
Chapter 1

The Wonderful World of
Differential Equations

The essential fact is simply that all the pictures which science now draws of nature,
and which alone seem capable of according with observational fact, are mathemat-
ical pictures. . . .

Sir James Jeans1

1.1 What are Differential Equations?

Just what are differential equations? Following the wisdom of the old Chinese proverb
that “one picture is worth more than a thousand words,” we defer our answer until we
have provided a picture of sorts. Table 1.1 is, so to speak, a collage of various types
of differential equations. With one exception, these are well-known equations drawn
from different scientific and technical disciplines. A sense of their importance may
be realized from their ability to mathematically describe, or model, real-life situations.
The equations come from the diverse disciplines of demography, ecology, chemical
kinetics, architecture, physics, mechanical engineering, quantum mechanics, electrical
engineering, civil engineering, meteorology, and a relatively new science calledchaos.
The same differential equation may be important to several disciplines, although for
different reasons. For example, demographers, ecologists, and mathematical biologists
would immediately recognize

dp

dt
D rp;

the first equation in Table 1.1, as theMalthusian law of population growth. It is used to
predict populations of certain kinds of organisms reproducing under ideal conditions—

1See [?, ch. 5]. Sir James Jeans (1877–1946)was a British mathematical physicist, Cambridge University
lecturer, Princeton University professor of applied mathematics, and author of a number of popular works
of science, of whichThe Mysterious Universe[?] was one of his most famous. His treatise,Problems
of Cosmogony and Stellar Dynamics(1917), on the behavior of fluids in space contributed to a greater
understanding of the origin and evolution of the universe.
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whereas physicists, chemists, and nuclear engineers would be more inclined to re-
gard the equation as a mathematical portrayal, or model, of radioactive decay. Even
many economists and mathematically minded investors would recognize this differ-
ential equation, but in a totally different context: it also models future balances of
investments earning interest at rates compounded continuously.

Another example is thevan der Pol equation

d2x

dt2
� ".1 � x2/

dx

dt
C x D 0;

which came from modeling oscillations of currents in the nonlinear electrical circuits of
the first commercial radios. For many years, it was the subject of research by electrical
engineers and mathematicians alike.

Table 1.1:Differential Equations Modeling Real-Life Situations

Differential Equation Situation

dp

dt
D rp

The Malthusian law of population growthis
used to model the populations of certain kinds
of organisms living in ideal environments for
limited lengths of timet . It gives the rate at
which a populationp changes with respect to
t . The value of the constantr depends on the
organism.

dx

dt
D k.A � x/2

This second-order reaction ratelaw gives the
rate at which a single chemical species com-
bines to produce a new species, such as methyl
radicals combining in a gas to form ethane
molecules. See Atkins [?, p. 134].

d2y

dx2
D

C

L

s�
AC

L

�2

C
�

dy

dx

�2

The graph of the solution models the shape of
theGateway Archin St. Louis, wherey is its
height at a distancex from one end of its base.
The constantsA, C , andL relate the lengths
of the base, top, and centroid. The Gateway
Arch has the shape of an invertedcatenary.
A catenaryis a curve that has the shape of a
chain suspended from two points at the same
level. The equation used to design the cate-
nary curve shape of Arch can be found at the
website:www.nps.gov/jeff.
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Differential Equation Situation

m
d2x

dt2
C b

dx

dt
C kx D F.t/

This equation models the motion of a damped
mass-spring system subjected to a time-
dependent forceF.t/.

„2

2m
�

d2 

dx2
C

�
E � 1

2
kx2

�
 D 0

This equation from quantum mechanics is the
time-independentSchrödinger’s equationfor
the one-dimensional simple harmonic oscilla-
tor. The constant„ is defined in terms of
Planck’s constanth by „ D h=2�.

.1 � x2/
d2y

dx2
� 2x

dy

dx
C �.�C 1/y D 0

This equation is known asLegendre’s differ-
ential equationand is one of several equations
used for calculating the energy levels of the
hydrogen atom.

EI
d4y

dx4
D w.x/

This differential equation models the vertical
displacementy.x/ of a point located a dis-
tancex from the fixed end of a beam of uni-
form cross section, wherew.x/ represents the
load atx; E andI are constants.

x00 � ".1 � x2/x0 C x D 0
The van der Pol equationmodels the current
at timet in an electrical circuit with nonlinear
resistance.

4xy2
�
y.4/

�3 � 3x4y5
�
y00�6 D cos9.x10/

This is just one mean-looking equation con-
cocted by the author.

dx

dt
D �.y � x/

dy

dt
D rx � y � xz

dz

dt
D xy � bz

This set of three differential equations, called
the Lorenz system,is a overly simplified ver-
sion of a complicated system of twelve equa-
tions used to model convection in the atmo-
sphere. The Lorenz system models the chaotic
rotational motion of a wheel with leaking com-
partments of water symmetrically positioned
around its rim. See Appendix A for more in-
formation.

Even though the equations in Table 1.1 come from diverse fields, they do have some
common features. The foremost feature shared by all of them is that they have at least
one derivative, which is precisely what makes them differential equations in the first
place! We make special note of this by formally defining what is meant by a differential
equation.
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Differential Equation

Definition 1.1. A differential equation is an equation that involves one or more
derivatives of some unknown function or functions.

To complicate matters, there are various types of differential equations: chief among
them areordinary differential equations, partial differential equations, and integro-
differential equations. The equations in Table 1.1 are all examples ofordinary differ-
ential equationsbecause they only involveordinary derivatives. Ordinary derivatives
are the derivatives that we study in a first (single-variable) calculus course.Partial dif-
ferential equationsare equations involving derivatives calledpartial derivatives—how
a partial derivative differs from an ordinary derivative is discussed later on, after the
review of ordinary derivatives in the next section. To give us an inkling of what partial
differential equations look like, here is a classic example:

@u

@t
D k

@2u

@x2
:

It is used to model the conduction of heat through an extremely thin metal bar, where
u.x; t/ is the temperature at the pointx in the bar at timet .

Integro-differential equationsinvolve not only derivatives of unknown functions
but also their integrals. For example, in Chapter?? we will solve integro-differential
equations that look like

x0.t/ D f .t/ C
Z t

0

k.t � u/x.u/ du:

This book is devoted to a study of ordinary differential equations. Even so, there
will be brief forays at times into topics involving very simple partial differential equa-
tions, integral equations, and integro-differential equations.

Before we formally define what is meant by an ordinary differential equation, let’s
point out some features that the equations in Table 1.1 have in common. First we
observe that each equation in Table 1.1 contains a singleindependent variableand one
or moredependent variables. It is a relatively simple matter to tell these two types of
variables apart from the derivatives themselves, since differentiation always takes place
with respect to the independent variable. Obviously then, the other variable, the one
being differentiated, is the dependent variable.

Example 1.1. The first entry in Table 1.1 is the Malthusian law of population growth:

dp

dt
D rp:

Translated into words, the equation says that the rate at which the current population
p of an organism changes with respect to the timet is equal to the product of the
constantr and the current populationp. The timet is the independent variable and the
populationp is the dependent variable.
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Example 1.2. The equation

EI
d4y

dx4
D w.x/

in Table 1.1 models the vertical displacement of a beam. Sincey is differentiated with
respect tox, the independent variable isx and the dependent one isy.

The namedependent variableis befitting because it describes the type of variable it
is: it depends in some functional way on the independent variable as prescribed by the
differential equation, although this dependence is not always possible. For example,

y2 C .y0/2 D �1

is a differential equation; even so, no real-valued function2 can fulfill the prescript that
the sum of its square and the square of its derivative is equal to a negative number.

Space on a page can be saved by replacingLeibniz notation, which uses the Latin
“d” for denoting derivatives, such as

dp

dt
;

d2x

dt2
;

d4y

dx4
;

with a shorthand notation that uses primes (0 ) or overdots (P / for differentiation. In
prime notation, the derivatives

dy

dx
and

dp

dt

are written
y0 and p0;

respectively. A shortcoming of this notation is that the independent variable is not
explicitly stated.

Theoverdot notationis reserved for derivatives that are taken with respect to the
time t . For example,Pp meansdp=dt . Thus, the Malthusian population law

dp

dt
D rp

in the overdot notation becomes
Pp D rp:

We also have to be aware of theordersof the derivatives appearing in equations.
The derivatives

dy

dx
; Pp; z0

arefirst-order derivatives, whereas the derivatives

d2x

dt2
; y00; Rp

2A function isreal-valuedwhen every evaluation of it results in a real number. Even though the function
i sinx, wherei2 D �1, satisfies the differential equation, it is a complex-valued solution, not a real-valued
solution.
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aresecond-order derivatives. Of course, some differential equations have derivatives
of even higher order:third-order derivativessuch as

y000;
d3x

dt3

or fourth-order derivativessuch as
d4x

dt4

or even higher. It is easy to lose track of the number of primes or overdots when the
order is more than three. In such a case, it is customary to use either Leibniz notation
or to use superscripts enclosed in parentheses to denote such derivatives: for example,
d4y=dx4 or y.4/ is preferred overy0000. Thenth derivative ofy with respect tox is
written asdny=dxn or asy.n/ .

All of the previous derivativesare known asordinary derivatives. When we take the
ordinary derivative of a function, the termordinary indicates that we are dealing with
a function of a single variable. In other words, anordinary derivative is a derivative
of a function of a single independent variable with respect to that variable. The word
ordinaryqualifies the wordderivative, distinguishing between the derivatives of single-
variable calculus from the ones of multivariable calculus. Multivariable calculus deals
with functions of two or more variables; their derivatives are calledpartial derivatives.
They will be introduced shortly; but for now, let’s review the definition and meaning of
the ordinary derivative of a function.

1.1.1 Ordinary Derivatives

Let’s review the meaning of anordinary derivativewith an example. Imagine stretch-
ing a filament-like copper wire of length25 centimeters tautly along a straight line. Let
the line serve as thex-axis and the left end of the wire designate the location of the
origin. Suppose that the wire is heated unevenly in such a way that each of its points
eventually reaches a constant temperature but that the temperature generally varies
from point to point. Even though in reality the wire is a three-dimensional object, its
very thinness suggests that variations in temperature along they- andz-directions are
negligible. Consequently, the wire may be regarded ideally as a one-dimensional math-
ematical object: the line segment extending fromx D 0 cm tox D 25 cm. Now sup-
pose that Table 1.2 gives temperature measurements, accurately to the ten-thousandth
place, at5-centimeter intervals along the wire.

Table 1.2:Temperatures at Points of an Unevenly Heated Wire

x (cm) 0 5 10 15 20 25
T (ıC) 100.0000 99.8740 99.4980 98.8720 97.9960 96.8700

Theaverage rate of changeof the temperature with respect tox, asx changes from
10 cm to15 cm, is given by thedifference quotient�T =�x, where�T is the change
in the temperature corresponding to�x, the change in thex-coordinate. Thus,


