Thermal Transport II Lab | Name | |------| |------| | CATEGORY | EXEMPLARY | ACCOMPLISHED | DEVELOPING | EMERGENT | |----------------------------|--|--|---|---| | Quality of
Presentation | Excellent effort that successfully communicates all the relevant features of the experiment in a thoroughly professional looking manner | Good effort that is facilitates the reader's understanding of the data with no substantive errors in plots, calculations, grammar or communication. | Good effort with some errors in plot labeling or calculations; inconsistencies in presentation, grammar, or communication (handwritten) | Some effort, small and hard
to read or hand written,
ineffective communication
of concepts | | Why radiation? | Clarity and coherence
would convince a global
warming skeptic to
volunteer for Al Gore | Clear and coherent argument that anticipates most of the reasonable alternatives and responds appropriately | Convincing to someone who already believes the answer is radiation | Convincing to small child with candy bribe | | Filament
Temperature | Quantifies potential errors
in determination of
temperature and relates to
photography. | Gets reasonable temperature from Stefan-Boltzmann law that is well correlated with color temperature. Make astute observations about the nature and meaning of the universe. | Gets a temperature from
the Stefan Boltzmann law
with some ties to physical
equipment | Moves some numbers around
and takes a fourth root.
Gets a temperature that
sounds hot. | | Convective
acceleration | Notices relationship
between this problem and
various problems
throughout calc physics -
derives expression for
buoyant force | Determines density of
heated air (by two methods)
and buoyant force and uses
a freebody diagram to
determine acceleration | Determines density of
heated air and has
expression for buoyant
force | Successfully calculates the change in density of the air | | Comments | | | | |