction of the
generalized gradient diffusion term (level 3 buoyancy) into the v2 − f model, the
boundary layer transitions much earlier, thus broadening the profile as seen in Fig. 7
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Figure 7. Mean vertical velocity profiles at x = H/2. ◦ Experimental data of
Cheesewright (1986), level 1 treatment of the v2 − f model, v2 − f
model with GGDH.

0.0 0.2 0.4 0.6 0.8 1.0
x/H

0.0

0.2

0.4

0.6

0.8

1.0

(T
−

T
C
)/

∆T

Figure 8. This figure shows the (Θ−Θc)/∆Θ vs. non-dimensional height up the
wall. ◦ Experimental data (Cheesewright & Ziai, 1986), v2 − f model with
GGDH, level 1 treatment of the v2 − f model.
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and matching the vertical heat transfer profile much better as seen in Fig. 6.
Experimental data for natural convection in a box is hard to obtain because small

amounts of heat loss have a large effect on the outcome. Figure 8 shows the center-
plane temperature profile versus elevation. The variables are non-dimensionalized
such that at mid-height the temperature should be 0.5. In both calculations it is,
but in the data it is lower. This is due to heat loss from the box. In general, the
slope of the curve with elevation is better predicted with the v2− f model with the
level 3 buoyancy treatment than the v2 − f with level 1 buoyancy treatment.

5. Conclusions

The v2−f model compared well with the vertical flat plate data without changes.
However, in the hot-wall, cold-wall box, it had a delayed transition with respect to
the data and significantly underpredicted the heat transfer. With the addition of the
generalized gradient diffusion term to the model, the transition occurred near that in
the data and the overall heat transfer comparisons were excellent. Since a coefficient
was set in the generalized gradient diffusion term, substantially more comparisons
are needed to establish whether or not it is generally useful in transitionally buoyant
flows. From the vertical plate data, it seems to have little effect on the heat transfer
in fully developed turbulent flows.

The nature of buoyancy/turbulence interactions is not well known. Hence, the
ability to model it is not universally agreed upon. Of the three levels of treatment
of the buoyant production term tested, none produced any large effect (outside of
the location of transition) on the heat transfer. It is not clear whether this outcome
means that buoyancy has little effect, or a more sophisticated model is required to
delineate the effects. Certainly the good agreement between the models and the
test results indicate that if the effect is large, it is being masked by other modeled
terms.
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