Chapter 1

The Wonderful World of
Differential Equations

The essential fact is simply that all the pictures which science now draws of nature,
and which alone seem capable of according with observational fact, are mathemat-
ical pictures. ...

Sir James Jeahs

1.1 What are Differential Equations?

Just what are differential equations? Following the wisdom of the old Chinese proverb
that “one picture is worth more than a thousand words,” we defer our answer until we
have provided a picture of sorts. Table 1.1 is, so to speak, a collage of various types
of differential equations. With one exception, these are well-known equations drawn
from different scientific and technical disciplines. A sense of their importance may
be realized from their ability to mathematically describe, or model, real-life situations.
The equations come from the diverse disciplines of demography, ecology, chemical
kinetics, architecture, physics, mechanical engineering, quantum mechanics, electrical
engineering, civil engineering, meteorology, and a relatively new science caiksas

The same differential equation may be important to several disciplines, although for
different reasons. For example, demographers, ecologists, and mathematical biologists

would immediately recognize
dp

=

the first equation in Table 1.1, as tMalthusian law of population growthit is used to
predict populations of certain kinds of organisms reproducing under ideal conditions—

1See P, ch. 5]. Sir James Jeans (1877-1946)was a British mathematical physicist, Cambridge University
lecturer, Princeton University professor of applied mathematics, and author of a number of popular works
of science, of whichThe Mysterious Universg?] was one of his most famous. His treatigeroblems
of Cosmogony and Stellar Dynami¢%917), on the behavior of fluids in space contributed to a greater
understanding of the origin and evolution of the universe.
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2 CHAPTER 1. THE WONDERFUL WORLD OF DIFFERENTIAL EQUATIONS

whereas physicists, chemists, and nuclear engineers would be more inclined to re-
gard the equation as a mathematical portrayal, or model, of radioactive decay. Even
many economists and mathematically minded investors would recognize this differ-
ential equation, but in a totally different context: it also models future balances of
investments earning interest at rates compounded continuously.
Another example is thean der Pol equation
2
Z”T;C —e(1 —xz)i,—); +x =0,
which came from modeling oscillations of currents in the nonlinear electrical circuits of
the first commercial radios. For many years, it was the subject of research by electrical
engineers and mathematicians alike.

Table 1.1:Differential Equations Modeling Real-Life Situations

Differential Equation Situation

The Malthusian law of population growths
used to model the populations of certain king
of organisms living in ideal environments fo
— =7p limited lengths of timer. It gives the rate at
which a populationp changes with respect to
t. The value of the constamtdepends on the
organism.

)

This second-order reaction ratew gives the

d rate at which a single chemical species com
X 2 . .

— =k(A4—x) bines to produce a new species, such as methyl

dt radicals combining in a gas to form ethane

molecules. See Atkins?] p. 134].

The graph of the solution models the shape pf
the Gateway Archin St. Louis, wherey is its
height at a distance from one end of its base,
The constantsd, C, and L relate the lengths
> | of the base, top, and centroid. The Gateway
) Arch has the shape of an invertezhtenary
A catenaryis a curve that has the shape of
chain suspended from two points at the same
level. The equation used to design the cate-
nary curve shape of Arch can be found at th
website:www.nps.gov/jeff

D
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Differential Equation Situation
> This equation models the motion of a dampe
d*x dx . - .
m—— + b— + kx = F(t) mass-spring system subjected to a time
dt dt dependent force (7).
This equation from quantum mechanics is th
B a2y time-independenSchrodinger’s equatiorior
— - —+(E- lkxz)lp =0 the one-dimensional simple harmonic oscillg
2m  dx? 2

tor. The constant: is defined in terms of
Planck’s constamt by & = h /2.

dy

+AA+ 1)y =0
dx

d?y
(1 —Xz)dx—z —2x

This equation is known akegendre’s differ-
ential equationand is one of several equation
used for calculating the energy levels of th
hydrogen atom.

d*y

This differential equation models the verticg
displacementy(x) of a point located a dis-
tancex from the fixed end of a beam of uni
form cross section, whene(x) represents the
load atx; E and/ are constants.

o

i
i

D

X' —e(1=x)x +x=0

The van der Pol equationmodels the current
at timer in an electrical circuit with nonlinear
resistance.

4)6)/2()/(4))3 —3x%y? (y”)6 = cod (x19)

This is just one mean-looking equation con
cocted by the author.

d

E=U(y—)€)
dy

— =rxX—y—Xz
dt Y
E—xy— z

This set of three differential equations, calle]
the Lorenz systemis a overly simplified ver-
sion of a complicated system of twelve equd
tions used to model convection in the atmg
sphere. The Lorenz system models the chao
rotational motion of a wheel with leaking com
partments of water symmetrically positione
around its rim. See Appendix A for more in
formation.

L

.

C

Even though the equationsin Table 1.1 come from diverse fields, they do have some
common features. The foremost feature shared by all of them is that they have at least
one derivative, which is precisely what makes them differential equations in the first
place! We make special note of this by formally defining what is meant by a differential

equation.
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Definition 1.1. A differential equationis an equation that involves one or mare
derivatives of some unknown function or functions.

To complicate matters, there are various types of differential equations: chief among
them areordinary differential equationspartial differential equations andintegro-
differential equations The equations in Table 1.1 are all examplesodainary differ-
ential equationgecause they only involverdinary derivatives Ordinary derivatives
are the derivatives that we study in a first (single-variable) calculus coBeséal dif-
ferential equationsire equations involving derivatives calledrtial derivatives—how
a partial derivative differs from an ordinary derivative is discussed later on, after the
review of ordinary derivatives in the next section. To give us an inkling of what partial
differential equations look like, here is a classic example:

ou 92u
ko

It is used to model the conduction of heat through an extremely thin metal bar, where
u(x, t) is the temperature at the pointin the bar at time.

Integro-differential equationsnvolve not only derivatives of unknown functions
but also their integrals. For example, in Chap?@mwe will solve integro-differential
equations that look like

xX'(t) = f@) + /Otk(t —u)x(u)du.

This book is devoted to a study of ordinary differential equations. Even so, there
will be brief forays at times into topics involving very simple partial differential equa-
tions, integral equations, and integro-differential equations.

Before we formally define what is meant by an ordinary differential equation, let's
point out some features that the equations in Table 1.1 have in common. First we
observe that each equationin Table 1.1 contains a siimglependent variablend one
or moredependent variableslt is a relatively simple matter to tell these two types of
variables apart from the derivatives themselves, since differentiation always takes place
with respect to the independent variable. Obviously then, the other variable, the one
being differentiated, is the dependent variable.

Example 1.1. The first entry in Table 1.1 is the Malthusian law of population growth:

dp

dt
Translated into words, the equation says that the rate at which the current population
p of an organism changes with respect to the timis equal to the product of the
constant- and the current populatiop. The timer is the independent variable and the
populationp is the dependent variable.

rp.
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Example 1.2. The equation

d*y

dx*
in Table 1.1 models the vertical displacement of a beam. Sjnisedifferentiated with
respect tav, the independent variable isand the dependent one js

El = w(x)

The namalependent variablés befitting becauseit describes the type of variable it
is: it depends in some functional way on the independent variable as prescribed by the
differential equation, although this dependence is not always possible. For example,

P+ =1

is a differential equation; even so, no real-valued functioan fulfill the prescript that
the sum of its square and the square of its derivative is equal to a negative number.
Space on a page can be saved by replatiatdpniz notation, which uses the Latin
“d” for denoting derivatives, such as
dp d*x d*y

dt’  di2’  dx*

with a shorthand notation that uses primé3 ¢r overdots () for differentiation. In
prime notation, the derivatives

dy dp

— and —

dx dt
are written

Yy and p/,

respectively. A shortcoming of this notation is that the independent variable is not
explicitly stated.

The overdot notationis reserved for derivatives that are taken with respect to the
time. For examplep meansip/dt. Thus, the Malthusian population law

dp

ar P
in the overdot notation becomes

p=rp.

We also have to be aware of tlredersof the derivatives appearing in equations.
The derivatives

o
dx 9 9
arefirst-order derivatives whereas the derivatives
d*x .
ar V!
2A function isreal-valuedwhen every evaluation of it results in a real number. Even though the function
i sinx, wherei2 = —1, satisfies the differential equation, it is a complex-valued solution, not a real-valued

solution.
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aresecond-order derivativesOf course, some differential equations have derivatives
of even higher orderthird-order derivativessuch as

y/// &
Tode
or fourth-order derivativessuch as
d*x
dr#
or even higher. It is easy to lose track of the number of primes or overdots when the
order is more than three. In such a case, it is customary to use either Leibniz notation
or to use superscripts enclosed in parentheses to denote such derivatives: for example,
d*y/dx* or y® is preferred oven””. Thenth derivative of y with respect tax is
written asd” y/dx" or asy™.
All of the previous derivatives are known agdinary derivatives When we take the
ordinary derivative of a function, the terordinary indicates that we are dealing with
a function of a single variable. In other words, ardinary derivativeis a derivative
of a function of a single independent variable with respect to that variable. The word
ordinary qualifies the wordlerivative distinguishing between the derivatives of single-
variable calculus from the ones of multivariable calculus. Multivariable calculus deals
with functions of two or more variables; their derivatives are cafiadial derivatives
They will be introduced shortly; but for now, let’s review the definition and meaning of
the ordinary derivative of a function.

1.1.1 Ordinary Derivatives

Let's review the meaning of aordinary derivativewith an example. Imagine stretch-

ing a filament-like copper wire of lengitt centimeters tautly along a straight line. Let

the line serve as the-axis and the left end of the wire designate the location of the
origin. Suppose that the wire is heated unevenly in such a way that each of its points
eventually reaches a constant temperature but that the temperature generally varies
from point to point. Even though in reality the wire is a three-dimensional object, its
very thinness suggests that variations in temperature along-tlaedz-directions are
negligible. Consequently, the wire may be regarded ideally as a one-dimensional math-
ematical object: the line segment extending fram= 0 cm tox = 25 cm. Now sup-

pose that Table 1.2 gives temperature measurements, accurately to the ten-thousandth
place, at5-centimeter intervals along the wire.

Table 1.2:Temperatures at Points of an Unevenly Heated Wire

x (cm) 0 5 10 15 20 25
T (°C) | 100.0000| 99.8740| 99.4980| 98.8720| 97.9960| 96.8700

Theaverage rate of changef the temperature with respecttgasx changesfrom
10 cm to 15 cm, is given by thalifference quotienA7' / Ax, whereAT is the change
in the temperature corresponding4oc, the change in the-coordinate. Thus,
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AT T(15)—T(10)  98.8720 —99.4980
Ax — 15-10 5
Since the negative sign comes frodll’, the quantity0.1252 °C is interpreted as the
temperature decrease per centimeter (roughlyy ascreases from 10 cm to 15 cm.
Likewise, the difference quotient whendecreases from 10 cm to 5 cm is

AT T(5)—T(10)  99.8740 — 99.4980
Ax — 5—-10 -5
The negative sign results from the decreaseriaccompanied by the increase .
Consequently, the quantity.0752 °C roughly estimates the temperature increase per
centimeter as decreases from 10 cm to 5 cm. Equivalently, we can view the temper-
ature as decreasing roughhy0752 °C per centimeter as increases from 5 cm to 10
cm.

If no other temperature measurements are available to us, we could use one of
the two previously calculated values as a rough estimate of the rate of change of the
temperature near = 10 cm. Better yet, we could use their average. Even so, a change
of 5 centimeters inx is a big jump when it comes to estimating the rate of changein the
temperature near = 10 cm. Better estimates could be obtained with smaller jumps
in x. For example, suppose that we are also able to measure the temperatureldt
cm. Then an estimate of the rate at which the temperature decreases stastiag ldk
cm is given by the difference quotient

AT T(11) — T(10)
Ax  11-10
Suppose the measured temperature at 11 cmis99.3928 °C; then,

AT 99.3928 —99.498
Ax 1
This provides us with a new estimate of the rate at which the temperature decreases
whenx = 10 cm; namely,0.1052 °C per centimeter. This is an improvement over the
previous estimates sincéx is now smaller by a factor of 5.

Of course, even better estimates than the previous ones could be obtained by hav-
ing data for even smaller values afx. The ideal situation would be to know the
temperature at every point of the wire. Then thstantaneous rate of chang# the
temperature ak = 10 cm would be given precisely by the limit that the difference
quotientAT / Ax approaches aglx approaches 0, wherdx = x — 10 and AT is
the corresponding change in the temperature from 10 cm twn. In mathematical
notation, we express this by writing

= —0.1252°C/cm.

= —0.0752°C/cm.

= —0.1052°C/cm

. AT . T(10 + Ax) — T'(10)
im — = Ilim .
Ax—0 AXx Ax—0 Ax

This limit is known as thelerivativeof the temperature at = 10 cm and is symbolized
by 77(10). For example, let's suppose that the temperature at every point of the wire is
given by the function

T(x) = 100 — 0.0002x — 0.005x2.
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In fact, the values in Table 1.2 were constructed using this function. Thus, the temper-
ature change\7T fromx = 10 cmtox = 10 + Ax cm is

AT = T(10 + Ax) — T(10)
=100 — 0.0002(10 + Ax) —0.005(10 + Ax)? — 99.4980
= —0.1002Ax — 0.005(Ax)>.

It follows that the corresponding difference quotient is

AT
—— = —0.1002 — 0.005Ax.
Ax

Hence, AT/ Ax approaches-0.1002 °C/cm asAx approaches 0. We conclude that
7’(10) = —0.1002 °C/cm, which means that the temperature decreases at an instan-
taneous rate 0.1002 °C per centimeter whern = 10 cm. Of course, the derivative
T'(10) can be obtained more easily from the derivative rules of calculus. At any value
of x,

d
T'(x) = d—(lOO —0.0002x — 0.005x2) = —0.0002 —0.01x.
X
In particular, atv = 10,
7'(10) = —0.0002 — 0.01(10) = —0.1002 °C/cm.

Now that we have reviewed the meaning of a derivative with an example, let's
consider derivatives in general. It is often the case when dealing with a function, call it
f(x), that the instantaneous rateith which it changes with respect to needs to be
determined. This rate is computed from ttierence quotientfor 1

S(x + Ax) — f(x)
Ax '

This gives theaverage rate of changef /" from x to x + Ax. Theinstantaneous rate
of changeof f atx is the limit of the difference quotient asx approaches 0, which
is expressed by writing

m LAY ()

111
Ax—0 Ax ( )

provided that this limit actually exists. This limit is what is meant by trdinary
derivative of /" at x. It is symbolized by/f’(x) or by dy/dx if y is the dependent
variable. The result of (1.1.1), if the limit exists, is an expression iat represents
the ordinary derivative/”. It is as much a function of as is f/; however, its domain
may differ from f’s. The domain of /’ consists of allx-values for which the limit
(1.1.1) exists. For example, the domain of the real-valued function

) = Vx

SUsually the terminstantaneouss omitted.
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consists of all nonnegative numbers & 0). For these values of, with the exception
of x = 0, the difference quotient (1.1.1) convergesliq2./x). Therefore,

1
2Jx
and its domain consists of all positive numbexs* 0). Of course, the simplest way
to find derivatives is not to apply (1.1.1) directly but to use the rules of differentiation

learned in elementary calculus. Whens assigned a particular value, say= a, then
/f'(a) is anumber that represents the (instantaneous) rate of changeabf = a.

J'(x) =

1.1.2 Ordinary Differential Equations

Now that we have reviewed the definition of the ordinary derivative, we can state what
is meant by the type of differential equation known as an ordinary differential equation.

Definition 1.2. An ordinary differential equation is an equation involving ong
independent variable; one or more dependent variables, each of which is g func-
tion of the independent variable; and ordinary derivatives of one or more af the

dependent variables.

Each of the equations in Table 1.1 fits the description in Definition 1.2; accordingly,
they are all ordinary differential equations. Still, a few words need to be said about the
situation described in the last entry of the table, which unlike the others requires more
than one differential equation to model it, namely, the system of three equations:

x=0(y—x)
y=rx—y—xz (1.1.2)
z=xy—bz.

When a steady, uniformly distributed shower of water falls over a wheel with leaky
compartments symmetrically positioned around its rim, it can be shown that together
these three equations model the rotational motion of the whe&dserve that the equa-
tions are coupled or linked together by their sharing of the three dependent variables:
x, y, andz. As a result, we say that they make usystem of ordinary differential
equations This system, known as theorenz systenor theLorenz equationsis leg-
endary in being one of the catalysts in initiating a branch of mathematics and science
known aschaos The equatiory = rx — y —xz is still considered an ordinary differen-

tial equation, even though it contains all three dependent variables. The reason for this
is that y is an ordinary derivative and all three dependent variables depend only on the
single independent variabke This is implied from the form of the three equations in

4For more information and a derivation of the equations, see the section entitled “Chaotic Motion in
Water Wheels and the Lorenz Equations” in the Appendix.
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the system. Likewise, the other two equations are also ordinary differential equations.
In other words, the Lorenz system consists of three ordinary differential equations.

One characteristic of a differential equation is the order of the highest derivative
appearing in the equation. For example, if a differential equation contains a derivative
of second order (a second derivative) but none of higher order, then we say that the dif-
ferential equation is second order or of order 2. Legendre’s equation listed in Table 1.1
is a second-order equation. The Lorenz system consists of three first-order equations.
Other examples are:

dx

(@) T k(a — x?) is an equation of order 1 (orstorder);

(b) 2xyy + (yy')? = y?is a Istorder equation;
‘y

(c) EIW = w(x) is an equation of order 4;
X

(d) 4xy2(y(4))3 - 3x4y5(y”)6 = cog (x'?) is a 4h order equation.

Definition 1.3. Theorderof an ordinary differential equation is said to hé& the
order of the highest derivative appearing in the equation is

Besides an independent variable and a dependent variable (or variables), most of
the ordinary differential equations listed in Table 1.1 contain quantities knovwaas
rameters A parameterdoes not change in value with changes in the value of the
independent variable; however, its value may change when the situation or experiment
is modified. For example, consider the simple differential equation

dp

g
which is known as the Malthusian law when it is used to predict the populations of
certain types of species. The quantityis a constant for a given species; that is, its
value does not change with time. Yet its value will most likely change if it is applied to
a different species. Another example is the damped mass-spring system

d*x dx
m— +bdt + kx = F(@),
which has three parameterst, b, andk. The parametem is the mass of a body to
which a spring is attached. The parametemeasures the stiffness of the spring, and
b measures the retardation in the motion of the body due to damping forces, such as
friction. None of these parameters depends on time, yet their values would change if
the body and spring were replaced by some other body and spring.
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1.1.3 Solutions of Ordinary Differential Equations

Generally speaking, when dealing with a differential equation, the goal is to find out

as much as possible about its solutions. However, the meaning of the word “solution”
in the context of differential equations is sometimes misunderstood by students. The
reason for this goes back to its meaning in algebra, trigopnometry, and calculus—in
these worlds, solutions are numbers. But in the world of differential equations solutions
are not numbers . We illustrate by comparing a solution of an algebraic equation to that
of a differential equation. The solution of

2x—3=x+7

is“10”, anumber! Why is it a solution? The answer, of course, is that “10” satisfies this
equation. Substitution of “10” for the unknown:" results in the left- and right-hand
sides of the equation being equal: the left-hand side (LHS) becomes

LHS =2x -3 =2(10) -3 =17,
which equals the right-hand side (RHS)
RHS=x+7=104+7=17.

By contrast, the solutions of differential equations are functions, not numbers. A simple
example is provided by the differential equation

dy

— = 2x.
dx x

A solution isy = x2. In fact, every function of the forny = x2 + C, whereC is a

constant, is a solution. The reason for this is that these functions satisfy the equation.

When we substitutex*?> 4+ C” for the unknowny and differentiate, we obtair2:”,

which is precisely the right-hand side of the equation:

d d
LHS= —y = —(x?2+ C) =2x equals RHS=2x.
dx dx
No other functions have derivatives equabto, aside from those of the formx2 4 C”.

Consequently, these are the only solutions of the differential equation. Let’s take a look
at some more examples.

Example 1.3. Suppose someone alleges that= In x is a solution of
xy" =—y. (1.1.3)
Determine whether it really is a solution.

Solution We have not yet learned any methods for solving differential equations. But
we do not need any to answer this question. All that is required is for us to substitute
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the first and second derivatives ofirinto the equation to see if a true statement results.
With these substitutions, the left-hand side of the equation is

d? d (1 1 1
o " o__ _ I _ — __
LHS = xy _x—dxz(lnx)_x_dx (x)_x( _xz) o

while the right-hand side is
1
RHS= —Lnx) = - L.
dx X

Since both the left- and right-hand sides turn out to be equalto!, the function
y = Inx is a solution.

There is another matter to consider. Since a solution is a function, we need to be
aware of the domain of its definition and where it solves the differential equation. As
for this example, we know from calculus that the domain af lis the intervak0, co).

Since Inx also satisfies (1.1.3) on this interval, we say that the maximal interval for
which y = Inx is a solution of (1.1.3) ig0, co).

Example 1.4. The functiony = x? is also alleged to be a solution of (1.1.3). Is it
really?

Solution Substituting, we find that

> d
LHS = xﬁ(x )= x%(ZX) = 2x
whereas J
RHS= ——(x?) = —2ux.
dx

Since the LHS# RHS, we conclude that = x? is not a solution of the differential
equation.

Example 1.5.1s y = 1 a solution of (1.1.3)?

Solution This might be interpreted as: 19™ a solution? But that would be incorrect.
The question really asks: Does the constant functign) = 1 satisfy the equation?
Now this may seem like quibbling over semantics but there is a point to be made:

Solutions of algebraic equations are numbers. Solutions of differential
equations are functions.

Now the answer: Since both the first and second derivatives of this function are equal
to O at all values of, it satisfies the equation for alloco < x < co. Thusy(x) = 1is
indeed a solution.

Before presenting any more examples, let us summarize what the previous exam-
ples have taught us about what is meant tgoéutionof a differential equation.

5The symbol= stands for the phrase “is identically equal to.” $¢x) = 1 meansy(x) = 1 for all
—00 < X < 00.
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Definition 1.4. A solutionof an ordinary differential equation with one dependent

variable is a differentiable function of the independent variable that satisfigs the
equation on some interval. In other words, if we substitute the function for the
dependent variable, we obtain a result that is valid on the interval.

Example 1.6. Is y = sinx a solution of the equation® + ()')? = 1?

Solution When we substitute sin for y, we obtainy? + (y')? = sin* x +cog x = 1
by the Pythagorean identity of trigonometry. Since this is true for all real humbers,
y = sinx is a solution on the intervgl-oco, c0).

An algebraic equation may not have real-valued solutions, suctfas —1. The
same may be true of a differential equation. Consider, for instance,

y+ () =L

Whatever real-valued, differentiable function is substitutedyfothe left-hand side of
the equation is always nonnegative. Consequently, there is no real-valued function that
solves this equation.

1.1.4 Partial Derivatives

We introduce the concept giartial derivativesmuch in the same way as our review of
ordinary derivativedy again considering temperature variations in an unevenly heated
copper object. This time, however, instead of a filament-like copper wire, we imagine
heating a thin, rectangular copper plate with a length of 25 cm and a width of 5 cm.
The thinness of the plate allows us to ignore its thickness in the ensuing discussion; in
effect, we model the real, three-dimensional plate with an idealized two-dimensional
rectangle. Let's orient the plate so that two of its adjoining edges are along-taed
y-axes as shown in Figure 1.1.

4 y(cm)

/ At (10, 1), the temperature is 99.4980 °C

N W A W
N

v

X (cm)

Fig. 1.1: Unevenly heated copper plate
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As with the previous example of the copper wire, let's imagine that the plate is
heated unevenly in such a way that the temperature at each of its points stays constant
but that it generally varies from point to point. One possibility is given in Table 1.3,
which gives temperatures accurately measured to the ten-thousandth place at the points
(x, y). Let's use the notatiofl’(x, y) to designate the temperature(at y). In other
words, T' is the name that we give to the temperature function. Note that it depends
on bothx and y—in other words, it is a function of two variables rather than just one
variable.

Table 1.3:Temperatures (°C) at Points of an Unevenly Heated Plate

x (cm)
0 5 10 15 20 25
0 | 99.0000 | 98.8750 | 98.5000 | 97.8750 | 97.0000 | 95.8750
1 | 100.0000| 99.8740 | 99.4980 | 98.8720 | 97.9960 | 96.8700
y(cm) | 2 | 101.0000| 100.8710| 100.4920| 99.8630 | 98.9840 | 97.8550
3 | 102.0000| 101.8660| 101.4820| 100.8480| 99.9640 | 98.8300
4 | 103.0000| 102.8590| 102.4680| 101.8270| 100.9360| 99.7950
5 | 104.0000| 103.8500| 103.4500| 102.8000| 101.9000| 100.7500

Let's select a specific point on the plate, s@y, 1), in order to investigate the
temperature changes near it. In Table 1.3, the temperatures in the row and column
containing the temperature €it0, 1), namely 99.4980C, are boldfaced. Consider the
temperature changes along this row and column. The common feature shared by the
temperatures in the row is that all of them are at points with theipordinates equal
to 1. If we restrict our attention to the = 1 row, the temperature function may be
viewed as a function of the single variabte Let r (x) denote its value at. Note that
r(x) is the same a%'(x, 1). The derivative

r(10 + Ax) —r(10)

o (1.1.4)

'(10) = lim
V( ) Ax—0

gives the exact (instantaneous) rate of change of the temperatatehe point(10, 1)
whenx is varied but they-coordinate is held at the constant valueOne of the ways
to denote this derivative is by writin@ (10, 1). The limit of the difference quotient
(1.1.4) written entirely in terms df" is

T(10 + Ax, 1) — T(10, 1)

o (1.1.5)

T(10.1)= lim_
x—

This particular limit is called theartial derivative of T with respect to x at the point
(10, 1).

In the same way, just as we found that (1.1.5) gives the rate of chan@eatfthe
point (10, 1) when the value o is kept fixed atl, we can find another rate of change
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of T at the point(10, 1) by varying y but keepingx = 10. This means that this time
the measurements in the boldfaced column (the one with the heading 10) must be used
to compute the difference quotients. Lety) denote the temperatures in this column.
One possible estimate of the rate of chang&'ait the point(10, 1), albeit a rough one,
is given by the following difference quotient obtained by changinfom y = 1 to
y =2

Ac c(14+ Ay)—c(l)  c(2)—c(l) 100.4920 — 99.4980

= = = =0.9940°C/cm.
Ay Ay 2—-1 1 /

Sincec(y) = T (10, y), this translates to
AT T(10,14 Ay) —T(10,1)

= 1.1.6
Ay Ay (1.1.6)
7(10,2) —T7(10,1 100.4920 — 99.4980
= ( ; . ( ) = 0 =0.9940°C/cm.

The quantity0.9940 °C is roughly the temperature increase per centimetey &3
creases from 1 cm to 2 cm whenis held fixed atl0. The exact rate of change at the
point (10, 1) keepingx = 10 is defined by the limit
: 710,14+ Ay)—1T(10,1)
Ay—0 Ay o Ay—0 Ay ’

(1.1.7)

However, there is a fly in the ointment: if we do not know the temperatures at all of the
points in the plate that have theircoordinates equal td0, then the limit (1.1.7) can
only be estimated with a difference quotient, such as the one in (1.1.6). Nevertheless,
the limit does exist because there is a temperafl(e, y), whether known or not,
associated with every poirty, y) on the plate. The limit given by (1.1.7) is called
partial derivative of 7 with respect toy at the point(10, 1) and is denoted by the
symbol T, (10, 1).

Suppose that the temperature at every point of the plate is given by the fuhction

T(x,y) =99 + y — 0.0002x y2 — 0.005x>. (1.1.8)

Let’'s compute the partial derivativB, (10, 1) by taking the limit of the difference quo-
tientin (1.1.7) as follows:

im 10,1+ Ay) —7(10,1) im Ay —0.004Ay — 0.002(Ay)?
Ay—0 Ay © Ay—0 Ay

= lim (0.996 —0.0024y) = 0.996°C/cm
y—)

Therefore, T, (10, 1) = 0.996°C/cm.

The previous example serves as an introduction to the definition of a partial deriva-
tive. The rate of change of a function of two variables with respect to one of its vari-
ables, as the other one is held constant, is knownartal derivativeof the function.

6In fact, the values in Table 1.3 were actually computed with this function.
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Since there are two variables, there are two first-order partial derivdtivepartial
derivative of a function of two variables is obtained by taking the limit of a difference
quotient for that function, just as an ordinary derivative of a function of one variable
is the result of taking the limit of its difference quotient. We just have to state pre-
cisely what is meant by the differences quotients for a function of two variables and
how to take their limits. Using the example of the temperature function as a guide, the
following definition should come as no surprise.

Definition 1.5. Let F be a function ofx andy. Thepartial derivative of F' with
respect tax, denoted byFy, is defined by

F(x + Ax,y)— F(x,y)
Ax ’

Fi(x,y)=1i 1.1.9
(e, y) = lim (1.1.9)
provided the limit exists. Likewise, theartial derivative of F' with respect toy,
denoted byF),, is defined by

F(x,y+ Ay)— F(x, )

1.1.10
i (1.1.10)

Fy(x.) = Jim

provided this limit exists.

Example 1.7. Find the partial derivativé, of the functionF(x, y) = 5x2y.
Solution By (1.1.9),

5(x + Ax)?y — 5x%y

Frlx.p) = Alpicrﬂo Ax
— im 5x2y + 10xAxy + 5(Ax)?y — 5x2y
"~ Ax—0 Ax

= lim (10xy + 5Axy) = 10xy.
Ax—0

We should point out that there is another way to denote partial derivatigs:, »)
and Fy (x, y) are also expressed by writing

iF(x, y) and iF(x, »).
ax ay

respectively. Thesurly d distinguishes partial derivatives, expressed by symbols like
d/dx andd/dy, from ordinary derivatives, which are expressed with the Ldtisuch
asd/dx ord/dy.

“There are higher-order partial derivatives too, just as there are higher-order ordinary derivatives. How-

ever, we only discuss first-order partial derivatives in this chapter. In a future chapter, we will need to talk
about second-order partial derivatives but that can wait for now.
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When we examine definition (1.1.9) and look at the result of the example, we see
that taking the partial derivative df with respect tox is really the same as taking the
ordinary derivative ofF’ with respect tax, if at the same time we regard as being
held at a constant value. Symbolically, we could write

Fy(x,y) = a%F(x, y = constant

Similarly, the process of taking the partial derivative Bfwith respect toy can be
remembered symbolically as

F,(x,y) = j—yF(x = constanty).

With this viewpoint, it becomes a relatively simple matter to take the partial derivatives
of two-variable functions, such a&(x, y) = 5x2y. The partial derivative of" with
respect tav is

Fy(x,y) = i(S)CZy) = iF(x,y = constant = 4 (5x2y) = 10xy,
0x dx dx y

=constant

as we already determined in Example 1.7. Similarly, the partial derivativé wfith
respect toy is

d d
Fy(x,y) = 5(5)62 y) = @F(x = constanty) (1.1.11)
d 2 2
o @ (Sx y)‘y=constant_ X
In practice,

d d

— F(x,y = constant and — F(x = constanty)

dx dy

are mental steps but are not written down. We employ this merely as a pedagogic aid
for newcomers to this subject. Once you become adept at finding partial derivatives,
you may think (1.1.11) but should write

d
Fy(x,y) = E(szy) = 5x%.

Example 1.8. Evaluate the first-order partial derivatives of the temperature function
(1.1.8)

T(x,y) =99+ y —0.0002xy? — 0.005x2 °C
at the point(10, 1).
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Solution First we find the partial derivative df with respect tox as follows:
d 0

Ty(x,y) = B—T(x, y) = 3—(99+y—0.0002xy2—0.005x2) = —0.0002y2—-0.01x.
X X

Next we evaluate the result at the poiid, 1):

Tx(10,1) = (=0.0002y> = 0.01x)| 4
= —0.0002(1)> = 0.01(10) = —0.1002°C/cm

Similarly, the partial derivative of” with respect toy is
0 0
Ty(x,y) = B—T(x, y) = 3—(99 + 3 —0.0002xy% — 0.005x2) = 1 —0.0004xy.
y y

Consequently,
T,(10,1) = (1 — 0.0004xy)|(10 jy = 1—0.0004(10)(1) = 0.996 °C/cm.

If you recall, the resulf’, (10, 1) = 0.996 °C/cm was also obtained by directly apply-
ing the difference quotient. Note the ease with which we can find partial derivatives by
applying the rules of differentiation that we already know from calculus.

1.1.5 Partial Differential Equations

Up to now we have explained what ordinary differential equations are and given exam-
ples. They basically are equations containing ordinary derivatives. Likewise, equations
containing partial derivatives (but not ordinary derivatives) are called partial differential
equations. In this book we are not concerned with partial differential equations per se;
nevertheless, we will need to know a little about them. As it turns out, some methods
for solving certain kinds of ordinary differential equations involve partial derivatives
and some basic equations containing them. We will see this in Chapter 8. Let’s begin
with the definition of a so-called partial differential equation.

Definition 1.6. A partial differential equation is an equation containing mofe
than one independent variable, one or more dependent variables, and |partial
derivatives of one or more of these dependent variables.

Our first example of a partial differential equation is

i
ot ox2’
It models the conduction of heat through an extremely thin metal bar, wherg) is

the temperature at the pointin the bar at time. This equation is known as thene-
dimensional heat equatioh There are two independent variables: the spatial variable

8For more information, see Churchilf]|



1.2. ORIGINS OF BASIC ORDINARY DIFFERENTIAL EQUATIONS 19

x and the temporal variable The variablex depends on both of them and so it is
the dependent variable. The parameétes called thethermal conductivityof the bar.
What makes this a partial differential equation s that it is an equation containing partial
derivatives. Wheread/ 1 is a first-order partial derivativé?u /9:” is a second-order
partial derivative, similar to second-order ordinary derivatives. Therefore, this is an
example of a second-order partial differential equation. We will say a little more about
higher-order partial derivatives in a later chapter.

The only partial differential equations that we need to consider in this book are
first-order equations of the form

ou ou
—=/(x,y) or —=g(x,y), (1.1.12)
0x By

where the dependent variableis a function of bothx and y. An example of an
equation of the first form is
du

— = 2xy — Sinx.
ax Y

An example of one of the second form is

W syt 2
oy Y Ty ‘

In Section 1.2.3, we will discuss how to find solutions of partial differential equations
of the two forms shown in (1.1.12). For the sake of brevity, it is common to use the ab-
breviations “ode” for “ordinary differential equation” and “pde” for “partial differential

equation.”

1.2 Origins of Basic Ordinary Differential Equations

As Section 1.1 points out, ordinary differential equations arise when we attempt to use
mathematics to model certain real-life situations. Equations that are judged good mod-
els imitate reality closely, provide insight and understanding, and predict well. Finding
just the right equation, or equations as the case may be, could be quite complicated—
not only because of the mathematics but because other disciplines are involved as well.
In spite of this, we will ease our way into a study of differential equations by start-
ing with some of the more elementary ones that arise from modeling relatively simple
situations. Throughout the rest of this chapter, we present examples of elementary
differential equations that result when

(a) the rate of change of a quantity is known or can easily be determined,;

(b) the rate of change of a quantity is known or conjectured to be proportional to
another quantity;

(c) Newton’s second law of motion is used to model the motion of a body.
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1.2.1 Rates of Change

Modeling real-life situations frequently involves the rates of change of quantities. From
studying calculus, we have learned that tirssantaneou3 rate of change of a quan-

tity, dependent solely on a single variable, is given by its ordinary derivative with re-
spect to the variable. As a result, when the rate of change of a quantity is given or
can be determined, that information can be expressed mathematically as an ordinary
differential equation. Let's take a look at some examples of typical situations involving
rates of change.

Bathtub

Water flows out of a spout into a bathtub at the rate of 3 gallons per minute. Trans-
lated in the succinct language of mathematics, this verbal statement becomes the dif-
ferential equation

dN 3
dt 7
where N (t) denotes the number of gallons of water that has flowed into the bathtub
afters minutes.

Temperature along a heated wire

In our review of the meaning of an ordinary derivative, we determined that the
temperaturel” along the copper wire changes at a rate-@.0002 — 0.01x degrees
Celsius per centimeter, whereis the distance in centimeters from the left end of the
wire. This verbal statement is equivalent to the mathematical statement

dT
— = —0.0002 — 0.01x.
dx

Marginal cost

An economic decision may be based in part on the increment in cost that will be
incurred if one more unit of some product is manufactured. Some economists call this
cost increment thenarginal cost It can usually be approximated by a derivative: the
instantaneous rate of change of the total cost function with respect to the number of
manufactured units, say, of the product. For this reason, many economists prefer
defining themarginal cost (abbreviatedvIC) as this derivative. In this book, we use
the derivative definition of marginal cost. As an example, suppose it is stated that the
marginal cost to manufacturewidgets is given by the functiom/ C = 10x + 5000.

We can express this statement more concisely with the differential equation

d
—C = 10x + 5000,
dx

whereC(x) denotes the total cost to produgevidgets.

9A widgetis a substitute for the name of some device or gadget, usually used when its real name is not
known or temporally forgotten, in other words, a thingamajig. Here we use it to mean a fictitious, manufac-
tured product. In this way, we can easily fabricate marginal cost functions to illustrate the mathematics and
economics, without also having to consider whether or not they represent reality.
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Speed of a falling object

An object is dropped from the top story of the Leaning Tower of Pisa, the famous
freestanding, eight-story bell tower of the cathedral of Pisa, Italy. sLéénote the
distance, in feet, the object has fallerseconds after being dropped. Tkpeedof
the falling object is the rate with which its distance increases with time, or the time
derivatives. According to the laws of elementary mechanics, the speed afieconds
is approximately32¢ feet per second, provided the counteracting resistance of the air
pushing upward on the object is negligible. Therefore, the speed of the falling object,
up to the time it hits the ground, is modeled by the differential equatien32¢, or

95 _ 3
dr =7

Arc Length

A pair of equationsy = f(t) andy = g(t), will generate a curve in they-plane
when the independent variablencreases from a starting valueto an end values.
Under the assumption that the functiogfsand g have continuous derivatives, let's
investigate how one goes about calculating the rate at which the length of the curve
increases with.

Much of elementary calculus deals with graphssofioothfunctions. A function
F(x) defined fore < x < B, wherex andf are real numbers, is said to senooth
if F’(x) exists and is continuous at every point [of, 8]. The graph ofy = F(x)
when F is smooth is called @amooth curve Each value ofx corresponds to a point
(x,y) = (x, F(x)) on the curve. Asc increases fronw to 8, we can envision a point
particle starting out at thiaitial point («, F(«)) of the curve and moving along it until
it ends up at theerminal point(8, F(8)).

Similarly, a pair of equations

x=f@), y=2g(@ (1.2.1)

for « <t < B traces out a curve in they-plane as the independent variablearies
fromt = ator = B. Unlike before, the variabler is no longer an independent
variable; rather it, as does depends on the independent variableEach value of
corresponds to a poirty, y) = (f(¢), g(¢)) on the curve. The equations = f(¢)
andy = g(r) definingx andy are calledoarametric equations The variable is the
parameter A curve defined by (1.2.1) is said to lsenoothif the derivatives off and

g exist, are continuous, and never simultaneously zero for all valuegahe interval
[, B]- Smoothness guarantees that

1. there is a unique tangent line at every point of the curve, and

2. 0(t), the angle of inclination of the tangent line at the pdiiiz), g(¢)), is de-
fined for all values of € [«, 8] and is a continuous function.

Consequently, a smooth curve has no corners or cusps. Moreover, no portion of the
curve is retraced as increases. In other words, a point particle starting out at the
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initial point ( f(«), g(«)) will never stop and move in the reverse direction along the
curve before it reaches thterminal point (/' (8), g(8)). With that said, we are now
ready to consider the length of a smooth curve, which is calledritsiength, and to
determine the rate at which its arc length changes with respect to

Lets denote the arc length of a curve. Fgr> «, let As denote the length of the
portion of the curve corresponding to valuesrofrom ¢t = ¢ tot = t; + At. For
values ofA¢ close to zero, the lengths of this portion is approximately the length of
the hypotenuse of the right triangle as illustrated in Figure 1.2

Fig. 1.2: Approximation ofAs
By the Pythagorean theorem,

As ~ [ (Ax)? + (Ap)?.

Since the difference quotient

Ax [+ 4D - f()
At At

is approximately equal to the derivativ€/ (z;) for values of Ar near zero, we can
approximateAx with f”(¢;)At. Likewise,Ay ~ g’(t;) At. Thus,

As = \J(0) AN + (1) AD? = ALJ(F1@))? + (& (1)),

or

As

T~ JUrar + gor

As At — 0, this approximation becomes better and better. We conclude that the rate
of change of the arc lengthof the curve at = ¢; can be found by evaluating

d d 2 d 2
- = JUOR + 0P = \/ (—d’j ) + (—df ) (1.2.2)
atr = 1.

In applications where represents the time ar@, y) = (f(¢), g(z)) the position
of a moving body at time, the derivatives given by (1.2.2) is the rate of change of the
distance of the body from its initial position, i.e., tapeedof the particle.
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1.2.2 Simplest Type of Ordinary Differential Equation

Before we show examples of differential equations arising from proportions or from
Newton’s second law of motion, let us first note the form of the previous equations
and then look into a method for finding their solutions. Each of them was the result
of knowing the rate at which a quantity changes. Their form is simply a derivative
equal to a constant or to an expression involving the independent variable but not the
dependent one. In mathematical notation, this is expressed as

Z:—y = f(x). (1.2.3)

X

The notationf (x) conveys thatf" is a function ofx but not of y while dy/dx tells us
that x is the independent variable andis the dependent variable. It is important to
keep in mind that the right-hand side of (1.2.3) is a function of the independent variable
alone. Whatever is said in this section about finding solutions of (1.2.3) does not carry

over to equations of the form
dy

where f is a function of the dependent variable alone, nor to equations of the form
dy
% - f(xv y)v

where f is a function of both variables.

Equations of the form shown in (1.2.3) are the simplest type of ordinary differential
equation in the sense that all that is required to find their solutions is direct integration
with respect tor. A solution of (1.2.3) is any function whose derivative is the function
f. Calculus tells us that there are infinitely many such solutions—any two of which
differ by a mere constant—and this infinite set is known asititefinite integral of
the function /', which is symbolized by

y= /f(X) dx. (1.2.4)

That is to say, all of the solutions of (1.2.3) are the same as the set of all antiderivatives
of the function . For example, consider the differential equation

dy

dx
In the general notation of (1.2.3)/(x) = 2x. All solutions make up the set of all
antiderivatives oRx; namely,x? + C as

2x.

d
—(x24+C) = 2x.
dx
In other words, all solutions are computed from (1.2.4). Thus,

y:/f(x)dx:/Zxdx=x2+C.
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Sometimes we may have to reach a little further back into the recesses of our memories
of calculus to come up with an antiderivative, or we may have to consult a table of
integrals. For example, the solutions of the differential equation

dy 1
dx 1+ x2

are the functions

dx
= | == —tan! C,

4 / 1+ x2 X
since

') 1
X) = .
14+ x2

i (tan™
dx

Besides looking up formulas of integrals in tables, there are technological options
as well: computer algebra systefscertain advanced hand-held calculators that are
really calculator-and-computer hybrids, etc. Even so, the formulas of the integrals
listed in Table 1.4, known abasic integration formulas,*! ought to be memorized!

They occur so often that their committal to memory will actually save time and effort—
just think of the time it takes to locate a table and then look up the integral or to turn on

a computer and enter the appropriate commands. Moreover, the basic formulas are so
well-known that it might prove somewhat embarrassing not to have them memorized.
Would you not question an instructor’s competency if she or he had to consult a table
or computer or calculator fof x? dx?

Table 1.4 contain a list of the basic integral formulas that will turn up regularly
in the text and problem sets in this bo&k.For a function £ (u) listed in the table,
[ f(u)du is its indefinite integral. As you recall from calculus, the indefinite integral
is evaluated by finding an antiderivative ¢gf(z) and adding a constant of integration,
say C, to it. The result is an expression that represents all of the antiderivatives of
f(u). Equivalently, this represents all solutions of the differential equation

dy

du = f(u).

10A computer algebra systerar CASis an interactive computer program that can carry out mathematical
computations with symbolic expressions, such as yielding the resulivhen it is given a command to
compute the integral afx. Some well-known computer algebra systems Miaple, MathematicaDerive,
andMATLAB Even many calculator models have built-in software that perform symbolic manipulations.

They are also calledtandard integral forms or elementary forms.

12By memorizing the formulas in Table 1.4, a student will be able to work at least 90% of the problems in
this book without having to resort to tables, calculators, or computer algebra systems.
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Table 1.4:Basic Integration Formulas

25

S (@) [ f@)du
k  (k,aconstant) ku+C
ynt1
u" (n #-1) w1 +C
a1 |n|u|+C={'””+C’ ifu>0
u In(—u)+C, ifu<0
et e+ C
cosu sinu + C
sinu —cosu + C
seCu tanu + C
cs u —cotu + C
secu In|sec + tanu| + C
cscu —In|cscu + cotu| + C
secu tanu secs + C
cscu cotu —cscu + C
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S (u) J fw)du
1 —1
T tantu + C
! sinlu+C
u
V1 —u?
1 1
— sec |u|+ C
u~vNu- —

1.2.3 Simplest Types of Partial Differential Equations

In the previous section, we saw that direct integration with respectdolves ordinary

differential equations of the type
dy
ax =T

Likewise, integration with respect to a single variable is all that is required to find
solutions of equations of the following two types:

9
a_” = f(x.y) (1.2.5)
X
and ]
a_” = f(x. ). (1.2.6)
b

These are the simplest types of partial differential equations.

A solution of (1.2.5) is a function whose partial derivative with respeck tis
equal to f(x, y). Solving (1.2.5) means finding all of the functions that satisfy (1.2.5).
Recall that partial differentiation with respect tois simply ordinary differentiation
with respect tax with y held fixed. Solutions are found by reversing the operation of
differentiation, that is, by integration. Since differentiation with respeat i® carried
out by holdingy fixed, the inverse operation of integration is carried out by integrating
with respect tox holding y fixed. We express this symbolically in this way:

u= /f(x,y)dx.

As an example, let us find solutions of the partial differential equation

du .
— = 2xy —sinx. (1.2.7)
ax
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Integrating with respect t@, we obtain the solutions
u= /(ny —sinx)dx = x*y 4 cosx + C.

Or so we might think! But let us reconsider. Are these really all of the solutions
of (1.2.7)? When we think about it, the so-called constant of integratohi$ really
more than just a constant here—any function that depends onjysirould be included
too. The reason of course is that the partial derivative of a function @ut notx)

with respect tox is equal to 0; ifg denotes such a function, we write

9
Eg(y) =0.

Therefore, the complete set of solutions of (1.2.7) include all functions of the form
u(x, y) = x*y + cosx + g(¥).

Finally, we check this statement by substitutintyy + cosx + g(y) for the dependent
variableu to verify that equation (1.2.7) is satisfied

0 d
& —[xzy + cosx + g(y)] = 2xy — sinx.
ax  ox

For an example of a partial differential equation of the form (1.2.6), let us replace
du/dx with du/dy in (1.2.7) to obtain

ou .

— = 2xy —sinx.

dy
To reverse the partial differentiation this time, we have to integrate with respect to
We then obtain the solutions

u(x,y) = /(ny —sinx)dy = xy* — ysinx + h(x),

where/ denotes a function of alone.

As a final example, let’s return to the copper plate shown in Figure 1.1. Instead of
being given a function that models the temperature variation of the plate and then being
asked to find the rates at which the temperature changes alonginel y directions,
suppose that we are given one of these rates and asked to find the temperature function.

Example 1.9. The rate at which the temperature of the copper plate in Figure 1.1
changes with respecttpis

T
—— = 1-10.0004xy °C/cm
dy

Find out what can be said about the temperature functidtself.
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Solution Since the differentiation of the temperature functibns with respect toy,
we must integrate the right-hand side of the equation with respectadind 7. Thus,

T(x,y) = /(1 —0.0004xy)dy = y — 0.0002xy? + h(x). (1.2.8)

Note however that this is all that we can say about the temperature function since we
are given no other information. That is, we cannot completely determine it since there
is no other information that allows us to find the functibn To illustrate how we
would go about finding: had we more information, suppose that we also know that
temperatures along the= 1 line are given by the function

¢(x) = 100 — 0.0002x — 0.005x>.

If (1.2.8) is to model the temperature at all points of the plate, then it follows that
T (x, 1) = ¢(x); accordingly,

1 —0.0002x2 + Z(x) = 100 — 0.0002x — 0.005x2.

Solving for i, we have
h(x) =99 —0.005x2.

Finally, substituting this into (1.2.8) gives the temperature funcfion

T(x,y) =99 + y —0.0002xy* — 0.005x>.

1.2.4 Basic Integration Techniques

Complete familiarity with the standard integrals and a facility with integration tech-
nigues will be deciding factors in your success, or lack thereof, in solving differential
equations. Table 1.4 is a list of some standard integrals. This is not a complete list, but
these particular integrals are used throughout this book. Next to the functions in the
left-hand column are their antiderivatives in the right-hand column. These standard in-
tegrals must be thoroughly memorized. Unfortunately, however, an integral involved in
solving a differential equation probably will not look exactly like any of those listed in
Table 1.4: in that casesubstitution integration by parts andpartial fractionsbecome
indispensable. They are techniques for transforming integrals to one of the standard
integrals. We review briefly these three integration techniques by presenting some ex-
amples. If you find yourself rusty in the use of these techniques, it would be a very
good idea to refresh your memory by opening your favorite calculus book and getting
out past calculus class notes and worked-out problem sets.

Example 1.10. Find all solutions of the differential equation

dy 5
dx  x2+49°

13Note this example is Example 1.8 worked backwards.
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Solution Referring to (1.2.3)/(x) = 5/(x? + 9). The solutions are given by (1.2.4).

So 5 .
y=/fbﬂwﬁ=/x2+9¢w=5/9+xﬂm.

This integrand most nearly resembles the integrand + u2) in Table 1.4. Hence,
we need to rewrite the denominator of the integrand so that it leads off with theldigit
instead of with9. Factoring out th® achieves this and we have

3

1 1 1 1
[ormt=] r—rmte=s ) rrai
o1+ (3)]

where the substitution = x/3 was made. Sincdu/dx = 1/3, the differentialdx
must be replaced witB du. Therefore, the solutions are

5 du 5 5 X
2 22 _ Zian! C=-tan!(=)+C.
4 /l+u2 3 “r 3 (3)+

5x
X249
Solution The difference between this integrand and the previous one is timethe
numerator. What we should note is that aside from a numerical factor the numerator

is the derivative of the denominator. A standard integral results by merely substituting
another variable fox? + 9, sayz. Then,dz = 2x dx and

_/_&_w_éfiﬁi_é 9 _Shiztc
Y=l 29 T2 vir9o 2] T T2 :

Thus, the solution of the differential equation is

Example 1.11. Find the solutions o? =
X

yz?Mﬁ+%+c

xdx

Example 1.12. Find the solutions o& ==\
dx x24+2x+1

Solution Since the independent variablexsand the right-hand side of the equation
involves it but noty, we start off by indicating the solution of the equation is

[t
= | —— _dx
Y x24+2x+1

Now we have to figure out how to carry out the integration. As a rule of thumb, we
always try substitution first. Clearly, the only possibilityis= x? 4 2x + 5. This will
not work however since the differential is

du = 2x +2)dx = 2(x + 1) dx,
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but the numerator is not a constant multiplexoft 1. At this point, we may be at a

loss of what to do next—until we notice that the denominator can be expressed as the
perfect squaréx + 1)2. Perhaps this slight change will allow us to integrate. Now the
form of the right-hand side of

X
y:/(x+l)2dx

suggests that we try the substitution= x + 1. Thendu = dx andx = u— 1. Hence,

_ u—1 _ 1 s _ 1
y_/ 2 du_/(u —u )du_|n|u|+;+C.

Therefore,

1
=hnjx+1|+ ——+C.
Y | | x+1

xdx

Example 1.13. Find the solutions o& = -\
dx x2+4+2x+5

Solution This is similar to Example 1.12; again it is clear that a direct substitution will
not work. Unlike the previous example though, the denominator is not a perfect square.
However, we can change? + 2x into a perfect square by completing its square. This

is accomplished by adding, which is obtained by squaring half the coefficientxaf
namelyl. Thus,

X2 42x+S5=xr 20+ 1) —14+5=(x+ 1)+ 4

and so

et
= | ————dx
Y (x+1D2+4
Now letu = x + 1. Then

u—1 u 1
= ——du= | ——du— | ——d
Y /u2+4 ! /u2+4 ! /u2+4 !
1 2 1 1
=3[ wrad ]
u
1+(5)

2
In (uz + 4) - %tan‘1 (%) +K

= N =

1 1
In(x2 +2x +5) — 1 tan ! (%) + K.

Example 1.14. Find the solutions og = X COS2x.
X
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Solution Once again, as the right-hand side of the equation depends onty solu-
tions are given by

y= /xcost dx.

Integration of the product of a power function and a sinusoidal function (sine or cosine
function) calls for the method of integration by parts. Recallititegration by parts

formula:
/u dv =uv — / vdu. (1.2.9)

To apply the formula tg/ x cos2x dx, we let

u=x, dv = cos2x dx

. du 1 . 1 .
du = dx (smce% = l), v = Esm2x (as/ CoS2x dx = Esm2x + K).

Then

= / d _ ! sin2 l/sinz d —xsinz 1( lc052)+C
y_uv v M—ZX X 2 )C)C—Z X 2 2 X s

and so all solutions are given by

y= 2 sin2x + lcost + C.
2 4

Learning when and how to use the integration by parts formula, to wit (1.2.7), is
an important skill to master. If the original integral, denoted /by dv, is difficult or
impossible to integrate, the purpose of (1.2.7) is to present an alternative: the integral
Jvdu. The art of integrating by parts is in the selectionuofinddv so that/ v du
is easier to integrate than j6u dv. Achieving this is a matter of common sense, trial
and error, and experience. However, if you have some difficulty in seleatiagd dv
the acronymLIATE is a useful deviceLIATE is a mnemonic for remembering five
types of functions in the following order:

Logarithmig I nverse trig Algebraic, Trig, Exponential

It is precisely this order that makédATE work. When the integrand is the product

of any two of these types of functions and the substitution technique doesn’t work, the
integration by parts formula should be tried. Let the type appearing first in the order
given byLIATE beu and the other one, along with the differential next to the integrand,
be dv. Then apply the integration by parts formula. Hopefullyy du will then be
easier to integrate thafiu dv. To illustrate this, consider the integrélx cos2x dx

from the previous example. Its integrand is the product of the two functioasd
cos2x, wherex is an algebraic function and cas is a trigonometric function. Thus,

we letu = x because the typalgebraic comes before the typérig in LIATE. So,

dv = cos2x dx. Let's illustrateLIATE again by solving the next equation.

14See Kasube?, pp. 210-211].
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Example 1.15. Find the solutions o? = sin ! (2x).
X

Solution Solutions are all of the antiderivatives of si(2x) indicated by the indefinite
integral

y(x) = /Sin_1(2x) dx.

Obviously, the substitution = 2x won't lead anywhere unless the formula for

/Sin_1 udu

is already availablé® At first, it looks as though the integration by parts technique is
also useless here by virtue of the absence of a product of two functions. Nevertheless,
there is one—if we use the artifice of writing the integrand as the produsin! (2x).

Thenu = sin~!(2x), since the constant function “1” belongs to tAkgebraictype and

is preceded by thénverse Trigtype in LIATE. This forcesdv to be the rest of the
integrand or “1” and the differentialx; that is,dv = 1 dx = dx. Hence,

du = u'(x)dx = (i Sin_1(2x)) dx = 2 dx;

dx V1—(2x)2
By (1.2.9), the solutions are
_ i1
y(x) _/Sln (2x) dx
u dv=1dx

=sin!2x) x —/ X ——dx
——— T 1 — (2)6)2
—_——

u v
du
2 —8x dx 1
i1 i1 /
= xsin (Zx)—(—) ———— =xsin (2x)+ =v1—4x2 + C.
-8 V1 —4x2 2
. . 6
Example 1.16. Find the solutions o& = .
dx x2-9

Solution Although the right-hand side of this equation does not appear in Table 1.4,
the factorability ofx? — 9 is the tip-off that we can integrate using the method of
partial fractions. Generally speaking, a quadratic polynomial, sualtas9, is said to
bereducible over the real®r factorablewhen it can be expressed as a product of two
linear polynomials with real coefficients. Otherwise, it is said tarketlucible over the
reals For the sake of brevity, we will omit the phrase “over the reals.” Thds;- 9 is

150f course, this integral could be found in some handbook or with a computer algebra system or a
sophisticated calculator. But the point of this section is to review integration and to hone the skills already
acquired in a calculus course to solve relatively simple integrals without having to resort to integral tables or
to technology.
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reducible since it reduces to the product of the linear polynomiat$ andx + 3. That
is, it is equal to the produdt — 3)(x + 3). On the other hands? + 9 is irreduciblet®
since it is just not possible to write it as a product of two linear polynomials with real
coefficients. An important result of algebra states that it is always possible to express
a nonconstant polynomial with real coefficients as a product of linear and irreducible
quadratic polynomials with real coefficients. So, as a rule of thumb, when faced with
integrating arational function !’ first factor its denominator into a product of linear and
irreducible quadratic polynomials—unless the numerator is a constant multiple of the
derivative of the denominator; in which case the method of substitution will work, as
demonstrated in Example 1.11.

Now let’s apply the method of partial fractions to evaluate the integral

6
———dx.
/ x2—-9
Its integrand is a rational function with a reducible denominator. After factoring the

denominator, we expand the integrand writing it as a sum of two simpler rational func-
tions with linear polynomials as their denominators:

6 4 N B
(x=3)(x+3) x—-3 x+3

(1.2.10)

The fractions

A
—— and
x—3 xX+3

are calledpartial fractions because their denominators contain part of the original
denominator2—9 but not all of it. The expansion of the integrand in (1.2.10) is known
as itspartial fraction expansion The coefficients4 and B are calledundetermined
coefficientsuntil values are found making (1.2.10) an identity. To determine the values
of 4 and B, clear out the denominators in (1.2.10) by multiplying both sides by the
denominator of the integrand with the result

A(x +3) + B(x —3) = 6.

Now we can quickly find the value oft by settingx = 3 since this eliminates the term
involving B:
x=3 = 64+0B=6 = A=1.

Likewise, settingy = —3 eliminates the term involvingl and yieldsB = —1. Thus,

6 1 1
x2-9 x-3 x+3°

18That is, it is irreducible over the reals (meaning the set of real numbers). However, it is reducible over
the set of complex numbers singé + 9 = (x — 3i)(x + 3i), wherei is defined byi2 = —1.

17Recall that arational function is the quotient of two polynomials. Constants, suclsasdz, are also
considered polynomials.
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Now integration is a piece of cake:

6 dx dx
y(x)_/x2—9dx_/x—3_/x+3

-3
:In|x—3|—|n|x+3|+C=In)C ‘+C.
x+3

Let's review next the method of partial fractions when the denominator of the ra-
tional function is the product of a linear factor and an irreducible quadratic factor.

18
x3 4 9x°
Solution The method of substitution is clearly of no help in integrating the right-hand
side directly due to the absence of the factor

Example 1.17. Find the solutions o? =
X

;ix(ﬁ +9x) =3x249

in the numerator. Let's see how the method of partial fractions fares. First, we must
factor the denominator completely. Factoring outarwe have

x4+ 9x =x(x2 +9).

No more factoring is possible, since the quadratic factor is irreducible. Since the de-
nominator consists of two factors, the partial fraction expansion of the integrand con-
sists of two fractions. The form of partial fractions can be summed up by the dictum:

Put constants over linear factors and linear factors over irreducible
guadratic factors.

As a result, the form of the expansion is

18 A Bx+C

=S4+
x3 4+ 9x X x249

We clear out the denominators of the expansion by multiplying both of its sides by
x(x2 +9), obtaining
A(x? +9)+ (Bx + C)x = 18.

Grouping like terms together gives
(A+ B)x* + Cx +94 = 18.

This equation is satisfied for all values ofif 4, B, andC have values satisfying the
equations:
A+B=0; C=0; 94=18.

Consequentlyd =2; B=-2;C =0andso

y=/x +9x / dx/ dx—2|n|x| In|x? + 9| + C.
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2
Therefore, the solutions ape= In A + C.
x2+49

We conclude this section with an example of solving a partial differential equation.
Example 1.18. Find the solutions 03 = ysec(3x).
X

Solution The equation itself indicates that the variablis dependent on both andy.
The nature of the partial derivative indicates that we have to integrate with respect to
x: The equation itself indicates that the variablées dependent on botlk andy. The
nature of the partial derivative indicates that we have to integrate with respect to

z = /yset(3x)dx = y/set(3x)- %-3dx = gfseCUdv,
wherev = 3x. From Table 1.4, we have
z = gln | secw + tanv| + g(»).
Therefore, the solutions of the partial differential equation are

z= g In| seq3x) + tan(3x)| + g(»).

1.2.5 Proportions Involving Rates of Change
The statement: is (directly) proportional tov” means that
u=kv

for some constant. The parentheses enclosing the word “directly” indicate that its
use is optional; it is frequently omitted. The constaris called theconstant of pro-
portionality. Thatu is proportional tov is also indicated by writing

u xXuv.

Example 1.19. The assertion that “a city’s average daily garbage collectois pro-
portional to its populatiorp” translates to the mathematical statement:

G x p,

which means
G=kp

for some constant. If there is any truth to this statement, then the valué efould
have to be determined experimentally by comparing the amount of garbage and the
population of a city on a given day.
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Example 1.20. Consider the wry comment of some good-natured hostess, as she
watched a guest'’s toast land on her newly laid carpet, that the likelihood of toast land-
ing jelly-side down is directly proportional to the cost of the carpet. Witkdenoting
the likelihood, or probability, of this happening aatdthe cost, this comment translates
to the mathematical statement:

L=yC,

wherey is the constant of proportionalify.

Example 1.21. Finally, in a more serious vein, we mention a postulate by the famous
physicist Max Planck that aided in the development of a field of physics called quantum
mechanics. In 1900, in an attempt to reconcile the theory of black body radiation with
experimental results, Planck postulated that energy is not radiated continuously but
rather in discrete amounts callgdantaand that a quantum of enerdy is proportional

to the frequency of the radiation® That is,

E =hv

where/ denotes the proportionality constant. By adjusting the valuk, dfe was able
to reconcile his theory with experimental results. In factis now calledPlanck’s
constant Its current accepted value és63 x 10~3# joule-second.

If two variablesu andv are not directly proportional but are related by the equation

for some constant, then we say #i is inversely proportional tov” or “u varies in-
versely withv.”

Example 1.22. In the kinetic theory of gases, there is the empirical result known as
Boyle’s Law. It states:

The volumé’ of a certain amount of gas confined to a container and held
at a constant temperature is inversely proportional to the pressBren
the gas

Mathematically, this is expressed as
k
V=— o PV=k,
P

wherek is the constant of proportionality.

18The lettery is the lower case Greek lettgamma
19The letterv is the lower case Greek lettar.
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Example 1.23. A Wall Street rule of thumb is that airline stock prices increase when-
ever petroleum stock prices go down and vice versa. Hence,

AP =C,

where4 and P are the prices of the airline and petroleum stocks, respectivelyCand
is the constant of proportionality.

Sometimes it must seem to the owner of a car—especially a new car—that the
likelihood that a car gets a dent is inversely proportional to its age.

Finally we observe that even someone disinclined to mathematics (and thereby
less fortunate) is tempted at times to invoke mathematics to make a point. Take for
example this statement by David M. Knight: “The fundamental rule is that our ability
to recognize the voice of God is in inverse proportion to our attachment to the things
of this world.” 2°

Since this book is about ordinary differential equations, the proportional relation-
ships that we consider from now on will involve ordinary derivatives. The following
examples are taken from physics and chemistry.

1.2.6 Newton’s Law of Cooling

It is patently clear to anyone that an ice-cold can of soda left on a patio will eventually
warm up to the outside temperature and a cup of hot chocolate set on a kitchen table
will cool down to room temperature. Experimental evidence indicates that for moderate
temperature differences between a body and its surroundings, the rate of change of the
temperaturel’ of the body is proportional to the difference in the temperatures of the
body and its surroundings. Expressed in the language of calculus, this statement takes
on the form

ar x T —T,
dt “
or P
— (T -T, 1.2.11
=TTy (L.2.11)

where T, is the ambient temperaturg or the temperature of the surroundings, and

¢ is the constant of proportionality. This model of temperature change is known as
Newton’s law of cooling Clearly, the temperature of a body is decreasing when

T, but increasing whefl” < T,. Or, from our knowledge of calculus, the derivative
dT/dtis negative whefl” > T, but positive wher?” < T,. In either case, the constant

¢ in (1.2.11) must be negative. As it is customary in the sciences to keep physical
constants and parameters positive, we replaegth —k, wherek > 0. Accordingly,

(1.2.11) becomes

dT

T —k(T —T,) (k> 0). (1.2.12)
Note that Newton'’s law of cooling does not result from attempting to explain the phys-

ical processes taking place, such as heat transfer between a body and its surroundings

20See Knight P, p. 80]. This unconventional example stems from Fr. Knight's tongue-in-cheek question
about the importance of mathematics in God’s ultimate plans for humankind.
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by conduction, convection, and radiation. So, in a sense all of the unexplained physical
processes are represented by the constant of proportiortalithis is asking a lot of a
constant and would explain the experimental evidence that Newton’s law of cooling is
not always valid, such as in the case of extreme temperature differences.

1.2.7 Rates of Chemical Reactions

The gas ethane is a hydrocarbon: a compound consisting of only carbon and hydrogen.
An ethane molecule is composed of two carbon atoms and six hydrogen atoms, so
its molecular formula is €Hg. Ethane decomposes when it is strongly heated in the
absence of air. Under certain experimental conditions, it has been observed that the
rate at which this decomposition takes place is proportional to the concentration of
ethane?! In chemistry, it is customary to denote the concentration of a compound by
enclosing its formula with brackets: thus,{B¢] denotes the concentration of ethane.

In this notation, the observation that ethane decomposes at a rate proportional to its
concentration can be expressed as:

Rate of decomposition of ethare k[C,Hg],

where the constant of proportionalikyis called areaction rate constant It is a pa-
rameter, positive in value, which must be determined experimentally. Since ethane
decomposes, the rate of change in its concentration is a negative quantity—thus, the
derivatived [C,Hq]/dt is equal to the negative of the rate of decomposition:

d[CaHe]
dt

Since the mathematical manipulation of bracketed formulas is cumbersome when solv-
ing differential equations involving them, it is convenient to replace them with lower
case letters. For example, by lettingr) = [C,H¢] denote the concentration of ethane

at timet, equation (1.2.13) simplifies to

dx

— = —kx.

dt

As for a second example, we consider one of several chemical reactions that have

been conjectured by some scientists to take place in the earth’s stratosphere to explain
the alleged depletion of the ozone layer in the polar regf3ris.this reaction, an oxy-
gen atom (O) collides with an ozone molecule;{@o produce two oxygen molecules
(Gy):

—k [C3Hq]. (1.2.13)

O+ O3 — 20,.

It is believed that the rate at which the concentration of oxygen molecules increases is
proportional to the product of the concentrations of oxygen atoms and ozone molecules.
Translating this statement in the language of mathematics, we obtain the differential
equation:

d[Os]
7 = KIOIOs].

21See Atkins P, p. 131].
225ee Atkins P, p. 140].
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where K is the constant of proportionality. Since the derivative is positienust be
positive— of course, its value can only be determined experimentally.

1.2.8 Newton’s Second Law of Motion

Important applications of differential equations are found in the branch of physics
calledclassical mechanicswhich is the study of the motion of bodies and particles.

A bodypossesses both mass and extent, whergaarticle is the idealized notion of a
geometric point possessing mass. Classical mechanics is based on three famous laws
of motion formulated by Sir Isaac Newton (1642-1747); so it is also calleditonian
mechanics A proper study of the laws of motion rightfully belongs to a physics or en-
gineering course on classical mechanics. Nevertheless, the second of these laws, known
asNewton’s second law of motiois a virtual treasure-trove of differential equations
problems that are instructive and motivational, yet not too difficult. For this reason, we
use it in this book as our primary source for problems and examples and to demonstrate
the indispensability of differential equations for modeling physical phenomenon. We
will discuss Newton’s second law of motion in the remainder of this section, but only
briefly. It is the fundamental law of classical mechanics. It may be only a slight ex-
aggeration to say that any classical mechanics course is essentially a study of how to
apply the second law to a variety of situations.

A body accelerates when external forces act on it provided they do not cancel each
other out. We can add these forces, but we have to take into account that they may act
in different directions. A directed quantity, of which a force is an example, that is char-
acterized by both direction and magnitude is callagator?® Some other examples of
vectors aralisplacementandvelocities The (vector) addition of two or more vectors
results in a single vector, called thector sum that is equivalent to all the other vectors
acting concurrently. The vector sum of all the external forces acting on a body is called
theresultant forceor resultant It is the single force that can replace the original set of
external forces and still cause the body to move in precisely the same way.

Newton’s second law of motiois an equation relating the mass of a body, the
resultant force acting on the body, and its acceleration. It is derived from the following
three experimental observations:

1. A body accelerates in the direction of the resultant force.

2. The magnitude of the acceleration of a body of constant mass is proportional to
the magnitude of the resultant force.

3. For a constant resultant force, the magnitude of the acceleration is inversely pro-
portional to the mass of the body.

Letting m denote the mass of the bodyijts acceleration, anB the resultant of all the
external forces acting on the body, we can encapsulate the above observations with the
proportionality statement:

ax —.
m

23Directed quantities also have to obey certain rules of combination before they can legitimately be con-
sidered vectors.
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Thus, we end up with the vector equation
ma = AF, (1.2.14)

where X is a constant of proportionality. The letters for the acceleration and force
are in boldface to indicate that they are vector quantities. However, the letisr
not in boldface since mass isszalar, a quantity that has magnitude but no direction
associated with it.

If units of measurement (such as time, mass, and length) are chosen so that the
value of is 1, then (1.2.14) simplifies to

F =ma. (1.2.15)

In words:

The resultant force acting on a body is equal to the product of the mass
of the body and its acceleration

This isNewton’s second law of motioffor the accelerated motion of a body subjected
to external forces when its mass remains constant.

Sinceaccelerationis the instantaneous rate at which velocity changes with time,
Newton’s second law can be written as

Femd 1.2.16
=m o (1.2.16)

wherev is thevelocity, that is, the instantaneous rate at which the position of a body
changes with time. This statement of Newton’s second law is only valid if the mass
of a body is constant. Note that this is a first-order differential equation.

The momentumof a body is defined as the vector quantityv. If the mass of a
body changes, then we have to use the general foriesfton’s second law of motion

The resultant force acting on a body is equal to the rate of change of the
momentum of the body.

This is expressed mathematically by the vector equation

d
F=—(mv). (1.2.17)

Observe that (1.2.17) reduces to (1.2.16) whers constant.

For simple situations where the only forces causing motion of a body act either
in one direction or in the opposite direction, such as forces acting vertically, directed
upward or downward, or forces acting horizontally, directed to the right or to the left, a
positive or negative sign is affixed to the magnitude of the force to indicate its direction.
For forces acting horizontally, we use the convention that positive forces are directed
to the right whereas negative forces are directed to the left. Similarly, for forces acting
vertically, we will regard upward as positive and downward as negative. Then we
merely have to add forces algebraically to obtain the resultant force. As a result, we
can write (1.2.15) without using boldface letters:

F =ma. (1.2.18)
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Let us say a few words about units of measurement for the quantitjes, and
F. Unfortunately there is no single set of units in use today. There is the metric
system and then there are systems involving English units, such a®dthand the
pound Generally speaking, all of the systems of units have one thing in common:
units are chosen so that the constant of proportionality (1.2.14) is equal td. Such
a set of units is known aabsolute unitsor consistent units One set of consistent
units uses thesecondfor time and the metric unitkilogram for mass andneterfor
length. Consequently, velocity and acceleration inherit the unégers per seconaind
meters per second per secomdspectively. Setting = 1, m = 1 kg (kilogram), and
a = 1 m/s* (meter per second per second) in (1.2.18), we obtain the force

kg-m
S

F=(ky-(15)=1

This unit of force is called theewton In other words, a force of newtonacting on

a body with a mass of kilogram will accelerate it at a rate afmeter per second per
second. For more details, consult a textbook on classical mechanics, such as Osgood
[?, pp- 51-52] or Becker, p. 25].

We will use Newton’s second law shortly (see Example 1.24) to model the vertical
motion of a body of constant mass near the earth’s surface. All bodies in the universe
are subject to the gravitational attractive force of the earth. In fact, according to New-
ton’s law of universal gravitation, every body in the universe exerts a gravitational force
on every other body in the universe. This includes everybody too! The force that the
earth exerts on a body is called tfarce due to gravity Experimentally it is found that
when various bodies—those whose motion is not appreciably affected by the resistive
force of aif* and other factor—are released from the same point above the earth’s
surface, each of them falls with the same acceleration. This constant acceleration is
called theacceleration due to gravity

Actually the acceleration due to gravity varies from place to place. However, close
to the earth’s surface it is nearly constant. Its precise value, as well as approximate
values, is denoted by the lettgr At sea level and mid-latitudes, measurements show
thatg is approximately32.2 ft/s? in the system of units known as thé S. Customary
Systent® In another set of units called th®l units short for the FrenchSystme
International d’Unités” and commonly referred to as the metric systenis approxi-
mately9.81 m/s’. In the Sl systemg is defined precisely as 9.80665 m/and in the
U.S. Customary System &2.174049 ft/s?. These precise values are referred to as the
standard acceleration of gravityor standard gravity.

The U.S. Customary System can be confusing at times. For instance, consider the
word pound It can designate a unit of mass or a unit of force. To distinguish between
these two different uses, the terrpsund-massndpound-forceare often used. The

2%We will consider resistive forces such as air resistance in Chapter 3. Perhaps you have seen the rather
striking demonstration of a feather falling as rapidly as a steel ball bearing inside a long, empty glass cylinder
from which most of the air has been pumped out with a vacuum pump. However, when both bodies are
removed from the confines of the glass cylinder, it is quite a different story. The air resistance on the feather
retards its motion considerably, on the other hand, its effect on the ball bearing is barely noticeable.

25For example, the earth’s rotation also contributes slightly to the acceleration of a falling body.

26The U.S. Customary System is the American version of the British Imperial System. Both are commonly
referred to as the English or British system of units.
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pound-mass is legally defined in terms of the kilogram: ploeind-masss precisely
0.45359237 kilograms. Contrast this with the definition of pound-force. Tgwaind-
forceis the force that gives a body of mas45359237 kilograms an acceleration equal
to the standard acceleration of gravity, namaly, 174049 ft/s?.

When “pound” is used to express weight, it is the “pound-force” that is meant. The
weight of a body is defined as the gravitational force exerted on it by the earth at a
particular location on earth. If in (1.2.18) we setqual to the standard acceleration
of gravity g, then we will have the weight of a body of magsat some imagined spot
on earth where the acceleration due to gravity is precigely 74049 ft/s?. In other
words, the formula for the weight’ of a body of mass: at this spot is

W = —mg.

We use the minus sign to indicate that the foigeis directed downward—toward the
center of the earth.

Since weight is a force, an appropriate unit of force must be used. In the Sl system
it is clear-cut: the unit of force is the newton. However, in the U.S. Customary System,
we must be more circumspect. If we assifjra value of 1 I (pound-force) andn a
value of 1 I, (pound-mass), then we have from (1.2.18) that
F 1lbp | br

m  1lb,  lby,

However, referring back to the definition of pound-force, we shouldgelt74049 ft/s?
instead of the above result. The reason for the disparity is that the pound-force and
pound-mass are not consistent units. That is, in order to retain both units, we would
have to use

F = Ama

rather thanF" = ma and adjust. accordingly. To avoid this, let us retain the pound-
force but replace the pound-mass with a new unit of mass based on (1.2.18) where
A = 1. This new unit of mass is called tredug and is defined as the mass of a body
whose acceleration is 1 ffavhen the force acting on the body is 1 pound. Since we
are dispensing with the pound-mass, we will from now revert back to using “pound”
instead of “pound-force.” Thus, a body with a mass of 1 slug has a weight of

W = —(1slug x (32 ft/sec) = —32 pounds

Weight, being a force, is a vector quantity. In everyday usage, however, only the mag-
nitude of the weight is stated, such as in saying that a bag of sugar weighs 5 pounds.

Example 1.24. Model the vertical motion of a body of constant mass, such as a base-
ball thrown straight upward or a rock released from the top of a tall cliff. Assume that
the force of gravity is the only significant force acting on the body.

Solution In reality, other forces act on the body besides gravity. However, for the sake
of simplicity, we assume that their influence on the motion of the body is negligible.
Let y(¢) denote the vertical position of the body at timeelative to some fixed spot on
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the ground directly below it. Then, as velocity (by definition) is the instantaneous rate
at which the body changesits position with time, the vertical velocitf the body is
given by the derivative
dy
V= d1 .

At first glance,v may appear to be a scalar quantity. However, it is actually a vector
quantity because the sign afy/d¢ indicates the direction in which the body is mov-
ing. If, at some instantdy/dt > 0, then the First Derivative Test implies thatis
increasing at that very instant. So the body is moving upward. In other wordsf
informs us that the direction of the velocity is upward. On the other hard) means
that the velocity is directed downward; hence the body is moving downwardyaisd
decreasing. Note that we have implicitly set up a vertical frame of reference: a posi-
tive y-axis pointing straight upward with its origin located at ground level. So positive
vectors point upward and negative vectors downward. Finally, recall that there is a
slight difference in the definitions of velocity and spesgeeds the absolute value of
velocity.

Since we are assuming that the only force of consequence acting on the body is the
gravitational force, the acceleration of the bodyiis= —g. Thus, the motion of the
body is modeled by the differential equation

dv

= g, 1.2.19
=8 ( )
Integrating (1.2.19) with respect to we obtain

v(t)=—/gdt=—gt+C.

Settings = 0, we have
v(0)=—-g-0+C =C.

In other words, the constant of integratiGhrepresents the velocity(0), that is, the
velocity of the body at the instant that it is released or thrown upward or downward.
This particular velocity is usually denoted by the symbgland is called thenitial
velocity Therefore,

v(t) = vo — gt.

Replacingv with dy/dt, we obtain another differential equation:
dy ;
ar e

Integrating with respect toagain, we obtain

1
() = /(Uo —gt)dt = vot — 5gtz + K.
According to this formula, the position of the bodyrat= 0 is K. Thus,

K=y()
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wherey, = y(0) is the initial position of the body. Therefore, the position of the body
at timer (before it hits the ground) is

1
y(t) = yo + vot — Egtz,

wherey, andv, are its initial position and velocity, respectively.
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Problems

Heigh-ho, Heigh-ho,

It's off to work we go.
(Whistle)

Heigh-ho, Heigh-ho, Heigh-ho,
Heigh-ho, Heigh-ho,
It's off to work we go . ..
Heigh-Ho (song in the 1937 Walt Disney movie

Snow White and the Seven Dwarfs), lyrics by
Larry Morey and music by Frank Churchill
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What are Differential Equations?

Alleged Solutions of ODEs

In Problems 1 through 8, an ordinary differentialIn Problems 13 through 18, an ordinary differen-
equation is given. Determine the name of the intial equation is given along with a function alleged
dependent variable, the dependent variable, antb be its solution. Determine whether the alleged
the parameter (or parameters if there is more tharsolution is truly a solution by means of direct sub-

one). Also, give the order of the equation.

LN = (1-5)

5
d? C [racN\? [dy\?
4. 4y _ = — ] + @&
dx? L L dx
5. EIy® 4 py” + ky = ¢(1 —x)
6. i—e(1—xH)x+x=0
2 dy 1
7. — —— +|E—<kx?)y =0
2m  dx? +( 2 ~ )w
8. 6y +n(y")* —2pwxyy’ = cos(xy?)

Partial Derivatives

stitution of the function and its derivative(s) into
the equation.

dy

13. — =xy, y=4ex2/2

dx
x

14. x%y' =y, y=
vy =y YT Ty Cx
d

15.—y=£, y =—v4—x2
dx y

16, & _ X Hxy 4yt
dx x2

y = xtan(n x), wherex > 0

17.2y" =7y +3y =0, y=e>*
d?y 1

18. — + 16y =3, p=—e¥*
a2 DT T ase

Solutions of Basic Differential Equations

In Problems 9 through 12, find the first-order par-IN Problems 19 through 42, find all solutions of

tial derivativesd f/dx anddf/dy

9. f(x.y) =15x% —3x*y3 + 2)°
x%y

x +4y

11. f(x,p) = x + 5¢*¥ sin(xy)

12. f(x,y) =2xy% —e*Inx

10. f(x,y) =

each equation. (All integrals can be worked out
using the standard integral formulas in Table 1.4
and the integration techniques that were reviewed
in Section 1.2.9.

@
dx

20. % = sin(g)

19. = coq3x)
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21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
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1
X245
In x2

X

= tan5x

= se@(7x)

= xe2*

= xsin(3x)

= x2sin(2x)

=e2xsin(£)
3
3
e
X
X2 —5x+6
4x —10
x2—5x+6
1
x3 4+ 9x
3
X2 4+4x+5

= sec(3x)tan(3x)

sin(2x)
cos (2x)

5x24/1 4 4x3
5
4 —x2
x2-5

x3—3x2 +4x—12
2
=6x2y+ =
y
2
=6x2y+ =
y

X

=54+ ——
4+ 2

=2y —5p3csx

ODEs from Rates of Change

In Problems 43 through 48, translate the given ver-
bal statementinto a differential equation. Use ap-
propriate mathematical notation. Identify evelet-
ter (variable or constant) used in the equation.

43. Water is leaking out of a city swimming pool
at the rate oR5 gallons per hour.

44. Let f(v) be the fuel efficiency in mpg (miles
per gallon) when a car is traveling at a speed
of v mph (miles per hour). When the speed
is 70 mph, the fuel efficiency of the car is
decreasing by.30 mpg per mph.

45. A sewage treatment tank contains 10,000 gal-
lons of polluted water. The tank removes
5 percent of the pollutants in the water per
minute.

46. The index of refraction of a substance (such
as water, flint glass, acetone, etc.) is the ra-
tio of the speed of light in a vacuum to the
speed of light in the substance. Use the vari-
abless ands, wheres denotes the distance
that the light has traveled through the sub-
stance at time.

47. A patientrecovering from surgery is fed glu-
cose intravenously at the ratefofmilligrams
per minute, wheré is a constant.

48. For a given drop in pressure along a cylin-
drical pipe, the volumetric rate of flow of
natural gas through the pipe4s5 times the
fourth power of the radius of the pipe.

ODEs from Proportions

In Problems 49 through 62, translate the given ver-
bal statement into a differential equation using ap-
propriate mathematical notation. Write the equa-
tion in a form so that the constant of proportion-
ality is positive. ldentify everyetter (variable or
constant) that appears in the equation.

49. The number of squirrels in a forest preserve
increases at a rate proportional to their num-
ber.

50. A basic electrical circuit that is usually con-
sidered in elementary physics courses con-
sists of a switch that can be opened or closed,
a battery, a resistor, and a capacitor con-
nected in series. When the switch is closed,



PROBLEMS

51.

52.

53.

54.

55.

56.

an electrical current begins flowing through
the circuit; however, it immediately begins
to decrease to zero. The rate of change of
the current at a given moment is proportional
to its value at that moment.

The rate at which the volume of a melting
snowball changes with time is proportional
to its surface area. Given that the volume of
a snowball of radius is 4713 /3 and its sur-
face areaigrr2, find the differential equa-
tion that expresses the rate at which the ra-
dius changes with time.

A rancher is tracking a wolf headed straight
toward a snow-covered mountain. The speed
with which he is able to pursue the wolf
is inversely proportional to the depth of the
sSnow.

There are 1,000 people in Mayberry. When-
ever a rumor is started by the town’s gos-
sip, the time rate of change of the number of
people who have heard the rumor is propor-
tional to the number of people who have not
yet heard the rumor. (Write the differential

equation describing this situation in terms of
two variables.)

An epidemic of rubella (German measles)
breaks out in a remote, mountainous region
in Argentina. Assume thaP people live in
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proportional to the square root of the depth
of water in the tank. (Use this information to
write a differential equation for the volume
of water in the tank as it is filling. Write the
equation so that the only variables that ex-
plicitly appearin it are “volume” and “time”.
Define every letter, whether it is a variable
or a constant, that you use to come up with
this equation.)

. A tank with a constant cross-sectional area

is filled with water; however, the water leaks
through a small hole in its bottom.

(a) According toTorricellis law 27 of fluid
flow, the speed of the water exiting
from the hole is proportional to the
square root of the depth of the water
in the tank.

(b) An alternate form of Torricelli’'s law
states that the rate with which the depth
of the water in the tank decreases is
proportional to the square root of the
depth.

(c) Before Torricelli formulated his law,
it was thought that the depth of the
water in a leaking tank would decrease
at a rate proportional to the depth in
the tank?®

this region, that this number does not change 8- In Aristotelian physics, objects of different

during the course of the epidemic, and that
the time rate of change of the number of
people infected with rubella is proportional

to the product of the number who are in- 59,

fected and the number who are not. (Write
the differential equation for the time rate of
change of the number of infected people in
terms of two variables.)

As a spherical raindrop evaporates, its vol-
ume changes at a rate proportional to its sur-
face area. (Write the equation so that it in-

weights fall at different speeds. It was be-
lieved that an object falls at a speed propor-
tional to its weight.

Newton’s law of universal gravitation im-

plies that the acceleration of a body caused
by the earth’s gravitational pull is directed

toward the center of the earth and its magni-
tude is inversely proportional to the square
of the distance between the body and the
center of the earth. Assuming all other ex-
ternal forces are negligible, use this infor-

volves only the variables volume and time.J ™ z7g o jjeq formulating this law of fluid mechanics,

The tank of a certain toilet has a constarivangelista Torricelli (1608—-1647), an Italian mathemati-

cross-sectional area. After the toilet is flushei@n and physicist, is also remembered for inventing the

and all of the water has drained from thdnercury barometer in 1643. In Florence, he served briefly
tank water flows from the filler tube intoas Galileo Galilei’s assistant and secretary. He inherited

) _ Galileo’s appointment, after the latter's death in 1642,
the tank at the rate o liters Per minute. as philosopher and chief mathematician to the court of
However, because of a defective valve seatrand Duke Ferdinando Il of Tuscany.

waters leaks from the tank at a rate that is 28See Driver P, p. 454].
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60.

61.

62.
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mation to find a first-order differential equa-
tion relating the variables, distance and ve-
locity, of a freely falling body.

A body is falling to earth. Apart from the
force due to gravity, assume that the only
other non-negligible force acting on the body
is the drag force. The force due to gravity
points downward. In the U.S. Customary
System, it has a magnitude ofg = 32m,
wherem is the mass of the body. The drag
force results from the force exerted by the
air on the body opposing its motion—and so
points upward. Assume that its magnitude
is proportional to the velocity of the body.
The product of the mass of the body and the
rate of change in its velocity is equal to the
sum of the drag force and the force due to
gravity.

The rate with which water ($0) forms in
the reaction

OH+ Hy; - H,O+H,

is proportional to the product of the concen-
trations of hydrogen molecules ghiland hy-
droxide ions (OH).

One reaction among several reactions that
may take place in the decomposition of ozone
(O3) in the stratosphere is

O3—>02+O.

The rate at which the concentration of ozone
is decreasing at any instant is proportional to
its concentration at that very instant.

Newton’s Second Law of Motion

63.

64.

A body with mass»n is moving along the

positive x-axis due to a force that attracts it
to the origin with a magnitude proportional
to its distance from the origin. The fric-
tional force opposing the motion of the body
is proportional to the body’s weight. Use
Newton’s second law of motion to find the

65.

66.

parachutist isng, whereg is the accelera-
tion due to gravity anah is the total mass of
the parachutist, including the parachute and
other equipment. Other than the weight and
drag force, ignore all other forces acting on
the parachutist. Find the rate of change of
the velocity of the parachutist using New-
ton’s second law of motion.

Supposethat it were possible to drill a straight
tunnel from Memphis to the diametrically
opposite point on the other side of the earth.
Imagine dropping a bowling ball into the tun-
nel. If, for the sake of simplicity, we assume
that the earth is a homogeneous sphere, then
it can be shown using physics, trigonometry,
and calculus that the gravitational force ex-
erted on the ball by the earth is directly pro-
portional to the distance of the ball from the
center of the earth. Ignore all other forces
exerted on the ball.

(a) Translate the above information con-
cerning the gravitational force exerted
on the bowling ball into a mathemati-
cal formula. Express it in terms of the
bowling ball’s position from the cen-
ter of the earth.

Use Newton’s second law to obtain the
differential equation that models the
motion of the bowling ball.

(b)

(a) The Greek philosopher Aristotle (384—
322 B. C.) taught that an object falls at a
speed proportional to its weight. This was
the prevailing view of university professors,
even as late as the7th century. To demon-
strate the falsity of this notion, Galileéd,as
legend has it, dragged cannonballs and mus-
ket balls of different weights, up the spiral
staircase of the Leaning Tower of Pisa and
dropped them from the top story, a height
of approximately 180 feet. With the aid of
Newton’s second law of motion, estimate

second-order differential equation governing 294 narrative of the life of Galileo Galilei (1564—

the motion of the body along the-axis.
Experiments confirm that a good model fog

1642), Italian astronomer and physicist extraordinaire, is
onderfully told in the boolGalileo’s Daughterby Dava
obel [7]. Letters written to him by his eldest daughter,

the drag force on a parachutist is a forcgor maria Celeste, a cloistered nun of the Order of the
that is proportional to the square of the vepgor Clares, are woven masterfully into the story of the
locity of the parachutist. The weight of thelife of this incredible genius.
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67.

the time it takes for a 10-pound cannonball
to fall to the ground, assuming that air re-
sistancehas a negligible effect on the ball’s
motion.

(b) According to Aristotelian physics, how
long would it take a one-pound musket ball
to reach the ground? Base your answer on
part (a) and compare it with the time pre-
dicted by Newtonian physics.
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(@) What is the deceleration of the train?

(b) How far does the train travel from the
moment the engineer sees the car until
the time the train comesto a full stop?
Do an Internet search to compare your
answer to actual stopping distances of
trains.

Poiseuille’s Law

A baseballis thrown vertically upward. The - 71 - The yolumetric rate of flow of a fluid, such

thrower’s hand isy, feet from the ground
when the ball is released. The baseball at-
tains a height of: feets; seconds after its
release. After reaching a maximum height,
the baseball then falls back to this point at
sometime, > 1.

(@) Show that the velocity of the baseball
at the moment of release is the prod-
uct of g and the average af andz,.

(b) Show thatr = yo + Lgt;1,.

Lengths of Plane Curves

67.

68.

69.

Find a general formula for the length of a
plane curve defined by the parametric equa-
tions (1.2.1) by using equation (1.2.2).

Use the formula found in Problem 67 to find
the circumference of a circle given by the
parametric equations:

X = rcost, y = rsint.

Use the result of Problem 67 to find the gen-
eral formula for the length of a curve defined
by the functiony = f(x) fora < x < B.
Hint. Setx = ¢ sothaty = f(¢).

Stopping Distance of Trains

70.

A 150-car freight train is approaching Car-
bondale, lllinois at a constant speed of 50
feet per second (approximately 34 mph). As
the train nears a railroad crossing, the lo-
comotive engineer sees a car stalled on the
tracks. It takes him 4 secondsto react before
he applies the brakes. It then takes the train
another 1.25 minutes to come to a full stop.
Assume that the deceleration of the train is
constant while the brakes are being applied.

as water or natural gas, through a pipe of cir-
cular cross section is determined by a num-
ber of variables: the fluid’s viscosity, the

pipe’s radius and length, and the difference
in pressure between the ends of the pipe.
In parts (a) through (d), convert the given
proportional relationship into a differential

equation.

(@) The volumetric rate of flow is propor-
tional to the difference in pressure be-
tween the ends of the pipe when all
other variables are held constant.

(b) The volumetric rate of flow is inversely
proportional to the length of the pipe
when all other variables are held con-
stant.

(c) The volumetric rate of flow is inversely
proportional to the fluid’s viscosity when
all other variables are held constant.

(d) The volumetric rate of flow is propor-
tional to the pipe’s radius to the fourth
power when all other variables are held
constant

(e) Combine the proportional relationships
given in parts (a) through (d) into one
differential equation. The resulting equa-
tion is known asPoiseuille’s law

(f) Explain why the air ducts for venti-
lating buildings generally have a large
radius.

(g) If arteriosclerosis reduces the effec-
tive radius of a person’s artery by 10%,
by what factor is the volumetric rate
of flow of the blood through the artery
reduced?
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Ptolemaic and Copernican Models for these cases, provide the necessary alge-
of the Universe bra to show the answers are equivalent.

72. The Greek philosopher Aristotle tfdcen- 74. The rate of change of a quantigy with re-
tury B. C.) taught that the Sun and other heav- Spect to the time is equal to
enly bodies revolved around the Earth but
that Earth itself was immobile, fixed in posi- 2t — 54 InV/3 4 14,
tion at the center of the universe. In thed®
century A. D., Claudius Ptolemy, an Alexan-
drian astronomer, refined Aristotle’s view by
theorizing that not only did the planets move
around the Earth in circular orbits called
deferents but each planet also moved in a
second smaller circular orbit, called an
epicycle the center of which moved along
the planet’s deferent. This model, known
as thePtolemaic systermhelped explain the
observed retrograde motions of the planets,
something Aristotle’s thesis failed to do, and
was the prevailing cosmologic theory as late
as the seventeenth century. Since the Sun
moved around the Earth in the Ptolemaic sys-
tem, the daily transition of night to day and
back again to night meant that the Sun had
to make one complete revolution around the
Earth every twenty-four hours. This implied
the Sun moved at an enormous speed; and if
the movements of even more distant stars in
the heavens were to be explained, they had
to move at even greater speeds. This became
one of many arguments against the correct-
ness of the Ptolemaic system.

Usea CAS to determing up to a constant.

(@) Inaccordance with the Ptolemaic sys-
tem, compute the speed of the Sun about
the Earth given a mean distance of some
93,000,000 miles between them.

(b) Research the Copernican system, the
heliocentric theory proposed by Nico-
laus Copernicus (1473-1543,a Polish
astronomer and cleric, and contrast it
with the Ptolemaic system.

Computer Algebra System Problems

73. Find the solutions of the differential equa-
tions in Problems 19 through 42 with the
aid of a CAS. Compare these solutions with
the solutions that you obtained by just using
pencil and paper. For some problems, the
CAS may seem to give different answers;
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Separable Equations

To be, or not to be—that is the question . ..

Hamlet's soliloquy in Act 3, Scene The Tragedy of Hamlet
by William Shakespeare

To separate, or not to separate—thatis the question . ..

musings of a student faced with solving
a differential equation

2.1 Introduction to Separable Equations

In some of the problems in Chapter 1, we were given a differential equation and a so-
called alleged solution and then had to determine if this alleged solution truly satisfied
the equation. In real-life applications, however, this is not what happens. The differen-
tial equation comes without the solution. It is we who have to somehow come up with
the solution. Consequently, it now becomes incumbent on us to learn how to solve the
kinds of equationsthat we are most likely to encounter: in future courses and eventually
during the course of our professional careers. The most elementary kind of differential
equationsin engineering and the mathematical sciences are ¢iafiedrder separable
equations So just exactly what is a separable equation?

Definition 2.1. A first-order differential equation

d
d_y = f(x, ) (2.1.1)
X
is said to beseparabldf
S(x.y) = gx)-h(y), (2.1.2)

whereg depends only orx and/ depends only ory.
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In other words, equation (2.1.1) is separablefif a function of two variables, can
be separated by algebraic means into a product of two single-variable functions. For
example, the right-hand side of

dy  4coq2x)

= 2.1.3
dx y+1 ( )

in the notation of Definition 2.1 is

_4cos(2x)

S(x,p) f

Equation (2.1.3) is separable singecan be rewritten as the product of
g(x) = 4coq2x),

which depends only o and

1
h(y) T
which depends only ory. Note that the factor “4” could just as well be considered a
part of 2 instead ofg.
Sometimes we may not realize separability unless we simpfify, y) by factor-
ing, employing trigonometric identities, using the laws of exponents, and so forth. For
example at first glance, the equation

dy e¥Inx?

= ° 214
dx  xe* + xye*tV ( )

seems not to be separable. However, if we replat®” with ¢~ ¢”, then with factor-
ization the right-hand side simplifies to

e*In x2 In x2 In x2 1

xeX + xyexty  x(1+ye?)  x 1+ ye¥’

So the equation is separable since its right-hand side is the product of two factors, one
of which depends only o while the other one depends gn

Now don't get the mistaken notion that all first-order equations are separable. Most
are not! Obviously, the equation

dy .

—— = ysin

dx e
is separable as is

4y sin

— =X .

dx Y
On the other hand, the equation

d

a_ sin(xy)

dx



