Magnetic Fields Due to Currents

Objectives:

1. To study Biot-Savart law.
2. To study Ampere's law.
3. To learn how to compute the magnetic field for a current-carrying wire.
4. To learn how to compute the force between two parallel current-carrying wires.

Biot-Savart Law

Biot and Savart found that the magnitude of the magnetic field contribution (dB) is directly proportional to the amount of current (i) and the length of the small segment of wire (ds).They also found that the magnitude of the magnetic field at a point (\mathbf{P}) decreases as the inverse square of the distance between the segment of the wire and point \mathbf{P}.

$$
|d B|=\frac{\mu_{0} i d s \sin (\theta)}{4 \pi r^{2}}
$$

$$
\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{i \overrightarrow{d s} \times \overrightarrow{\mathrm{r}}}{r^{3}}\left(\text { Biot }- \text { Savart }^{\prime} \text { sLaw }\right)
$$

Example:\#1

In the following figure, a straight wire of length \mathbf{L} carrying current \mathbf{i}.
(a) Use Biot-Savart law to find $\overrightarrow{\boldsymbol{B}}$ at a distance \mathbf{R} from the segment along the perpendicular bisector.
(b) Find $\overrightarrow{\boldsymbol{B}}$ if the wire is very long (infinite length).

Solution:

For a small segment (dy) of the wire:

$$
d B=\frac{\mu_{0} i d y \sin (\theta)}{4 \pi r^{2}} \ldots \ldots \ldots(1)
$$

It is straightforward to show that:

$$
\begin{gathered}
r=\sqrt[2]{y^{2}+R^{2}} \\
\sin (\theta)=\sin (180-\theta)=\frac{R}{\sqrt[2]{y^{2}+R^{2}}}
\end{gathered}
$$

Substitute r and $\sin (\theta)$ in Equation (1):

$$
d B=\frac{\mu_{0} i d y \frac{R}{\sqrt[2]{y^{2}+R^{2}}}}{4 \pi\left(\sqrt[2]{y^{2}+R^{2}}\right)^{2}}=\frac{\mu_{0} i R d y}{4 \pi\left(y^{2}+R^{2}\right)^{3 / 2}}
$$

Due to the symmetry:

$$
\begin{gather*}
B=2 \int_{0}^{L / 2} d B \\
B=2 \int_{0}^{L / 2} \frac{\mu_{0} i R d y}{4 \pi\left(y^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0} i R}{2 \pi} \int_{0}^{L / 2} \frac{d y}{\left(y^{2}+R^{2}\right)^{3 / 2}} \ldots \tag{2}
\end{gather*}
$$

Use the following trigonometric substitution:

$$
y=R \tan (u)
$$

Then

$$
d y=R \frac{1}{\cos ^{2}(\mathrm{u})} d u
$$

In Eq. 2

$$
\begin{gathered}
\frac{\mu_{0} i R}{2 \pi} \int_{y=0}^{y=\frac{L}{2}} \frac{R \frac{1}{\cos ^{2}(\mathrm{u})} d u}{\left(R^{2} \tan ^{2}(u)+R^{2}\right)^{\frac{3}{2}}}= \\
=\frac{\mu_{0} i R}{2 \pi} \int_{y=0}^{y=L / 2} \frac{R \frac{1}{\cos ^{2}(\mathrm{u})} d u}{\left(R^{2} \frac{1}{\cos ^{2}(\mathrm{u})}\right)^{3 / 2}} \\
=\frac{\mu_{0} i}{2 \pi R} \int_{y=0}^{y=\frac{L}{2}} \cos (u) d u=\frac{\mu_{0} i}{2 \pi R}[\sin (u)]_{\mathrm{y}=0}^{\mathrm{y}=\mathrm{L} / 2}
\end{gathered}
$$

Since $y=R \tan (u) \rightarrow \sin (u)=\frac{y}{\sqrt[2]{y^{2}+\mathrm{R}^{2}}}$
Then,

$$
\begin{gathered}
\frac{\mu_{0} i}{2 \pi R}[\sin (u)]_{\mathrm{y}=0}^{\mathrm{y}=\mathrm{L} / 2}=\frac{\mu_{0} i}{2 \pi R}\left[\frac{\mathrm{y}}{\sqrt[2]{\mathrm{y}^{2}+\mathrm{R}^{2}}}\right]_{0}^{\mathrm{L} / 2} \\
=\frac{\mu_{0} i}{2 \pi R} \frac{(L / 2)}{\sqrt{\left(\frac{L}{2}\right)^{2}+R^{2}}}=\frac{\mu_{0} i}{2 \pi R} \frac{L}{\sqrt{L^{2}+4 R^{2}}} \\
B=\frac{\mu_{0} i}{2 \pi R} \frac{L}{\sqrt{L^{2}+4 R^{2}}}(\text { in the middle at a distance } R)
\end{gathered}
$$

b) For a wire of infinite length (long wire: $\mathrm{L} \gg \mathrm{R}$)

$$
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (for a very long wire) }
$$

Using the right-hand rule the direction of B is into the page

Example \#2:

Find the magnetic field \vec{B} at a point $\mathrm{P} \rightarrow(\mathrm{R}, \mathrm{b})$

Solution:

For a small segment (dy) of the wire:

$$
\begin{equation*}
d B=\frac{\mu_{0} i d y \sin (\theta)}{4 \pi r^{2}} \ldots \tag{3}
\end{equation*}
$$

It is straightforward to show that:

$$
\begin{gathered}
r=\sqrt[2]{(b-y)^{2}+R^{2}} \\
\sin (\theta)=\frac{R}{\sqrt[2]{(b-y)^{2}+R^{2}}}
\end{gathered}
$$

Then Equation (3) becomes:

$$
d B=\frac{\mu_{0} i d y \frac{R}{\sqrt[2]{(b-y)^{2}+R^{2}}}}{4 \pi\left(\sqrt[2]{(b-y)^{2}+R^{2}}\right)^{2}}=\frac{\mu_{0} i R d y}{4 \pi\left((b-y)^{2}+R^{2}\right)^{3 / 2}}
$$

There is NO symmetry:

$$
\begin{gathered}
B=\int_{0}^{L} d B \\
B=\int_{0}^{L} \frac{\mu_{0} i R d y}{4 \pi\left((b-y)^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0} i R}{4 \pi} \int_{0}^{L} \frac{d y}{\left((b-y)^{2}+R^{2}\right)^{3 / 2}}
\end{gathered}
$$

Substitute $u=b-y$, then $d y=-d u$
if $\mathrm{y}=\mathrm{L} \rightarrow \quad \mathrm{u}=\mathrm{b}-\mathrm{L}$
if $y=0 \rightarrow u=b$

$$
\begin{gathered}
B=\frac{\mu_{0} i R}{4 \pi} \int_{b}^{b-L} \frac{-d u}{\left(u^{2}+R^{2}\right)^{3 / 2}} \\
B=\frac{\mu_{0} i R}{4 \pi} \int_{b-L}^{b} \frac{d u}{\left(u^{2}+R^{2}\right)^{3 / 2}} \\
B=\frac{\mu_{0} i R}{4 \pi}\left[\frac{u}{R^{2} \sqrt[2]{u^{2}+R^{2}}}\right]_{b-L}^{b} \\
B=\frac{\mu_{0} i R}{4 \pi R^{2}}\left[\frac{b}{\sqrt[2]{b^{2}+R^{2}}}-\frac{b-L}{\sqrt[2]{(b-L)^{2}+R^{2}}}\right] \\
B=\frac{\mu_{0} i}{4 \pi R}\left[\frac{b}{\sqrt[2]{b^{2}+R^{2}}}-\frac{b-L}{\sqrt[2]{(b-L)^{2}+R^{2}}}\right]
\end{gathered}
$$

Remark:

If $\mathbf{b}=\mathbf{L} / \mathbf{2}$, then we get the same result of the previous example. (Do it by yourself)

Example \#3

Find the magnetic field (\vec{B}) at C due to current-length element in a circular arc; as show in the figure below:

Solution:

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i \overrightarrow{d s} \times \overrightarrow{\mathrm{r}}}{r^{3}}
$$

We notice that $\overrightarrow{d s}$ is always perpendicular to $\overrightarrow{\mathrm{r}} \rightarrow \theta=90 \rightarrow \sin (90)=1$. Then,

$$
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s}{r^{2}}
$$

Use the following identity to change the integration from $d s$ to $d \varnothing$

$$
d s=R d \emptyset
$$

Then,

$$
\begin{gathered}
d B=\frac{\mu_{0}}{4 \pi} \frac{i R d \emptyset}{r^{2}} \\
B=\int \frac{\mu_{0}}{4 \pi} \frac{i R d \emptyset}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i R}{r^{2}} \int_{0}^{\emptyset} d \emptyset \\
B=\frac{\mu_{0}}{4 \pi} \frac{i R \emptyset}{r^{2}}
\end{gathered}
$$

As we can see that r is always equal to R then:

$$
B=\frac{\mu_{0}}{4 \pi} \frac{i \emptyset}{R}
$$

Note: \emptyset : in radians NOT degrees

Example \#4

For the following figure, find \vec{B} at P .

Solution:

The wire can be divided into three segments:
$B 1=0$, because the angle θ between $d s$ and r is equal to $0 ;(\sin (0)=0)$
$B 3=0$, because the angle θ between $d s$ and r is equal to $180 ;(\sin (180)=0)$
B2 can be obtained using the previous example:

$$
\begin{gathered}
B_{2}=\frac{\mu_{0}}{4 \pi} \frac{i \emptyset}{R}=\frac{\mu_{0}}{4 \pi} \frac{i(\pi / 2)}{R}=\frac{\mu_{0} i}{8 R} \\
B_{n e t}=B_{1}+B_{2}+B_{3}=\frac{\mu_{0} i}{8 R}
\end{gathered}
$$

The direction is into the page (use the right-hand rule).

Example \#5

Find the magnetic filed \vec{B} at P .

(1)

Solution

The wire can be divided into four segments:
$B 1=0$, because the angle θ between $d s$ and r is equal to $0 ;(\sin (0)=0)$
$B 2=0$, because the angle θ between $d s$ and r is equal to $180 ;(\sin (0)=0)$

$$
\begin{gathered}
B_{3}=\frac{\mu_{0}}{4 \pi} \frac{i \emptyset}{R_{1}}=\frac{\mu_{0}}{4 \pi} \frac{i \pi}{R_{1}}=\frac{\mu_{0}}{4} \frac{i}{R_{1}} \\
B_{4}=\frac{\mu_{0}}{4 \pi} \frac{i \emptyset}{R_{2}}=\frac{\mu_{0}}{4 \pi} \frac{i \pi}{R_{2}}=\frac{\mu_{0}}{4} \frac{i}{R_{2}} \\
B_{\text {net }}=\frac{\mu_{0} i}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{gathered}
$$

If B is into the page (+)
If B is out of the page (-)

Force Between Two Parallel Currents

The magnetic filed due to i_{a} :

$$
B_{a b}=\frac{\mu_{0}\left|i_{a}\right|}{2 \pi d}
$$

The expression of the force on length of current-carrying wire tells us that the force on wire \mathbf{b} is:

$$
\begin{gathered}
\overrightarrow{F_{\boldsymbol{a} \boldsymbol{b}}}=i_{b} \vec{L} \times \overrightarrow{B_{\boldsymbol{a} \boldsymbol{b}}} \\
F_{\boldsymbol{a} \boldsymbol{b}}=\left|i_{b}\right| L B_{\boldsymbol{a} \boldsymbol{b}} \sin (90)=\frac{\mu_{0} L\left|i_{a} i_{b}\right|}{2 \pi d}
\end{gathered}
$$

The direction of $\overrightarrow{F_{a b}}$ is in the direction of the cross product $\vec{L} \times \overrightarrow{B_{a b}}$. Applying the right-hand rule, we find that $\overrightarrow{F_{a b}}$ points directly toward wire a as shown.

