
Chapter 1

The Wonderful World of
Differential Equations

The essential fact is simply that all the pictures which science now draws of nature,
and which alone seem capable of according with observational fact, are mathemat-
ical pictures. . . .

Sir James Jeans1

1.1 What are Differential Equations?

Just what are differential equations? Following the wisdom of the old Chinese proverb
that “one picture is worth more than a thousand words,” we defer our answer until we
have provided a picture of sorts. Table 1.1 is, so to speak, a collage of various types
of differential equations. With one exception, these are well-known equations drawn
from different scientific and technical disciplines. A sense of their importance may
be realized from their ability to mathematically describe, or model, real-life situations.
The equations come from the diverse disciplines of demography, ecology, chemical
kinetics, architecture, physics, mechanical engineering, quantum mechanics, electrical
engineering, civil engineering, meteorology, and a relatively new science calledchaos.
The same differential equation may be important to several disciplines, although for
different reasons. For example, demographers, ecologists, and mathematical biologists
would immediately recognize

dp

dt
D rp;

the first equation in Table 1.1, as theMalthusian law of population growth. It is used to
predict populations of certain kinds of organisms reproducing under ideal conditions—

1See [?, ch. 5]. Sir James Jeans (1877–1946)was a British mathematical physicist, Cambridge University
lecturer, Princeton University professor of applied mathematics, and author of a number of popular works
of science, of whichThe Mysterious Universe[?] was one of his most famous. His treatise,Problems
of Cosmogony and Stellar Dynamics(1917), on the behavior of fluids in space contributed to a greater
understanding of the origin and evolution of the universe.
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2 CHAPTER 1. THE WONDERFUL WORLD OF DIFFERENTIAL EQUATIONS

whereas physicists, chemists, and nuclear engineers would be more inclined to re-
gard the equation as a mathematical portrayal, or model, of radioactive decay. Even
many economists and mathematically minded investors would recognize this differ-
ential equation, but in a totally different context: it also models future balances of
investments earning interest at rates compounded continuously.

Another example is thevan der Pol equation

d2x

dt2
� ".1 � x2/

dx

dt
C x D 0;

which came from modeling oscillations of currents in the nonlinear electrical circuits of
the first commercial radios. For many years, it was the subject of research by electrical
engineers and mathematicians alike.

Table 1.1:Differential Equations Modeling Real-Life Situations

Differential Equation Situation

dp

dt
D rp

The Malthusian law of population growthis
used to model the populations of certain kinds
of organisms living in ideal environments for
limited lengths of timet . It gives the rate at
which a populationp changes with respect to
t . The value of the constantr depends on the
organism.

dx

dt
D k.A � x/2

This second-order reaction ratelaw gives the
rate at which a single chemical species com-
bines to produce a new species, such as methyl
radicals combining in a gas to form ethane
molecules. See Atkins [?, p. 134].

d2y

dx2
D

C

L

s�
AC

L

�2

C
�

dy

dx

�2

The graph of the solution models the shape of
theGateway Archin St. Louis, wherey is its
height at a distancex from one end of its base.
The constantsA, C , andL relate the lengths
of the base, top, and centroid. The Gateway
Arch has the shape of an invertedcatenary.
A catenaryis a curve that has the shape of a
chain suspended from two points at the same
level. The equation used to design the cate-
nary curve shape of Arch can be found at the
website:www.nps.gov/jeff.
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Differential Equation Situation

m
d2x

dt2
C b

dx

dt
C kx D F.t/

This equation models the motion of a damped
mass-spring system subjected to a time-
dependent forceF.t/.

„2

2m
�

d2 

dx2
C

�
E � 1

2
kx2

�
 D 0

This equation from quantum mechanics is the
time-independentSchrödinger’s equationfor
the one-dimensional simple harmonic oscilla-
tor. The constant„ is defined in terms of
Planck’s constanth by „ D h=2�.

.1 � x2/
d2y

dx2
� 2x

dy

dx
C �.�C 1/y D 0

This equation is known asLegendre’s differ-
ential equationand is one of several equations
used for calculating the energy levels of the
hydrogen atom.

EI
d4y

dx4
D w.x/

This differential equation models the vertical
displacementy.x/ of a point located a dis-
tancex from the fixed end of a beam of uni-
form cross section, wherew.x/ represents the
load atx; E andI are constants.

x00 � ".1 � x2/x0 C x D 0
The van der Pol equationmodels the current
at timet in an electrical circuit with nonlinear
resistance.

4xy2
�
y.4/

�3 � 3x4y5
�
y00�6 D cos9.x10/

This is just one mean-looking equation con-
cocted by the author.

dx

dt
D �.y � x/

dy

dt
D rx � y � xz

dz

dt
D xy � bz

This set of three differential equations, called
the Lorenz system,is a overly simplified ver-
sion of a complicated system of twelve equa-
tions used to model convection in the atmo-
sphere. The Lorenz system models the chaotic
rotational motion of a wheel with leaking com-
partments of water symmetrically positioned
around its rim. See Appendix A for more in-
formation.

Even though the equations in Table 1.1 come from diverse fields, they do have some
common features. The foremost feature shared by all of them is that they have at least
one derivative, which is precisely what makes them differential equations in the first
place! We make special note of this by formally defining what is meant by a differential
equation.
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Differential Equation

Definition 1.1. A differential equation is an equation that involves one or more
derivatives of some unknown function or functions.

To complicate matters, there are various types of differential equations: chief among
them areordinary differential equations, partial differential equations, and integro-
differential equations. The equations in Table 1.1 are all examples ofordinary differ-
ential equationsbecause they only involveordinary derivatives. Ordinary derivatives
are the derivatives that we study in a first (single-variable) calculus course.Partial dif-
ferential equationsare equations involving derivatives calledpartial derivatives—how
a partial derivative differs from an ordinary derivative is discussed later on, after the
review of ordinary derivatives in the next section. To give us an inkling of what partial
differential equations look like, here is a classic example:

@u

@t
D k

@2u

@x2
:

It is used to model the conduction of heat through an extremely thin metal bar, where
u.x; t/ is the temperature at the pointx in the bar at timet .

Integro-differential equationsinvolve not only derivatives of unknown functions
but also their integrals. For example, in Chapter?? we will solve integro-differential
equations that look like

x0.t/ D f .t/ C
Z t

0

k.t � u/x.u/ du:

This book is devoted to a study of ordinary differential equations. Even so, there
will be brief forays at times into topics involving very simple partial differential equa-
tions, integral equations, and integro-differential equations.

Before we formally define what is meant by an ordinary differential equation, let’s
point out some features that the equations in Table 1.1 have in common. First we
observe that each equation in Table 1.1 contains a singleindependent variableand one
or moredependent variables. It is a relatively simple matter to tell these two types of
variables apart from the derivatives themselves, since differentiation always takes place
with respect to the independent variable. Obviously then, the other variable, the one
being differentiated, is the dependent variable.

Example 1.1. The first entry in Table 1.1 is the Malthusian law of population growth:

dp

dt
D rp:

Translated into words, the equation says that the rate at which the current population
p of an organism changes with respect to the timet is equal to the product of the
constantr and the current populationp. The timet is the independent variable and the
populationp is the dependent variable.
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Example 1.2. The equation

EI
d4y

dx4
D w.x/

in Table 1.1 models the vertical displacement of a beam. Sincey is differentiated with
respect tox, the independent variable isx and the dependent one isy.

The namedependent variableis befitting because it describes the type of variable it
is: it depends in some functional way on the independent variable as prescribed by the
differential equation, although this dependence is not always possible. For example,

y2 C .y0/2 D �1

is a differential equation; even so, no real-valued function2 can fulfill the prescript that
the sum of its square and the square of its derivative is equal to a negative number.

Space on a page can be saved by replacingLeibniz notation, which uses the Latin
“d” for denoting derivatives, such as

dp

dt
;

d2x

dt2
;

d4y

dx4
;

with a shorthand notation that uses primes (0 ) or overdots (P / for differentiation. In
prime notation, the derivatives

dy

dx
and

dp

dt

are written
y0 and p0;

respectively. A shortcoming of this notation is that the independent variable is not
explicitly stated.

Theoverdot notationis reserved for derivatives that are taken with respect to the
time t . For example,Pp meansdp=dt . Thus, the Malthusian population law

dp

dt
D rp

in the overdot notation becomes
Pp D rp:

We also have to be aware of theordersof the derivatives appearing in equations.
The derivatives

dy

dx
; Pp; z0

arefirst-order derivatives, whereas the derivatives

d2x

dt2
; y00; Rp

2A function isreal-valuedwhen every evaluation of it results in a real number. Even though the function
i sinx, wherei2 D �1, satisfies the differential equation, it is a complex-valued solution, not a real-valued
solution.
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aresecond-order derivatives. Of course, some differential equations have derivatives
of even higher order:third-order derivativessuch as

y000;
d3x

dt3

or fourth-order derivativessuch as
d4x

dt4

or even higher. It is easy to lose track of the number of primes or overdots when the
order is more than three. In such a case, it is customary to use either Leibniz notation
or to use superscripts enclosed in parentheses to denote such derivatives: for example,
d4y=dx4 or y.4/ is preferred overy0000. Thenth derivative ofy with respect tox is
written asdny=dxn or asy.n/ .

All of the previous derivativesare known asordinary derivatives. When we take the
ordinary derivative of a function, the termordinary indicates that we are dealing with
a function of a single variable. In other words, anordinary derivative is a derivative
of a function of a single independent variable with respect to that variable. The word
ordinaryqualifies the wordderivative, distinguishing between the derivatives of single-
variable calculus from the ones of multivariable calculus. Multivariable calculus deals
with functions of two or more variables; their derivatives are calledpartial derivatives.
They will be introduced shortly; but for now, let’s review the definition and meaning of
the ordinary derivative of a function.

1.1.1 Ordinary Derivatives

Let’s review the meaning of anordinary derivativewith an example. Imagine stretch-
ing a filament-like copper wire of length25 centimeters tautly along a straight line. Let
the line serve as thex-axis and the left end of the wire designate the location of the
origin. Suppose that the wire is heated unevenly in such a way that each of its points
eventually reaches a constant temperature but that the temperature generally varies
from point to point. Even though in reality the wire is a three-dimensional object, its
very thinness suggests that variations in temperature along they- andz-directions are
negligible. Consequently, the wire may be regarded ideally as a one-dimensional math-
ematical object: the line segment extending fromx D 0 cm tox D 25 cm. Now sup-
pose that Table 1.2 gives temperature measurements, accurately to the ten-thousandth
place, at5-centimeter intervals along the wire.

Table 1.2:Temperatures at Points of an Unevenly Heated Wire

x (cm) 0 5 10 15 20 25
T (ıC) 100.0000 99.8740 99.4980 98.8720 97.9960 96.8700

Theaverage rate of changeof the temperature with respect tox, asx changes from
10 cm to15 cm, is given by thedifference quotient�T =�x, where�T is the change
in the temperature corresponding to�x, the change in thex-coordinate. Thus,
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�T

�x
D

T .15/ � T .10/

15 � 10
D

98:8720 � 99:4980

5
D �0:1252 ıC=cm:

Since the negative sign comes from�T , the quantity0:1252 ıC is interpreted as the
temperature decrease per centimeter (roughly) asx increases from 10 cm to 15 cm.
Likewise, the difference quotient whenx decreases from 10 cm to 5 cm is

�T

�x
D

T .5/ � T .10/

5 � 10
D

99:8740 � 99:4980

�5
D �0:0752 ıC=cm:

The negative sign results from the decrease inx accompanied by the increase inT .
Consequently, the quantity0:0752 ıC roughly estimates the temperature increase per
centimeter asx decreases from 10 cm to 5 cm. Equivalently, we can view the temper-
ature as decreasing roughly0:0752 ıC per centimeter asx increases from 5 cm to 10
cm.

If no other temperature measurements are available to us, we could use one of
the two previously calculated values as a rough estimate of the rate of change of the
temperature nearx D 10 cm. Better yet, we could use their average. Even so, a change
of 5 centimeters inx is a big jump when it comes to estimating the rate of change in the
temperature nearx D 10 cm. Better estimates could be obtained with smaller jumps
in x. For example, suppose that we are also able to measure the temperature atx D 11

cm. Then an estimate of the rate at which the temperature decreases starting atx D 10

cm is given by the difference quotient

�T

�x
D

T .11/ � T .10/

11 � 10
:

Suppose the measured temperature atx D 11 cm is99:3928 ıC; then,

�T

�x
D

99:3928 � 99:498

1
D �0:1052 ıC=cm:

This provides us with a new estimate of the rate at which the temperature decreases
whenx D 10 cm; namely,0:1052 ıC per centimeter. This is an improvement over the
previous estimates since�x is now smaller by a factor of 5.

Of course, even better estimates than the previous ones could be obtained by hav-
ing data for even smaller values of�x. The ideal situation would be to know the
temperature at every point of the wire. Then theinstantaneous rate of changeof the
temperature atx D 10 cm would be given precisely by the limit that the difference
quotient�T =�x approaches as�x approaches 0, where�x D x � 10 and�T is
the corresponding change in the temperature from 10 cm tox cm. In mathematical
notation, we express this by writing

lim
�x!0

�T

�x
D lim

�x!0

T .10 C �x/ � T .10/

�x
:

This limit is known as thederivativeof the temperature atx D 10 cm and is symbolized
by T 0.10/. For example, let’s suppose that the temperature at every point of the wire is
given by the function

T .x/ D 100 � 0:0002x � 0:005x2:
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In fact, the values in Table 1.2 were constructed using this function. Thus, the temper-
ature change�T from x D 10 cm tox D 10 C �x cm is

�T D T .10 C �x/ � T .10/

D 100 � 0:0002.10 C �x/ � 0:005.10 C �x/2 � 99:4980

D �0:1002�x � 0:005.�x/2:

It follows that the corresponding difference quotient is

�T

�x
D �0:1002 � 0:005�x:

Hence,�T =�x approaches�0:1002 ıC=cm as�x approaches 0. We conclude that
T 0.10/ D �0:1002 ıC=cm, which means that the temperature decreases at an instan-
taneous rate of0:1002 ıC per centimeter whenx D 10 cm. Of course, the derivative
T 0.10/ can be obtained more easily from the derivative rules of calculus. At any value
of x,

T 0.x/ D
d

dx

�
100 � 0:0002x � 0:005x2

�
D �0:0002 � 0:01x:

In particular, atx D 10,

T 0.10/ D �0:0002 � 0:01.10/ D �0:1002 ıC=cm:

Now that we have reviewed the meaning of a derivative with an example, let’s
consider derivatives in general. It is often the case when dealing with a function, call it
f .x/, that the instantaneous rate3 with which it changes with respect tox needs to be
determined. This rate is computed from thedifference quotientfor f :

f .x C �x/ � f .x/

�x
:

This gives theaverage rate of changeof f from x to x C �x. Theinstantaneous rate
of changeof f at x is the limit of the difference quotient as�x approaches 0, which
is expressed by writing

lim
�x!0

f .x C �x/ � f .x/

�x
; (1.1.1)

provided that this limit actually exists. This limit is what is meant by theordinary
derivative off at x. It is symbolized byf 0.x/ or by dy=dx if y is the dependent
variable. The result of (1.1.1), if the limit exists, is an expression inx that represents
the ordinary derivativef 0. It is as much a function ofx as isf ; however, its domain
may differ fromf ’s. The domain off 0 consists of allx-values for which the limit
(1.1.1) exists. For example, the domain of the real-valued function

f .x/ D
p

x

3Usually the terminstantaneousis omitted.
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consists of all nonnegative numbers (x � 0/. For these values ofx, with the exception
of x D 0, the difference quotient (1.1.1) converges to1=.2

p
x/. Therefore,

f 0.x/ D
1

2
p

x

and its domain consists of all positive numbers (x > 0/. Of course, the simplest way
to find derivatives is not to apply (1.1.1) directly but to use the rules of differentiation
learned in elementary calculus. Whenx is assigned a particular value, sayx D a, then
f 0.a/ is a number that represents the (instantaneous) rate of change off atx D a.

1.1.2 Ordinary Differential Equations

Now that we have reviewed the definition of the ordinary derivative, we can state what
is meant by the type of differential equation known as an ordinary differential equation.

Ordinary Differential Equation

Definition 1.2. An ordinary differential equation is an equation involving one
independent variable; one or more dependent variables, each of which is a func-
tion of the independent variable; and ordinary derivatives of one or more of the
dependent variables.

Each of the equations in Table 1.1 fits the description in Definition 1.2; accordingly,
they are all ordinary differential equations. Still, a few words need to be said about the
situation described in the last entry of the table, which unlike the others requires more
than one differential equation to model it, namely, the system of three equations:

Px D �.y � x/

Py D rx � y � xz (1.1.2)

Pz D xy � bz:

When a steady, uniformly distributed shower of water falls over a wheel with leaky
compartments symmetrically positioned around its rim, it can be shown that together
these three equations model the rotational motion of the wheel.4 Observe that the equa-
tions are coupled or linked together by their sharing of the three dependent variables:
x, y, andz. As a result, we say that they make up asystem of ordinary differential
equations. This system, known as theLorenz systemor theLorenz equations, is leg-
endary in being one of the catalysts in initiating a branch of mathematics and science
known aschaos. The equationPy D rx �y �xz is still considered an ordinary differen-
tial equation, even though it contains all three dependent variables. The reason for this
is that Py is an ordinary derivative and all three dependent variables depend only on the
single independent variablet . This is implied from the form of the three equations in

4For more information and a derivation of the equations, see the section entitled “Chaotic Motion in
Water Wheels and the Lorenz Equations” in the Appendix.
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the system. Likewise, the other two equations are also ordinary differential equations.
In other words, the Lorenz system consists of three ordinary differential equations.

One characteristic of a differential equation is the order of the highest derivative
appearing in the equation. For example, if a differential equation contains a derivative
of second order (a second derivative) but none of higher order, then we say that the dif-
ferential equation is second order or of order 2. Legendre’s equation listed in Table 1.1
is a second-order equation. The Lorenz system consists of three first-order equations.
Other examples are:

(a)
dx

dt
D k.a � x2/ is an equation of order 1 (or 1st order);

(b) 2xyy0 C .yy0/2 D y2 is a 1st order equation;

(c) EI
d4y

dx4
D w.x/ is an equation of order 4;

(d) 4xy2
�
y.4/

�3 � 3x4y5
�
y00�6 D cos9.x10/ is a 4th order equation.

Order of an Ordinary Differential Equation

Definition 1.3. Theorderof an ordinary differential equation is said to ben if the
order of the highest derivative appearing in the equation isn.

Besides an independent variable and a dependent variable (or variables), most of
the ordinary differential equations listed in Table 1.1 contain quantities known aspa-
rameters. A parameterdoes not change in value with changes in the value of the
independent variable; however, its value may change when the situation or experiment
is modified. For example, consider the simple differential equation

dp

dt
D rp;

which is known as the Malthusian law when it is used to predict the populations of
certain types of species. The quantityr is a constant for a given species; that is, its
value does not change with time. Yet its value will most likely change if it is applied to
a different species. Another example is the damped mass-spring system

m
d2x

dt2
C b

dx

dt
C kx D F.t/;

which has three parameters:m, b, andk. The parameterm is the mass of a body to
which a spring is attached. The parameterk measures the stiffness of the spring, and
b measures the retardation in the motion of the body due to damping forces, such as
friction. None of these parameters depends on time, yet their values would change if
the body and spring were replaced by some other body and spring.
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1.1.3 Solutions of Ordinary Differential Equations

Generally speaking, when dealing with a differential equation, the goal is to find out
as much as possible about its solutions. However, the meaning of the word “solution”
in the context of differential equations is sometimes misunderstood by students. The
reason for this goes back to its meaning in algebra, trigonometry, and calculus—in
these worlds, solutions are numbers. But in the world of differential equations solutions
are not numbers . We illustrate by comparing a solution of an algebraic equation to that
of a differential equation. The solution of

2x � 3 D x C 7

is “10”, a number! Why is it a solution? The answer, of course, is that “10” satisfies this
equation. Substitution of “10” for the unknown “x” results in the left- and right-hand
sides of the equation being equal: the left-hand side (LHS) becomes

LHS D 2x � 3 D 2.10/ � 3 D 17;

which equals the right-hand side (RHS)

RHSD x C 7 D 10 C 7 D 17:

By contrast, the solutions of differential equations are functions, not numbers. A simple
example is provided by the differential equation

dy

dx
D 2x:

A solution isy D x2. In fact, every function of the formy D x2 C C , whereC is a
constant, is a solution. The reason for this is that these functions satisfy the equation.
When we substitute “x2 C C ” for the unknowny and differentiate, we obtain “2x”,
which is precisely the right-hand side of the equation:

LHS D
d

dx
y D

d

dx
.x2 C C / D 2x equals RHSD 2x:

No other functions have derivatives equal to2x, aside from those of the form “x2 CC ”.
Consequently, these are the only solutions of the differential equation. Let’s take a look
at some more examples.

Example 1.3. Suppose someone alleges thaty D ln x is a solution of

xy00 D �y0: (1.1.3)

Determine whether it really is a solution.

Solution. We have not yet learned any methods for solving differential equations. But
we do not need any to answer this question. All that is required is for us to substitute
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the first and secondderivatives of lnx into the equation to see if a true statement results.
With these substitutions, the left-hand side of the equation is

LHS D xy00 D x
d2

dx2
.ln x/ D x

d

dx

�
1

x

�
D x

�
�

1

x2

�
D �

1

x
;

while the right-hand side is

RHSD �
d

dx
.ln x/ D �

1

x
:

Since both the left- and right-hand sides turn out to be equal to�x�1, the function
y D ln x is a solution.

There is another matter to consider. Since a solution is a function, we need to be
aware of the domain of its definition and where it solves the differential equation. As
for this example, we know from calculus that the domain of lnx is the interval.0; 1/.
Since lnx also satisfies (1.1.3) on this interval, we say that the maximal interval for
which y D ln x is a solution of (1.1.3) is.0; 1/.

Example 1.4. The functiony D x2 is also alleged to be a solution of (1.1.3). Is it
really?

Solution. Substituting, we find that

LHS D x
d2

dx2
.x2/ D x

d

dt
.2x/ D 2x

whereas

RHSD �
d

dx
.x2/ D �2x:

Since the LHS¤ RHS, we conclude thaty D x2 is not a solution of the differential
equation.

Example 1.5. Is y D 1 a solution of (1.1.3)?

Solution. This might be interpreted as: Is “1” a solution? But that would be incorrect.
The question really asks: Does the constant functiony.x/ D 1 satisfy the equation?
Now this may seem like quibbling over semantics but there is a point to be made:

Solutions of algebraic equations are numbers. Solutions of differential
equations are functions.

Now the answer: Since both the first and second derivatives of this function are equal
to 0 at all values ofx, it satisfies the equation for all�1 < x < 1. Thusy.x/ � 1 is
indeed a solution.5

Before presenting any more examples, let us summarize what the previous exam-
ples have taught us about what is meant by asolutionof a differential equation.

5The symbol� stands for the phrase “is identically equal to.” Soy .x/ � 1 meansy.x/ D 1 for all
�1 < x < 1.
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Solution of an Ordinary Differential Equation

Definition 1.4. A solutionof an ordinary differential equation with one dependent
variable is a differentiable function of the independent variable that satisfies the
equation on some interval. In other words, if we substitute the function for the
dependent variable, we obtain a result that is valid on the interval.

Example 1.6. Is y D sinx a solution of the equationy2 C .y0/2 D 1?

Solution. When we substitute sinx for y, we obtainy2 C .y0/2 D sin2 x C cos2 x D 1

by the Pythagorean identity of trigonometry. Since this is true for all real numbers,
y D sinx is a solution on the interval.�1; 1/.

An algebraic equation may not have real-valued solutions, such asx2 D �1. The
same may be true of a differential equation. Consider, for instance,

y2 C .y0/2 D �1:

Whatever real-valued, differentiable function is substituted fory, the left-hand side of
the equation is always nonnegative. Consequently, there is no real-valued function that
solves this equation.

1.1.4 Partial Derivatives

We introduce the concept ofpartial derivativesmuch in the same way as our review of
ordinary derivativesby again considering temperature variations in an unevenly heated
copper object. This time, however, instead of a filament-like copper wire, we imagine
heating a thin, rectangular copper plate with a length of 25 cm and a width of 5 cm.
The thinness of the plate allows us to ignore its thickness in the ensuing discussion; in
effect, we model the real, three-dimensional plate with an idealized two-dimensional
rectangle. Let’s orient the plate so that two of its adjoining edges are along thex- and
y-axes as shown in Figure 1.1.

Fig. 1.1: Unevenly heated copper plate



14 CHAPTER 1. THE WONDERFUL WORLD OF DIFFERENTIAL EQUATIONS

As with the previous example of the copper wire, let’s imagine that the plate is
heated unevenly in such a way that the temperature at each of its points stays constant
but that it generally varies from point to point. One possibility is given in Table 1.3,
which gives temperatures accurately measured to the ten-thousandth place at the points
.x; y/. Let’s use the notationT .x; y/ to designate the temperature at.x; y/. In other
words,T is the name that we give to the temperature function. Note that it depends
on bothx andy—in other words, it is a function of two variables rather than just one
variable.

Table 1.3:Temperatures (ıC) at Points of an Unevenly Heated Plate

x (cm)

0 5 10 15 20 25
0 99.0000 98.8750 98.5000 97.8750 97.0000 95.8750
1 100.0000 99.8740 99.4980 98.8720 97.9960 96.8700

y(cm) 2 101.0000 100.8710 100.4920 99.8630 98.9840 97.8550
3 102.0000 101.8660 101.4820 100.8480 99.9640 98.8300
4 103.0000 102.8590 102.4680 101.8270 100.9360 99.7950
5 104.0000 103.8500 103.4500 102.8000 101.9000 100.7500

Let’s select a specific point on the plate, say.10; 1/, in order to investigate the
temperature changes near it. In Table 1.3, the temperatures in the row and column
containing the temperature at.10; 1/, namely 99.4980ıC, are boldfaced. Consider the
temperature changes along this row and column. The common feature shared by the
temperatures in the row is that all of them are at points with theiry-coordinates equal
to 1. If we restrict our attention to they D 1 row, the temperature function may be
viewed as a function of the single variablex. Let r .x/ denote its value atx. Note that
r .x/ is the same asT .x; 1/. The derivative

r 0.10/ D lim
�x!0

r .10 C �x/ � r .10/

�x
(1.1.4)

gives the exact (instantaneous) rate of change of the temperatureT at the point.10; 1/

whenx is varied but they-coordinate is held at the constant value1. One of the ways
to denote this derivative is by writingTx.10; 1/. The limit of the difference quotient
(1.1.4) written entirely in terms ofT is

Tx.10; 1/ D lim
�x!0

T .10 C �x; 1/ � T .10; 1/

�x
: (1.1.5)

This particular limit is called thepartial derivative of T with respect to x at the point
.10; 1/.

In the same way, just as we found that (1.1.5) gives the rate of change ofT at the
point .10; 1/ when the value ofy is kept fixed at1, we can find another rate of change
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of T at the point.10; 1/ by varyingy but keepingx D 10. This means that this time
the measurements in the boldfaced column (the one with the heading 10) must be used
to compute the difference quotients. Letc.y/ denote the temperatures in this column.
One possible estimate of the rate of change ofT at the point.10; 1/, albeit a rough one,
is given by the following difference quotient obtained by changingy from y D 1 to
y D 2:

�c

�y
D

c.1 C �y/ � c.1/

�y
D

c.2/ � c.1/

2 � 1
D

100:4920 � 99:4980

1
D 0:9940 ıC=cm:

Sincec.y/ D T .10; y/, this translates to

�T

�y
D

T .10; 1 C �y/ � T .10; 1/

�y
(1.1.6)

D
T .10; 2/ � T .10; 1/

2 � 1
D

100:4920 � 99:4980

1
D 0:9940 ıC=cm:

The quantity0:9940 ıC is roughly the temperature increase per centimeter asy in-
creases from 1 cm to 2 cm whenx is held fixed at10. The exact rate of change at the
point .10; 1/ keepingx D 10 is defined by the limit

lim
�y!0

�T

�y
D lim

�y!0

T .10; 1 C �y/ � T .10; 1/

�y
: (1.1.7)

However, there is a fly in the ointment: if we do not know the temperatures at all of the
points in the plate that have theirx-coordinates equal to10, then the limit (1.1.7) can
only be estimated with a difference quotient, such as the one in (1.1.6). Nevertheless,
the limit does exist because there is a temperatureT .x; y/, whether known or not,
associated with every point.x; y/ on the plate. The limit given by (1.1.7) is called
partial derivative of T with respect toy at the point.10; 1/ and is denoted by the
symbolTy.10; 1/.

Suppose that the temperature at every point of the plate is given by the function6

T .x; y/ D 99 C y � 0:0002xy2 � 0:005x2: (1.1.8)

Let’s compute the partial derivativeTy.10; 1/ by taking the limit of the difference quo-
tient in (1.1.7) as follows:

lim
�y!0

T .10; 1 C �y/ � T .10; 1/

�y
D lim

�y!0

�y � 0:004�y � 0:002.�y/2

�y

D lim
�y!0

.0:996 � 0:002�y/ D 0:996 ıC=cm:

Therefore,Ty.10; 1/ D 0:996 ıC=cm.
The previous example serves as an introduction to the definition of a partial deriva-

tive. The rate of change of a function of two variables with respect to one of its vari-
ables, as the other one is held constant, is known as apartial derivativeof the function.

6In fact, the values in Table 1.3 were actually computed with this function.
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Since there are two variables, there are two first-order partial derivatives.7 A partial
derivative of a function of two variables is obtained by taking the limit of a difference
quotient for that function, just as an ordinary derivative of a function of one variable
is the result of taking the limit of its difference quotient. We just have to state pre-
cisely what is meant by the differences quotients for a function of two variables and
how to take their limits. Using the example of the temperature function as a guide, the
following definition should come as no surprise.

First-Order Partial Derivatives

Definition 1.5. Let F be a function ofx andy. Thepartial derivative ofF with
respect tox, denoted byFx , is defined by

Fx.x; y/ D lim
�x!0

F.x C �x; y/ � F.x; y/

�x
; (1.1.9)

provided the limit exists. Likewise, thepartial derivative ofF with respect toy,
denoted byFy , is defined by

Fy.x; y/ D lim
�y!0

F.x; y C �y/ � F.x; y/

�y
; (1.1.10)

provided this limit exists.

Example 1.7. Find the partial derivativeFx of the functionF.x; y/ D 5x2y.

Solution. By (1.1.9),

Fx.x; y/ D lim
�x!0

5.x C �x/2y � 5x2y

�x

D lim
�x!0

5x2y C 10x�xy C 5.�x/2y � 5x2y

�x

D lim
�x!0

.10xy C 5�xy/ D 10xy:

We should point out that there is another way to denote partial derivatives.Fx.x; y/

andFy.x; y/ are also expressed by writing

@

@x
F.x; y/ and

@

@y
F.x; y/;

respectively. Thecurly d distinguishes partial derivatives, expressed by symbols like
@=@x and@=@y, from ordinary derivatives, which are expressed with the Latind , such
asd=dx or d=dy.

7There are higher-order partial derivatives too, just as there are higher-order ordinary derivatives. How-
ever, we only discuss first-order partial derivatives in this chapter. In a future chapter, we will need to talk
about second-order partial derivatives but that can wait for now.
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When we examine definition (1.1.9) and look at the result of the example, we see
that taking the partial derivative ofF with respect tox is really the same as taking the
ordinary derivative ofF with respect tox, if at the same time we regardy as being
held at a constant value. Symbolically, we could write

Fx.x; y/ D
d

dx
F.x; y D constant/:

Similarly, the process of taking the partial derivative ofF with respect toy can be
remembered symbolically as

Fy.x; y/ D
d

dy
F.x D constant; y/:

With this viewpoint, it becomes a relatively simple matter to take the partial derivatives
of two-variable functions, such asF.x; y/ D 5x2y. The partial derivative ofF with
respect tox is

Fx.x; y/ D
@

@x

�
5x2y

�
D

d

dx
F.x; y D constant/ D

d

dx
.5x2y/

ˇ̌
ˇ
yDconstant

D 10xy;

as we already determined in Example 1.7. Similarly, the partial derivative ofF with
respect toy is

Fy.x; y/ D
@

@y

�
5x2y

�
D

d

dy
F.x D constant; y/ (1.1.11)

D
d

dy
.5x2y/

ˇ̌
ˇ
yDconstant

D 5x2:

In practice,

d

dx
F.x; y D constant/ and

d

dy
F.x D constant; y/

are mental steps but are not written down. We employ this merely as a pedagogic aid
for newcomers to this subject. Once you become adept at finding partial derivatives,
you may think (1.1.11) but should write

Fy.x; y/ D
@

@y

�
5x2y

�
D 5x2:

Example 1.8. Evaluate the first-order partial derivatives of the temperature function
(1.1.8)

T .x; y/ D 99 C y � 0:0002xy2 � 0:005x2 ıC

at the point.10; 1/.
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Solution. First we find the partial derivative ofF with respect tox as follows:

Tx.x; y/ D
@

@x
T .x; y/ D

@

@x
.99Cy�0:0002xy2�0:005x2/ D �0:0002y2�0:01x:

Next we evaluate the result at the point.10; 1/:

Tx.10; 1/ D .�0:0002y2 � 0:01x/
ˇ̌
.10;1/

D �0:0002.1/2 � 0:01.10/ D �0:1002 ıC=cm:

Similarly, the partial derivative ofF with respect toy is

Ty.x; y/ D
@

@y
T .x; y/ D

@

@y
.99 C y � 0:0002xy2 � 0:005x2/ D 1 � 0:0004xy:

Consequently,

Ty.10; 1/ D .1 � 0:0004xy/
ˇ̌
.10;1/

D 1 � 0:0004.10/.1/ D 0:996 ıC=cm:

If you recall, the resultTy.10; 1/ D 0:996 ıC=cm was also obtained by directly apply-
ing the difference quotient. Note the ease with which we can find partial derivatives by
applying the rules of differentiation that we already know from calculus.

1.1.5 Partial Differential Equations

Up to now we have explained what ordinary differential equations are and given exam-
ples. They basically are equations containing ordinary derivatives. Likewise, equations
containing partial derivatives (but not ordinary derivatives)are called partial differential
equations. In this book we are not concerned with partial differential equations per se;
nevertheless, we will need to know a little about them. As it turns out, some methods
for solving certain kinds of ordinary differential equations involve partial derivatives
and some basic equations containing them. We will see this in Chapter 8. Let’s begin
with the definition of a so-called partial differential equation.

Partial Differential Equation

Definition 1.6. A partial differential equation is an equation containing more
than one independent variable, one or more dependent variables, and partial
derivatives of one or more of these dependent variables.

Our first example of a partial differential equation is

@u

@t
D k

@2u

@x2
:

It models the conduction of heat through an extremely thin metal bar, whereu.x; t/ is
the temperature at the pointx in the bar at timet . This equation is known as theone-
dimensional heat equation.8 There are two independent variables: the spatial variable

8For more information, see Churchill [?].
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x and the temporal variablet . The variableu depends on both of them and so it is
the dependent variable. The parameterk is called thethermal conductivityof the bar.
What makes this a partial differential equation is that it is an equation containing partial
derivatives. Whereas@u=@t is a first-order partial derivative,@2u=@t2 is a second-order
partial derivative, similar to second-order ordinary derivatives. Therefore, this is an
example of a second-order partial differential equation. We will say a little more about
higher-order partial derivatives in a later chapter.

The only partial differential equations that we need to consider in this book are
first-order equations of the form

@u

@x
D f .x; y/ or

@u

@y
D g.x; y/; (1.1.12)

where the dependent variableu is a function of bothx and y. An example of an
equation of the first form is

@u

@x
D 2xy � sinx:

An example of one of the second form is

@u

@y
D 5y4 C

2xy

x2 C y2
C 10:

In Section 1.2.3, we will discuss how to find solutions of partial differential equations
of the two forms shown in (1.1.12). For the sake of brevity, it is common to use the ab-
breviations “ode” for “ordinary differential equation” and “pde” for “partial differential
equation.”

1.2 Origins of Basic Ordinary Differential Equations

As Section 1.1 points out, ordinary differential equations arise when we attempt to use
mathematics to model certain real-life situations. Equations that are judged good mod-
els imitate reality closely, provide insight and understanding, and predict well. Finding
just the right equation, or equations as the case may be, could be quite complicated—
not only because of the mathematics but because other disciplines are involved as well.
In spite of this, we will ease our way into a study of differential equations by start-
ing with some of the more elementary ones that arise from modeling relatively simple
situations. Throughout the rest of this chapter, we present examples of elementary
differential equations that result when

(a) the rate of change of a quantity is known or can easily be determined;

(b) the rate of change of a quantity is known or conjectured to be proportional to
another quantity;

(c) Newton’s second law of motion is used to model the motion of a body.
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1.2.1 Rates of Change

Modeling real-life situations frequently involves the rates of change of quantities. From
studying calculus, we have learned that the (instantaneous) rate of change of a quan-
tity, dependent solely on a single variable, is given by its ordinary derivative with re-
spect to the variable. As a result, when the rate of change of a quantity is given or
can be determined, that information can be expressed mathematically as an ordinary
differential equation. Let’s take a look at some examples of typical situations involving
rates of change.

Bathtub

Water flows out of a spout into a bathtub at the rate of 3 gallons per minute. Trans-
lated in the succinct language of mathematics, this verbal statement becomes the dif-
ferential equation

dN

dt
D 3;

whereN .t/ denotes the number of gallons of water that has flowed into the bathtub
after t minutes.

Temperature along a heated wire

In our review of the meaning of an ordinary derivative, we determined that the
temperatureT along the copper wire changes at a rate of�0:0002 � 0:01x degrees
Celsius per centimeter, wherex is the distance in centimeters from the left end of the
wire. This verbal statement is equivalent to the mathematical statement

dT

dx
D �0:0002 � 0:01x:

Marginal cost

An economic decision may be based in part on the increment in cost that will be
incurred if one more unit of some product is manufactured. Some economists call this
cost increment themarginal cost. It can usually be approximated by a derivative: the
instantaneous rate of change of the total cost function with respect to the number of
manufactured units, sayx, of the product. For this reason, many economists prefer
defining themarginal cost (abbreviatedMC) as this derivative. In this book, we use
the derivative definition of marginal cost. As an example, suppose it is stated that the
marginal cost to manufacturex widgets9 is given by the functionM C D 10x C 5000.
We can express this statement more concisely with the differential equation

dC

dx
D 10x C 5000;

whereC.x/ denotes the total cost to producex widgets.

9A widgetis a substitute for the name of some device or gadget, usually used when its real name is not
known or temporally forgotten, in other words, a thingamajig. Here we use it to mean a fictitious, manufac-
tured product. In this way, we can easily fabricate marginal cost functions to illustrate the mathematics and
economics, without also having to consider whether or not they represent reality.
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Speed of a falling object

An object is dropped from the top story of the Leaning Tower of Pisa, the famous
freestanding, eight-story bell tower of the cathedral of Pisa, Italy. Lets denote the
distance, in feet, the object has fallent seconds after being dropped. Thespeedof
the falling object is the rate with which its distance increases with time, or the time
derivativePs. According to the laws of elementary mechanics, the speed aftert seconds
is approximately32t feet per second, provided the counteracting resistance of the air
pushing upward on the object is negligible. Therefore, the speed of the falling object,
up to the time it hits the ground, is modeled by the differential equationPs D 32t , or

ds

dt
D 32t:

Arc Length

A pair of equations,x D f .t/ andy D g.t/, will generate a curve in thexy-plane
when the independent variablet increases from a starting valuęto an end valuě .
Under the assumption that the functionsf andg have continuous derivatives, let’s
investigate how one goes about calculating the rate at which the length of the curve
increases witht .

Much of elementary calculus deals with graphs ofsmoothfunctions. A function
F.x/ defined for˛ � x � ˇ, where˛ andˇ are real numbers, is said to besmooth
if F 0.x/ exists and is continuous at every point ofŒ˛; ˇ�. The graph ofy D F.x/

whenF is smooth is called asmooth curve. Each value ofx corresponds to a point
.x; y/ D .x; F.x// on the curve. Asx increases from̨ to ˇ, we can envision a point
particle starting out at theinitial point .˛; F.˛// of the curve and moving along it until
it ends up at theterminal point.ˇ; F.ˇ//.

Similarly, a pair of equations

x D f .t/; y D g.t/ (1.2.1)

for ˛ � t � ˇ traces out a curve in thexy-plane as the independent variablet varies
from t D ˛ to t D ˇ. Unlike before, the variablex is no longer an independent
variable; rather it, as doesy, depends on the independent variablet . Each value oft
corresponds to a point.x; y/ D .f .t/; g.t// on the curve. The equationsx D f .t/

andy D g.t/ definingx andy are calledparametric equations. The variablet is the
parameter. A curve defined by (1.2.1) is said to besmoothif the derivatives off and
g exist, are continuous, and never simultaneously zero for all values oft in the interval
Œ˛; ˇ�. Smoothness guarantees that

1. there is a unique tangent line at every point of the curve, and

2. �.t/, the angle of inclination of the tangent line at the point.f .t/; g.t//, is de-
fined for all values oft 2 Œ˛; ˇ� and is a continuous function.

Consequently, a smooth curve has no corners or cusps. Moreover, no portion of the
curve is retraced ast increases. In other words, a point particle starting out at the
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initial point .f .˛/; g.˛// will never stop and move in the reverse direction along the
curve before it reaches theterminal point .f .ˇ/; g.ˇ//. With that said, we are now
ready to consider the length of a smooth curve, which is called itsarc length, and to
determine the rate at which its arc length changes with respect tot .

Let s denote the arc length of a curve. Fort1 � ˛, let �s denote the length of the
portion of the curve corresponding to values oft from t D t1 to t D t1 C �t . For
values of�t close to zero, the length�s of this portion is approximately the length of
the hypotenuse of the right triangle as illustrated in Figure 1.2

Fig. 1.2: Approximation of�s

By the Pythagorean theorem,

�s �
q

.�x/2 C .�y/2 :

Since the difference quotient

�x

�t
D

f .t1 C �t/ � f .t1/

�t

is approximately equal to the derivativef 0.t1/ for values of�t near zero, we can
approximate�x with f 0.t1/�t . Likewise,�y � g0.t1/�t . Thus,

�s �
q

.f 0.t1/�t/2 C .g0.t1/�t/2 D �t

q
.f 0.t1//2 C .g0.t1//2;

or
�s

�t
�

q
.f 0.t1//2 C .g.t1//2:

As �t ! 0, this approximation becomes better and better. We conclude that the rate
of change of the arc lengths of the curve att D t1 can be found by evaluating

ds

dt
D

q
Œf 0.t/�2 C Œg0.t/�2 D

s �
dx

dt

�2

C
�

dy

dt

�2

(1.2.2)

at t D t1.
In applications wheret represents the time and.x; y/ D .f .t/; g.t// the position

of a moving body at timet , the derivativePs given by (1.2.2) is the rate of change of the
distance of the body from its initial position, i.e., thespeedof the particle.
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1.2.2 Simplest Type of Ordinary Differential Equation

Before we show examples of differential equations arising from proportions or from
Newton’s second law of motion, let us first note the form of the previous equations
and then look into a method for finding their solutions. Each of them was the result
of knowing the rate at which a quantity changes. Their form is simply a derivative
equal to a constant or to an expression involving the independent variable but not the
dependent one. In mathematical notation, this is expressed as

dy

dx
D f .x/: (1.2.3)

The notationf .x/ conveys thatf is a function ofx but not ofy while dy=dx tells us
that x is the independent variable andy is the dependent variable. It is important to
keep in mind that the right-hand side of (1.2.3) is a function of the independent variable
alone. Whatever is said in this section about finding solutions of (1.2.3) does not carry
over to equations of the form

dy

dx
D f .y/;

wheref is a function of the dependent variable alone, nor to equations of the form

dy

dx
D f .x; y/;

wheref is a function of both variables.
Equations of the form shown in (1.2.3) are the simplest type of ordinary differential

equation in the sense that all that is required to find their solutions is direct integration
with respect tox. A solutionof (1.2.3) is any function whose derivative is the function
f . Calculus tells us that there are infinitely many such solutions–any two of which
differ by a mere constant—and this infinite set is known as theindefinite integral of
the functionf , which is symbolized by

y D
Z

f .x/ dx: (1.2.4)

That is to say, all of the solutions of (1.2.3) are the same as the set of all antiderivatives
of the functionf . For example, consider the differential equation

dy

dx
D 2x:

In the general notation of (1.2.3),f .x/ D 2x. All solutions make up the set of all
antiderivatives of2x; namely,x2 C C as

d

dx
.x2 C C / D 2x:

In other words, all solutions are computed from (1.2.4). Thus,

y D
Z

f .x/ dx D
Z

2x dx D x2 C C:
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Sometimes we may have to reach a little further back into the recesses of our memories
of calculus to come up with an antiderivative, or we may have to consult a table of
integrals. For example, the solutions of the differential equation

dy

dx
D

1

1 C x2

are the functions

y D
Z

dx

1 C x2
D tan�1 x C C;

since

d

dx
.tan�1 x/ D

1

1 C x2
:

Besides looking up formulas of integrals in tables, there are technological options
as well: computer algebra systems,10 certain advanced hand-held calculators that are
really calculator-and-computer hybrids, etc. Even so, the formulas of the integrals
listed in Table 1.4, known asbasic integration formulas,11 ought to be memorized!
They occur so often that their committal to memory will actually save time and effort—
just think of the time it takes to locate a table and then look up the integral or to turn on
a computer and enter the appropriate commands. Moreover, the basic formulas are so
well-known that it might prove somewhat embarrassing not to have them memorized.
Would you not question an instructor’s competency if she or he had to consult a table
or computer or calculator for

R
x2 dx?

Table 1.4 contain a list of the basic integral formulas that will turn up regularly
in the text and problem sets in this book.12 For a functionf .u/ listed in the table,R

f .u/ du is its indefinite integral. As you recall from calculus, the indefinite integral
is evaluated by finding an antiderivative off .u/ and adding a constant of integration,
say C , to it. The result is an expression that represents all of the antiderivatives of
f .u/. Equivalently, this represents all solutions of the differential equation

dy

du
D f .u/:

10A computer algebra systemor CAS is an interactive computer program that can carry out mathematical
computations with symbolic expressions, such as yielding the resultx2 when it is given a command to
compute the integral of2x. Some well-known computer algebra systems areMaple, Mathematica, Derive,
andMATLAB. Even many calculator models have built-in software that perform symbolic manipulations.

11They are also calledstandard integral forms or elementary forms.
12By memorizing the formulas in Table 1.4, a student will be able to work at least 90% of the problems in

this book without having to resort to tables, calculators, or computer algebra systems.
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Table 1.4:Basic Integration Formulas

f .u/
R

f .u/ du

k (k, a constant) ku C C

un (n ¤ �1)
unC1

n C 1
C C

u�1 D
1

u
ln juj C C D

(
ln u C C; if u > 0

ln .�u/ C C; if u < 0

eu eu C C

cosu sinu C C

sinu � cosu C C

sec2 u tanu C C

csc2 u � cotu C C

secu ln j secu C tanuj C C

cscu � ln j cscu C cotuj C C

secu tanu secu C C

cscu cotu � cscu C C
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f .u/
R

f .u/ du

1

1 C u2
tan�1 u C C

1
p

1 � u2
sin�1 u C C

1

u
p

u2 � 1
sec�1 juj C C

1.2.3 Simplest Types of Partial Differential Equations

In the previous section, we saw that direct integration with respect tox solves ordinary
differential equations of the type

dy

dx
D f .x/:

Likewise, integration with respect to a single variable is all that is required to find
solutions of equations of the following two types:

@u

@x
D f .x; y/ (1.2.5)

and
@u

@y
D f .x; y/: (1.2.6)

These are the simplest types of partial differential equations.
A solution of (1.2.5) is a function whose partial derivative with respect tox is

equal tof .x; y/. Solving (1.2.5) means finding all of the functions that satisfy (1.2.5).
Recall that partial differentiation with respect tox is simply ordinary differentiation
with respect tox with y held fixed. Solutions are found by reversing the operation of
differentiation, that is, by integration. Since differentiation with respect tox is carried
out by holdingy fixed, the inverse operation of integration is carried out by integrating
with respect tox holdingy fixed. We express this symbolically in this way:

u D
Z

f .x; y/ dx:

As an example, let us find solutions of the partial differential equation

@u

@x
D 2xy � sinx: (1.2.7)
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Integrating with respect tox, we obtain the solutions

u D
Z

.2xy � sinx/ dx D x2y C cosx C C:

Or so we might think! But let us reconsider. Are these really all of the solutions
of (1.2.7)? When we think about it, the so-called constant of integration “C ” is really
more than just a constant here—any function that dependsonly ony should be included
too. The reason of course is that the partial derivative of a function ofy (but notx)
with respect tox is equal to 0; ifg denotes such a function, we write

@

@x
g.y/ D 0:

Therefore, the complete set of solutions of (1.2.7) include all functions of the form

u.x; y/ D x2y C cosx C g.y/:

Finally, we check this statement by substitutingx2y C cosx C g.y/ for the dependent
variableu to verify that equation (1.2.7) is satisfied

@u

@x
D

@

@x

�
x2y C cosx C g.y/

�
D 2xy � sinx:

For an example of a partial differential equation of the form (1.2.6), let us replace
@u=@x with @u=@y in (1.2.7) to obtain

@u

@y
D 2xy � sinx:

To reverse the partial differentiation this time, we have to integrate with respect toy.
We then obtain the solutions

u.x; y/ D
Z

.2xy � sinx/ dy D xy2 � y sinx C h.x/;

whereh denotes a function ofx alone.
As a final example, let’s return to the copper plate shown in Figure 1.1. Instead of

being given a function that models the temperature variation of the plate and then being
asked to find the rates at which the temperature changes along thex andy directions,
suppose that we are given one of these rates and asked to find the temperature function.

Example 1.9. The rate at which the temperature of the copper plate in Figure 1.1
changes with respect toy is

@T

@y
D 1 � 0:0004xy ıC=cm

Find out what can be said about the temperature functionT itself.
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Solution. Since the differentiation of the temperature functionT is with respect toy,
we must integrate the right-hand side of the equation with respect toy to findT . Thus,

T .x; y/ D
Z

.1 � 0:0004xy/ dy D y � 0:0002xy2 C h.x/: (1.2.8)

Note however that this is all that we can say about the temperature function since we
are given no other information. That is, we cannot completely determine it since there
is no other information that allows us to find the functionh. To illustrate how we
would go about findingh had we more information, suppose that we also know that
temperatures along they D 1 line are given by the function

'.x/ D 100 � 0:0002x � 0:005x2:

If (1.2.8) is to model the temperature at all points of the plate, then it follows that
T .x; 1/ D '.x/; accordingly,

1 � 0:0002x2 C h.x/ D 100 � 0:0002x � 0:005x2:

Solving forh, we have
h.x/ D 99 � 0:005x2:

Finally, substituting this into (1.2.8) gives the temperature function13

T .x; y/ D 99 C y � 0:0002xy2 � 0:005x2:

1.2.4 Basic Integration Techniques

Complete familiarity with the standard integrals and a facility with integration tech-
niques will be deciding factors in your success, or lack thereof, in solving differential
equations. Table 1.4 is a list of some standard integrals. This is not a complete list, but
these particular integrals are used throughout this book. Next to the functions in the
left-hand column are their antiderivatives in the right-hand column. These standard in-
tegrals must be thoroughly memorized. Unfortunately, however, an integral involved in
solving a differential equation probably will not look exactly like any of those listed in
Table 1.4: in that case,substitution, integration by parts, andpartial fractionsbecome
indispensable. They are techniques for transforming integrals to one of the standard
integrals. We review briefly these three integration techniques by presenting some ex-
amples. If you find yourself rusty in the use of these techniques, it would be a very
good idea to refresh your memory by opening your favorite calculus book and getting
out past calculus class notes and worked-out problem sets.

Example 1.10. Find all solutions of the differential equation

dy

dx
D

5

x2 C 9
:

13Note this example is Example 1.8 worked backwards.
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Solution. Referring to (1.2.3),f .x/ D 5=.x2 C 9/. The solutions are given by (1.2.4).
So

y D
Z

f .x/ dx D
Z

5

x2 C 9
dx D 5

Z
1

9 C x2
dx:

This integrand most nearly resembles the integrand1=.1 C u2/ in Table 1.4. Hence,
we need to rewrite the denominator of the integrand so that it leads off with the digit1

instead of with9. Factoring out the9 achieves this and we have
Z

1

9 C x2
dx D

Z
1

9

�
1 C

�x

3

�2
� dx D

1

9

Z
1

1 C u2
3 du;

where the substitutionu D x=3 was made. Sincedu=dx D 1=3, the differentialdx

must be replaced with3 du. Therefore, the solutions are

y D
5

3

Z
du

1 C u2
D

5

3
tan�1 u C C D

5

3
tan�1

�x

3

�
C C:

Example 1.11. Find the solutions of
dy

dx
D

5x

x2 C 9
.

Solution. The difference between this integrand and the previous one is thex in the
numerator. What we should note is that aside from a numerical factor the numerator
is the derivative of the denominator. A standard integral results by merely substituting
another variable forx2 C 9, sayz. Then,dz D 2x dx and

y D
Z

5x

x2 C 9
dx D

5

2

Z
2x dx

x2 C 9
D

5

2

Z
dz

z
D

5

2
ln jzj C C:

Thus, the solution of the differential equation is

y D
5

2
ln

�
x2 C 9

�
C C:

Example 1.12. Find the solutions of
dy

dx
D

x dx

x2 C 2x C 1
.

Solution. Since the independent variable isx and the right-hand side of the equation
involves it but noty, we start off by indicating the solution of the equation is

y D
Z

x

x2 C 2x C 1
dx:

Now we have to figure out how to carry out the integration. As a rule of thumb, we
always try substitution first. Clearly, the only possibility isu D x2 C 2x C 5. This will
not work however since the differential is

du D .2x C 2/ dx D 2.x C 1/ dx;
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but the numerator is not a constant multiple ofx C 1. At this point, we may be at a
loss of what to do next—until we notice that the denominator can be expressed as the
perfect square.x C 1/2. Perhaps this slight change will allow us to integrate. Now the
form of the right-hand side of

y D
Z

x

.x C 1/2
dx

suggests that we try the substitutionu D x C1. Thendu D dx andx D u�1. Hence,

y D
Z

u � 1

u2
du D

Z �
u�1 � u�2

�
du D ln juj C

1

u
C C:

Therefore,

y D ln jx C 1j C
1

x C 1
C C:

Example 1.13. Find the solutions of
dy

dx
D

x dx

x2 C 2x C 5
.

Solution. This is similar to Example 1.12; again it is clear that a direct substitution will
not work. Unlike the previous example though, the denominator is not a perfect square.
However, we can changex2 C 2x into a perfect square by completing its square. This
is accomplished by adding1, which is obtained by squaring half the coefficient ofx,
namely1. Thus,

x2 C 2x C 5 D .x2 C 2x C 1/ � 1 C 5 D .x C 1/2 C 4I

and so

y D
Z

x

.x C 1/2 C 4
dx:

Now let u D x C 1. Then

y D
Z

u � 1

u2 C 4
du D

Z
u

u2 C 4
du �

Z
1

u2 C 4
du

D
1

2

Z
2u

u2 C 4
du �

1

4

Z
1

1 C
�u

2

�2
du

D
1

2
ln

�
u2 C 4

�
�

1

4
tan�1

�u

2

�
C K

D
1

2
ln .x2 C 2x C 5/ �

1

4
tan�1

�
x C 1

2

�
C K:

Example 1.14. Find the solutions of
dy

dx
D x cos2x.
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Solution. Once again, as the right-hand side of the equation depends only onx, solu-
tions are given by

y D
Z

x cos2x dx:

Integration of the product of a power function and a sinusoidal function (sine or cosine
function) calls for the method of integration by parts. Recall theintegration by parts
formula: Z

u dv D uv �
Z

v du: (1.2.9)

To apply the formula to
R

x cos2x dx, we let

u D x; dv D cos2x dx

du D dx
�
since

du

dx
D 1

�
; v D

1

2
sin2x

�
as

Z
cos2x dx D

1

2
sin2x C K

�
:

Then

y D uv �
Z

v du D
1

2
x sin2x �

1

2

Z
sin2x dx D

x

2
sin2x �

1

2

�
�

1

2
cos2x

�
C C;

and so all solutions are given by

y D
x

2
sin2x C

1

4
cos2x C C:

Learning when and how to use the integration by parts formula, to wit (1.2.7), is
an important skill to master. If the original integral, denoted by

R
u dv, is difficult or

impossible to integrate, the purpose of (1.2.7) is to present an alternative: the integralR
v du. The art of integrating by parts is in the selection ofu anddv so that

R
v du

is easier to integrate than is
R

u dv. Achieving this is a matter of common sense, trial
and error, and experience. However, if you have some difficulty in selectingu anddv

the acronymLIATE14 is a useful device.LIATE is a mnemonic for remembering five
types of functions in the following order:

Logarithmic, Inverse trig, Algebraic, Trig, Exponential.

It is precisely this order that makesLIATE work. When the integrand is the product
of any two of these types of functions and the substitution technique doesn’t work, the
integration by parts formula should be tried. Let the type appearing first in the order
given byLIATE beu and the other one, along with the differential next to the integrand,
be dv. Then apply the integration by parts formula. Hopefully,

R
v du will then be

easier to integrate than
R

u dv. To illustrate this, consider the integral
R

x cos2x dx

from the previous example. Its integrand is the product of the two functionsx and
cos2x, wherex is an algebraic function and cos2x is a trigonometric function. Thus,
we let u D x because the typeAlgebraic comes before the typeTrig in LIATE. So,
dv D cos2x dx. Let’s illustrateLIATE again by solving the next equation.

14See Kasube [?, pp. 210–211].



32 CHAPTER 1. THE WONDERFUL WORLD OF DIFFERENTIAL EQUATIONS

Example 1.15. Find the solutions of
dy

dx
D sin�1.2x/.

Solution. Solutions are all of the antiderivativesof sin�1.2x/ indicated by the indefinite
integral

y.x/ D
Z

sin�1.2x/ dx:

Obviously, the substitutionu D 2x won’t lead anywhere unless the formula for
Z

sin�1 u du

is already available.15 At first, it looks as though the integration by parts technique is
also useless here by virtue of the absence of a product of two functions. Nevertheless,
there is one—if we use the artifice of writing the integrand as the product:1�sin�1.2x/.
Thenu D sin�1.2x/, since the constant function “1” belongs to theAlgebraictype and
is preceded by theInverse Trigtype in LIATE. This forcesdv to be the rest of the
integrand or “1” and the differentialdx; that is,dv D 1 dx D dx. Hence,

du D u0.x/ dx D
�

d

dx
sin�1.2x/

�
dx D

2p
1 � .2x/2

dxI v D x:

By (1.2.9), the solutions are

y.x/ D
Z

sin�1.2x/„ ƒ‚ …
u

dx„ƒ‚…
dvD1 dx

D sin�1.2x/„ ƒ‚ …
u

x„ƒ‚…
v

�
Z

x„ƒ‚…
v

2p
1 � .2x/2

dx

„ ƒ‚ …
du

D x sin�1.2x/ �
�

2

�8

� Z �8x dx
p

1 � 4x2
D x sin�1.2x/ C

1

2

p
1 � 4x2 C C:

Example 1.16. Find the solutions of
dy

dx
D

6

x2 � 9
.

Solution. Although the right-hand side of this equation does not appear in Table 1.4,
the factorability ofx2 � 9 is the tip-off that we can integrate using the method of
partial fractions. Generally speaking, a quadratic polynomial, such asx2 � 9, is said to
bereducible over the realsor factorablewhen it can be expressed as a product of two
linear polynomials with real coefficients. Otherwise, it is said to beirreducibleover the
reals. For the sake of brevity, we will omit the phrase “over the reals.” Thus,x2 � 9 is

15Of course, this integral could be found in some handbook or with a computer algebra system or a
sophisticated calculator. But the point of this section is to review integration and to hone the skills already
acquired in a calculus course to solve relatively simple integrals without having to resort to integral tables or
to technology.
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reducible since it reduces to the product of the linear polynomialsx �3 andx C3. That
is, it is equal to the product.x � 3/.x C 3/. On the other hand,x2 C 9 is irreducible,16

since it is just not possible to write it as a product of two linear polynomials with real
coefficients. An important result of algebra states that it is always possible to express
a nonconstant polynomial with real coefficients as a product of linear and irreducible
quadratic polynomials with real coefficients. So, as a rule of thumb, when faced with
integrating arational function,17 first factor its denominator into a product of linear and
irreducible quadratic polynomials—unless the numerator is a constant multiple of the
derivative of the denominator; in which case the method of substitution will work, as
demonstrated in Example 1.11.

Now let’s apply the method of partial fractions to evaluate the integral

Z
6

x2 � 9
dx:

Its integrand is a rational function with a reducible denominator. After factoring the
denominator, we expand the integrand writing it as a sum of two simpler rational func-
tions with linear polynomials as their denominators:

6

.x � 3/.x C 3/
D

A

x � 3
C

B

x C 3
: (1.2.10)

The fractions
A

x � 3
and

B

x C 3

are calledpartial fractions because their denominators contain part of the original
denominatorx2�9 but not all of it. The expansion of the integrand in (1.2.10) is known
as itspartial fraction expansion. The coefficientsA andB are calledundetermined
coefficientsuntil values are found making (1.2.10) an identity. To determine the values
of A andB, clear out the denominators in (1.2.10) by multiplying both sides by the
denominator of the integrand with the result

A.x C 3/ C B.x � 3/ D 6:

Now we can quickly find the value ofA by settingx D 3 since this eliminates the term
involving B:

x D 3 ) 6A C 0B D 6 ) A D 1:

Likewise, settingx D �3 eliminates the term involvingA and yieldsB D �1. Thus,

6

x2 � 9
D

1

x � 3
�

1

x C 3
:

16That is, it is irreducible over the reals (meaning the set of real numbers). However, it is reducible over
the set of complex numbers sincex2 C 9 D .x � 3i/.x C 3i/, wherei is defined byi2 D �1.

17Recall that arational function is the quotient of two polynomials. Constants, such as6 and�, are also
considered polynomials.
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Now integration is a piece of cake:

y.x/ D
Z

6

x2 � 9
dx D

Z
dx

x � 3
�

Z
dx

x C 3

D ln jx � 3j � ln jx C 3j C C D ln

ˇ̌
ˇ̌ x � 3

x C 3

ˇ̌
ˇ̌ C C:

Let’s review next the method of partial fractions when the denominator of the ra-
tional function is the product of a linear factor and an irreducible quadratic factor.

Example 1.17. Find the solutions of
dy

dx
D

18

x3 C 9x
.

Solution. The method of substitution is clearly of no help in integrating the right-hand
side directly due to the absence of the factor

d

dx
.x3 C 9x/ D 3x2 C 9

in the numerator. Let’s see how the method of partial fractions fares. First, we must
factor the denominator completely. Factoring out anx, we have

x3 C 9x D x.x2 C 9/:

No more factoring is possible, since the quadratic factor is irreducible. Since the de-
nominator consists of two factors, the partial fraction expansion of the integrand con-
sists of two fractions. The form of partial fractions can be summed up by the dictum:

Put constants over linear factors and linear factors over irreducible
quadratic factors.

As a result, the form of the expansion is

18

x3 C 9x
D

A

x
C

Bx C C

x2 C 9
:

We clear out the denominators of the expansion by multiplying both of its sides by
x.x2 C 9/, obtaining

A.x2 C 9/ C .Bx C C /x D 18:

Grouping like terms together gives

.A C B/x2 C Cx C 9A D 18:

This equation is satisfied for all values ofx if A, B, andC have values satisfying the
equations:

A C B D 0I C D 0I 9A D 18:

Consequently,A D 2; B D �2; C D 0 and so

y D
Z

18

x3 C 9x
dx D

Z
2

x
dx �

Z
2x

x2 C 9
dx D 2 ln jxj � ln jx2 C 9j C C:
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Therefore, the solutions arey D ln

�
x2

x2 C 9

�
C C .

We conclude this section with an example of solving a partial differential equation.

Example 1.18. Find the solutions of
@z

@x
D y sec.3x/.

Solution. The equation itself indicates that the variablez is dependent on bothx andy.
The nature of the partial derivative indicates that we have to integrate with respect to
x: The equation itself indicates that the variablez is dependent on bothx andy. The
nature of the partial derivative indicates that we have to integrate with respect tox:

z D
Z

y sec.3x/ dx D y

Z
sec.3x/ �

1

3
� 3 dx D

y

3

Z
secv dv;

wherev D 3x. From Table 1.4, we have

z D
y

3
ln j secv C tanvj C g.y/:

Therefore, the solutions of the partial differential equation are

z D
y

3
ln j sec.3x/ C tan.3x/j C g.y/:

1.2.5 Proportions Involving Rates of Change

The statement “u is (directly) proportional tov” means that

u D kv

for some constantk. The parentheses enclosing the word “directly” indicate that its
use is optional; it is frequently omitted. The constantk is called theconstant of pro-
portionality. Thatu is proportional tov is also indicated by writing

u / v:

Example 1.19. The assertion that “a city’s average daily garbage collectionG is pro-
portional to its populationp” translates to the mathematical statement:

G / p;

which means
G D kp

for some constantk. If there is any truth to this statement, then the value ofk would
have to be determined experimentally by comparing the amount of garbage and the
population of a city on a given day.
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Example 1.20. Consider the wry comment of some good-natured hostess, as she
watched a guest’s toast land on her newly laid carpet, that the likelihood of toast land-
ing jelly-side down is directly proportional to the cost of the carpet. WithL denoting
the likelihood, or probability, of this happening andC the cost, this comment translates
to the mathematical statement:

L D  C;

where is the constant of proportionality.18

Example 1.21. Finally, in a more serious vein, we mention a postulate by the famous
physicist Max Planck that aided in the development of a field of physics called quantum
mechanics. In 1900, in an attempt to reconcile the theory of black body radiation with
experimental results, Planck postulated that energy is not radiated continuously but
rather in discrete amounts calledquantaand that a quantum of energyE is proportional
to the frequency� of the radiation.19 That is,

E D h�

whereh denotes the proportionality constant. By adjusting the value ofh, he was able
to reconcile his theory with experimental results. In fact,h is now calledPlanck’s
constant. Its current accepted value is6:63 � 10�34 joule�second.

If two variablesu andv are not directly proportional but are related by the equation

u D
k

v

for some constantk, then we say “u is inversely proportional tov” or “ u varies in-
versely withv.”

Example 1.22. In the kinetic theory of gases, there is the empirical result known as
Boyle’s Law. It states:

The volumeV of a certain amount of gas confined to a container and held
at a constant temperature is inversely proportional to the pressureP on
the gas.

Mathematically, this is expressed as

V D
k

P
or PV D k;

wherek is the constant of proportionality.

18The letter is the lower case Greek lettergamma.
19The letter� is the lower case Greek letternu.
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Example 1.23. A Wall Street rule of thumb is that airline stock prices increase when-
ever petroleum stock prices go down and vice versa. Hence,

AP D C;

whereA andP are the prices of the airline and petroleum stocks, respectively, andC

is the constant of proportionality.

Sometimes it must seem to the owner of a car—especially a new car—that the
likelihood that a car gets a dent is inversely proportional to its age.

Finally we observe that even someone disinclined to mathematics (and thereby
less fortunate) is tempted at times to invoke mathematics to make a point. Take for
example this statement by David M. Knight: “The fundamental rule is that our ability
to recognize the voice of God is in inverse proportion to our attachment to the things
of this world.” 20

Since this book is about ordinary differential equations, the proportional relation-
ships that we consider from now on will involve ordinary derivatives. The following
examples are taken from physics and chemistry.

1.2.6 Newton’s Law of Cooling

It is patently clear to anyone that an ice-cold can of soda left on a patio will eventually
warm up to the outside temperature and a cup of hot chocolate set on a kitchen table
will cool down to room temperature. Experimental evidence indicates that for moderate
temperature differences between a body and its surroundings, the rate of change of the
temperatureT of the body is proportional to the difference in the temperatures of the
body and its surroundings. Expressed in the language of calculus, this statement takes
on the form

dT

dt
/ T � Ta

or
dT

dt
D c.T � Ta/ (1.2.11)

whereTa is the ambient temperature, or the temperature of the surroundings, and
c is the constant of proportionality. This model of temperature change is known as
Newton’s law of cooling. Clearly, the temperature of a body is decreasing whenT >

Ta but increasing whenT < Ta. Or, from our knowledge of calculus, the derivative
dT =dt is negative whenT > Ta but positive whenT < Ta. In either case, the constant
c in (1.2.11) must be negative. As it is customary in the sciences to keep physical
constants and parameters positive, we replacec with �k, wherek > 0. Accordingly,
(1.2.11) becomes

dT

dt
D �k.T � Ta/ .k > 0/: (1.2.12)

Note that Newton’s law of cooling does not result from attempting to explain the phys-
ical processes taking place, such as heat transfer between a body and its surroundings

20See Knight [?, p. 80]. This unconventional example stems from Fr. Knight’s tongue-in-cheek question
about the importance of mathematics in God’s ultimate plans for humankind.
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by conduction, convection, and radiation. So, in a sense all of the unexplained physical
processes are represented by the constant of proportionalityk. This is asking a lot of a
constant and would explain the experimental evidence that Newton’s law of cooling is
not always valid, such as in the case of extreme temperature differences.

1.2.7 Rates of Chemical Reactions

The gas ethane is a hydrocarbon: a compound consisting of only carbon and hydrogen.
An ethane molecule is composed of two carbon atoms and six hydrogen atoms, so
its molecular formula is C2H6. Ethane decomposes when it is strongly heated in the
absence of air. Under certain experimental conditions, it has been observed that the
rate at which this decomposition takes place is proportional to the concentration of
ethane.21 In chemistry, it is customary to denote the concentration of a compound by
enclosing its formula with brackets: thus, [C2H6] denotes the concentration of ethane.
In this notation, the observation that ethane decomposes at a rate proportional to its
concentration can be expressed as:

Rate of decomposition of ethaneD k ŒC2H6�;

where the constant of proportionalityk is called areaction rate constant. It is a pa-
rameter, positive in value, which must be determined experimentally. Since ethane
decomposes, the rate of change in its concentration is a negative quantity—thus, the
derivatived [C2H6]=dt is equal to the negative of the rate of decomposition:

d ŒC2H6�

dt
D �k ŒC2H6� : (1.2.13)

Since the mathematical manipulation of bracketed formulas is cumbersome when solv-
ing differential equations involving them, it is convenient to replace them with lower
case letters. For example, by lettingx.t/ D ŒC2H6� denote the concentration of ethane
at timet , equation (1.2.13) simplifies to

dx

dt
D �kx:

As for a second example, we consider one of several chemical reactions that have
been conjectured by some scientists to take place in the earth’s stratosphere to explain
the alleged depletion of the ozone layer in the polar regions.22 In this reaction, an oxy-
gen atom (O) collides with an ozone molecule (O3) to produce two oxygen molecules
(O2):

O C O3 ! 2O2:

It is believed that the rate at which the concentration of oxygen molecules increases is
proportional to the product of the concentrationsof oxygen atoms and ozone molecules.
Translating this statement in the language of mathematics, we obtain the differential
equation:

d ŒO2�

dt
D KŒO�ŒO3�;

21See Atkins [?, p. 131].
22See Atkins [?, p. 140].



1.2. ORIGINS OF BASIC ORDINARY DIFFERENTIAL EQUATIONS 39

whereK is the constant of proportionality. Since the derivative is positive,K must be
positive— of course, its value can only be determined experimentally.

1.2.8 Newton’s Second Law of Motion

Important applications of differential equations are found in the branch of physics
calledclassical mechanics, which is the study of the motion of bodies and particles.
A bodypossesses both mass and extent, whereas aparticle is the idealized notion of a
geometric point possessing mass. Classical mechanics is based on three famous laws
of motion formulated by Sir Isaac Newton (1642-1747); so it is also calledNewtonian
mechanics. A proper study of the laws of motion rightfully belongs to a physics or en-
gineering course on classicalmechanics. Nevertheless, the secondof these laws, known
asNewton’s second law of motion, is a virtual treasure-trove of differential equations
problems that are instructive and motivational, yet not too difficult. For this reason, we
use it in this book as our primary source for problems and examples and to demonstrate
the indispensability of differential equations for modeling physical phenomenon. We
will discuss Newton’s second law of motion in the remainder of this section, but only
briefly. It is the fundamental law of classical mechanics. It may be only a slight ex-
aggeration to say that any classical mechanics course is essentially a study of how to
apply the second law to a variety of situations.

A body accelerates when external forces act on it provided they do not cancel each
other out. We can add these forces, but we have to take into account that they may act
in different directions. A directed quantity, of which a force is an example, that is char-
acterized by both direction and magnitude is called avector.23 Some other examples of
vectors aredisplacementsandvelocities. The (vector) addition of two or more vectors
results in a single vector, called thevector sum, that is equivalent to all the other vectors
acting concurrently. The vector sum of all the external forces acting on a body is called
theresultant forceor resultant. It is the single force that can replace the original set of
external forces and still cause the body to move in precisely the same way.

Newton’s second law of motionis an equation relating the mass of a body, the
resultant force acting on the body, and its acceleration. It is derived from the following
three experimental observations:

1. A body accelerates in the direction of the resultant force.

2. The magnitude of the acceleration of a body of constant mass is proportional to
the magnitude of the resultant force.

3. For a constant resultant force, the magnitude of the acceleration is inversely pro-
portional to the mass of the body.

Letting m denote the mass of the body,a its acceleration, andF the resultant of all the
external forces acting on the body, we can encapsulate the above observations with the
proportionality statement:

a /
F
m

:

23Directed quantities also have to obey certain rules of combination before they can legitimately be con-
sidered vectors.
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Thus, we end up with the vector equation

ma D �F; (1.2.14)

where� is a constant of proportionality. The letters for the acceleration and force
are in boldface to indicate that they are vector quantities. However, the letterm is
not in boldface since mass is ascalar, a quantity that has magnitude but no direction
associated with it.

If units of measurement (such as time, mass, and length) are chosen so that the
value of� is 1, then (1.2.14) simplifies to

F D ma: (1.2.15)

In words:

The resultant force acting on a body is equal to the product of the mass
of the body and its acceleration.

This isNewton’s second law of motionfor the accelerated motion of a body subjected
to external forces when its mass remains constant.

Sinceaccelerationis the instantaneous rate at which velocity changes with time,
Newton’s second law can be written as

F D m
dv
dt

; (1.2.16)

wherev is thevelocity, that is, the instantaneous rate at which the position of a body
changes with timet . This statement of Newton’s second law is only valid if the mass
of a body is constant. Note that this is a first-order differential equation.

The momentumof a body is defined as the vector quantitymv. If the mass of a
body changes, then we have to use the general form ofNewton’s second law of motion:

The resultant force acting on a body is equal to the rate of change of the
momentum of the body.

This is expressed mathematically by the vector equation

F D
d

dt
.mv/: (1.2.17)

Observe that (1.2.17) reduces to (1.2.16) whenm is constant.
For simple situations where the only forces causing motion of a body act either

in one direction or in the opposite direction, such as forces acting vertically, directed
upward or downward, or forces acting horizontally, directed to the right or to the left, a
positive or negative sign is affixed to the magnitude of the force to indicate its direction.
For forces acting horizontally, we use the convention that positive forces are directed
to the right whereas negative forces are directed to the left. Similarly, for forces acting
vertically, we will regard upward as positive and downward as negative. Then we
merely have to add forces algebraically to obtain the resultant force. As a result, we
can write (1.2.15) without using boldface letters:

F D ma: (1.2.18)



1.2. ORIGINS OF BASIC ORDINARY DIFFERENTIAL EQUATIONS 41

Let us say a few words about units of measurement for the quantitiesm, a, and
F . Unfortunately there is no single set of units in use today. There is the metric
system and then there are systems involving English units, such as thefoot and the
pound. Generally speaking, all of the systems of units have one thing in common:
units are chosen so that the constant of proportionality� in (1.2.14) is equal to1. Such
a set of units is known asabsolute unitsor consistent units. One set of consistent
units uses thesecondfor time and the metric unitskilogram for mass andmeterfor
length. Consequently, velocity and acceleration inherit the unitsmeters per secondand
meters per second per second, respectively. Setting� D 1, m D 1 kg (kilogram), and
a D 1 m=s2 (meter per second per second) in (1.2.18), we obtain the force

F D .1 kg/ �
�
1

m

s2

�
D 1

kg � m

s2
:

This unit of force is called thenewton. In other words, a force of1 newtonacting on
a body with a mass of1 kilogram will accelerate it at a rate of1 meter per second per
second. For more details, consult a textbook on classical mechanics, such as Osgood
[?, pp. 51–52] or Becker [?, p. 25].

We will use Newton’s second law shortly (see Example 1.24) to model the vertical
motion of a body of constant mass near the earth’s surface. All bodies in the universe
are subject to the gravitational attractive force of the earth. In fact, according to New-
ton’s law of universal gravitation, every body in the universe exerts a gravitational force
on every other body in the universe. This includes everybody too! The force that the
earth exerts on a body is called theforce due to gravity. Experimentally it is found that
when various bodies—those whose motion is not appreciably affected by the resistive
force of air24 and other factors25—are released from the same point above the earth’s
surface, each of them falls with the same acceleration. This constant acceleration is
called theacceleration due to gravity.

Actually the acceleration due to gravity varies from place to place. However, close
to the earth’s surface it is nearly constant. Its precise value, as well as approximate
values, is denoted by the letterg. At sea level and mid-latitudes, measurements show
thatg is approximately32:2 ft/s2 in the system of units known as theU. S. Customary
System.26 In another set of units called theSI units, short for the French“Système
International d’Unités” and commonly referred to as the metric system,g is approxi-
mately9:81 m/s2. In the SI system,g is defined precisely as 9.80665 m/s2 and in the
U.S. Customary System as32:174049 ft/s2. These precise values are referred to as the
standard acceleration of gravity(or standard gravity).

The U.S. Customary System can be confusing at times. For instance, consider the
word pound. It can designate a unit of mass or a unit of force. To distinguish between
these two different uses, the termspound-massandpound-forceare often used. The

24We will consider resistive forces such as air resistance in Chapter 3. Perhaps you have seen the rather
striking demonstration of a feather falling as rapidly as a steel ball bearing inside a long, empty glass cylinder
from which most of the air has been pumped out with a vacuum pump. However, when both bodies are
removed from the confines of the glass cylinder, it is quite a different story. The air resistance on the feather
retards its motion considerably, on the other hand, its effect on the ball bearing is barely noticeable.

25For example, the earth’s rotation also contributes slightly to the acceleration of a falling body.
26The U.S. Customary System is the American version of the British Imperial System. Both are commonly

referred to as the English or British system of units.
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pound-mass is legally defined in terms of the kilogram: thepound-massis precisely
0:45359237 kilograms. Contrast this with the definition of pound-force. Thepound-
force is the force that gives a body of mass0:45359237 kilograms an acceleration equal
to the standard acceleration of gravity, namely,32:174049 ft/s2.

When “pound” is used to express weight, it is the “pound-force” that is meant. The
weight of a body is defined as the gravitational force exerted on it by the earth at a
particular location on earth. If in (1.2.18) we seta equal to the standard acceleration
of gravity g, then we will have the weight of a body of massm at some imagined spot
on earth where the acceleration due to gravity is precisely32:174049 ft/s2. In other
words, the formula for the weightW of a body of massm at this spot is

W D �mg:

We use the minus sign to indicate that the forceW is directed downward—toward the
center of the earth.

Since weight is a force, an appropriate unit of force must be used. In the SI system
it is clear-cut: the unit of force is the newton. However, in the U.S. Customary System,
we must be more circumspect. If we assignF a value of 1 lbF (pound-force) andm a
value of 1 lbm (pound-mass), then we have from (1.2.18) that

a D
F

m
D

1 lbF

1 lbm

D 1
lbF

lbm

:

However, referring back to the definition of pound-force, we should get32:174049 ft/s2

instead of the above result. The reason for the disparity is that the pound-force and
pound-mass are not consistent units. That is, in order to retain both units, we would
have to use

F D �ma

rather thanF D ma and adjust� accordingly. To avoid this, let us retain the pound-
force but replace the pound-mass with a new unit of mass based on (1.2.18) where
� D 1. This new unit of mass is called theslug and is defined as the mass of a body
whose acceleration is 1 ft/s2 when the force acting on the body is 1 pound. Since we
are dispensing with the pound-mass, we will from now revert back to using “pound”
instead of “pound-force.” Thus, a body with a mass of 1 slug has a weight of

W D �.1 slug/ � .32 ft/sec2/ D �32 pounds:

Weight, being a force, is a vector quantity. In everyday usage, however, only the mag-
nitude of the weight is stated, such as in saying that a bag of sugar weighs 5 pounds.

Example 1.24. Model the vertical motion of a body of constant mass, such as a base-
ball thrown straight upward or a rock released from the top of a tall cliff. Assume that
the force of gravity is the only significant force acting on the body.

Solution. In reality, other forces act on the body besides gravity. However, for the sake
of simplicity, we assume that their influence on the motion of the body is negligible.
Let y.t/ denote the vertical position of the body at timet relative to some fixed spot on
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the ground directly below it. Then, as velocity (by definition) is the instantaneous rate
at which the body changes its position with time, the vertical velocityv of the body is
given by the derivative

v D
dy

dt
:

At first glance,v may appear to be a scalar quantity. However, it is actually a vector
quantity because the sign ofdy=dt indicates the direction in which the body is mov-
ing. If, at some instant,dy=dt > 0, then the First Derivative Test implies thaty is
increasing at that very instant. So the body is moving upward. In other words,v > 0

informs us that the direction of the velocity is upward. On the other hand,v < 0 means
that the velocity is directed downward; hence the body is moving downward andy is
decreasing. Note that we have implicitly set up a vertical frame of reference: a posi-
tive y-axis pointing straight upward with its origin located at ground level. So positive
vectors point upward and negative vectors downward. Finally, recall that there is a
slight difference in the definitions of velocity and speed:speedis the absolute value of
velocity.

Since we are assuming that the only force of consequenceacting on the body is the
gravitational force, the acceleration of the body isa D �g. Thus, the motion of the
body is modeled by the differential equation

dv

dt
D �g: (1.2.19)

Integrating (1.2.19) with respect tot , we obtain

v.t/ D �
Z

g dt D �gt C C:

Settingt D 0, we have
v.0/ D �g � 0 C C D C:

In other words, the constant of integrationC represents the velocityv.0/, that is, the
velocity of the body at the instant that it is released or thrown upward or downward.
This particular velocity is usually denoted by the symbolv0 and is called theinitial
velocity. Therefore,

v.t/ D v0 � gt:

Replacingv with dy=dt , we obtain another differential equation:

dy

dt
D v0 � gt:

Integrating with respect tot again, we obtain

y.t/ D
Z

.v0 � gt / dt D v0t �
1

2
gt2 C K:

According to this formula, the position of the body att D 0 is K. Thus,

K D y0
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wherey0 D y.0/ is the initial position of the body. Therefore, the position of the body
at timet (before it hits the ground) is

y.t/ D y0 C v0t �
1

2
gt2;

wherey0 andv0 are its initial position and velocity, respectively.



PROBLEMS 45

Problems

Heigh-ho, Heigh-ho,

It’s off to work we go.
(Whistle)

Heigh-ho, Heigh-ho, Heigh-ho,

Heigh-ho, Heigh-ho,

It’s off to work we go . . .

Heigh-Ho (song in the 1937 Walt Disney movie
Snow White and the Seven Dwarfs), lyrics by
Larry Morey and music by Frank Churchill

What are Differential Equations?

In Problems 1 through 8, an ordinary differential
equation is given. Determine the name of the in-
dependent variable, the dependent variable, and
the parameter (or parameters if there is more than
one). Also, give the order of the equation.

1. PN D rN
�
1 � N

k

�

2.
d2p

ds2
C �

�
p3 � 1

� dp

ds
D �10

p
s4 � 2

3.
d4x

dt4
� a

dx

dt
C

b

5
x5 D �10sin7 . t/

4.
d2y

dx2
D

C

L

s�
AC

L

�2

C
�

dy

dx

�2

5. EIy.4/ C py00 C ky D c.1 � x/

6. Rx � ".1 � x2/ Px C x D 0

7.
„2

2m
�

d2 

dx2
C

�
E �

1

2
kx2

�
 D 0

8. 6y000 C �.y00/4 � 2�!xyy0 D cos.xy5/

Partial Derivatives

In Problems 9 through 12, find the first-order par-
tial derivatives@f=@x and@f=@y

9. f .x;y/ D 15x2 � 3x4y3 C 2
3

y5

10. f .x;y/ D
x2y

x C 4y

11. f .x;y/ D x C 5e2x sin.xy/

12. f .x;y/ D 2xy2 � e4y ln x

Alleged Solutions of ODEs

In Problems 13 through 18, an ordinary differen-
tial equation is given along with a function alleged
to be its solution. Determine whether the alleged
solution is truly a solution by means of direct sub-
stitution of the function and its derivative(s) into
the equation.

13.
dy

dx
D xy, y D 4ex2=2

14. x2y0 D y2, y D
x

1 C Cx

15.
dy

dx
D

x

y
, y D �

p
4 � x2

16.
dy

dx
D

x2 C xy C y2

x2
,

y D x tan.ln x/, wherex > 0

17. 2y00 � 7y0 C 3y D 0, y D e2x

18.
d2y

dx2
C 16y D e3x , y D

1

25
e3x

Solutions of Basic Differential Equations

In Problems 19 through 42, find all solutions of
each equation.(All integrals can be worked out
using the standard integral formulas in Table 1.4
and the integration techniques that were reviewed
in Section 1.2.4.)

19.
dy

dx
D cos.3x/

20.
dy

dx
D sin

�x

5

�
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21.
dy

dx
D

1

x2 C 5

22.
dy

dx
D

ln x2

x

23.
dy

dx
D tan5x

24.
dy

dx
D sec2.7x/

25.
dy

dx
D xe2x

26.
dy

dx
D x sin.3x/

27.
dy

dx
D x2 sin.2x/

28.
dy

dx
D e2x sin

�x

3

�

29.
dy

dx
D

3

x2 C 4x

30.
dy

dx
D

x

x2 � 5x C 6

31.
dy

dx
D

4x � 10

x2 � 5x C 6

32.
dy

dx
D

1

x3 C 9x

33.
dy

dx
D

3

x2 C 4x C 5

34.
dy

dx
D sec.3x/ tan.3x/

35.
dy

dx
D

sin.2x/

cos3.2x/

36.
dy

dx
D 5x2

p
1 C 4x3

37.
dy

dx
D

5
p

4 � x2

38.
dy

dx
D

x2 � 5

x3 � 3x2 C 4x � 12

39.
@u

@x
D 6x2y C

2

y

40.
@u

@y
D 6x2y C

2

y

41.
@z

@y
D 5 C

x

4 C y2

42.
@z

@x
D 2y � 5y3 csc2 x

ODEs from Rates of Change

In Problems 43 through 48, translate the given ver-
bal statement into a differential equation. Use ap-
propriatemathematicalnotation. Identify everylet-
ter (variable or constant) used in the equation.

43. Water is leaking out of a city swimming pool
at the rate of25 gallons per hour.

44. Letf .v/ be the fuel efficiency in mpg (miles
per gallon) when a car is traveling at a speed
of v mph (miles per hour). When the speed
is 70 mph, the fuel efficiency of the car is
decreasing by0:30 mpg per mph.

45. A sewage treatment tank contains10,000 gal-
lons of polluted water. The tank removes
5 percent of the pollutants in the water per
minute.

46. The index of refraction of a substance (such
as water, flint glass, acetone, etc.) is the ra-
tio of the speed of light in a vacuum to the
speed of light in the substance. Use the vari-
ablest ands, wheres denotes the distance
that the light has traveled through the sub-
stance at timet .

47. A patient recovering from surgery is fed glu-
cose intravenously at the rate ofb milligrams
per minute, whereb is a constant.

48. For a given drop in pressure along a cylin-
drical pipe, the volumetric rate of flow of
natural gas through the pipe is4:5 times the
fourth power of the radius of the pipe.

ODEs from Proportions

In Problems 49 through 62, translate the given ver-
bal statement into a differential equation using ap-
propriate mathematical notation. Write the equa-
tion in a form so that the constant of proportion-
ality is positive. Identify everyletter (variable or
constant) that appears in the equation.

49. The number of squirrels in a forest preserve
increases at a rate proportional to their num-
ber.

50. A basic electrical circuit that is usually con-
sidered in elementary physics courses con-
sists of a switch that can be openedor closed,
a battery, a resistor, and a capacitor con-
nected in series. When the switch is closed,
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an electrical current begins flowing through
the circuit; however, it immediately begins
to decrease to zero. The rate of change of
the current at a given moment is proportional
to its value at that moment.

51. The rate at which the volume of a melting
snowball changes with time is proportional
to its surface area. Given that the volume of
a snowball of radiusr is 4�r3=3 and its sur-
face area is4�r2, find the differential equa-
tion that expresses the rate at which the ra-
dius changes with time.

52. A rancher is tracking a wolf headed straight
toward a snow-covered mountain. The speed
with which he is able to pursue the wolf
is inversely proportional to the depth of the
snow.

53. There are 1,000 people in Mayberry. When-
ever a rumor is started by the town’s gos-
sip, the time rate of change of the number of
people who have heard the rumor is propor-
tional to the number of people who have not
yet heard the rumor. (Write the differential
equation describing this situation in terms of
two variables.)

54. An epidemic of rubella (German measles)
breaks out in a remote, mountainous region
in Argentina. Assume thatP people live in
this region, that this number does not change
during the course of the epidemic, and that
the time rate of change of the number of
people infected with rubella is proportional
to the product of the number who are in-
fected and the number who are not. (Write
the differential equation for the time rate of
change of the number of infected people in
terms of two variables.)

55. As a spherical raindrop evaporates, its vol-
ume changes at a rate proportional to its sur-
face area. (Write the equation so that it in-
volves only the variables volume and time.)

56. The tank of a certain toilet has a constant
cross-sectionalarea. After the toilet is flushed
and all of the water has drained from the
tank, water flows from the filler tube into
the tank at the rate of3 liters per minute.
However, because of a defective valve seat,
waters leaks from the tank at a rate that is

proportional to the square root of the depth
of water in the tank. (Use this information to
write a differential equation for the volume
of water in the tank as it is filling. Write the
equation so that the only variables that ex-
plicitly appear in it are “volume” and “time”.
Define every letter, whether it is a variable
or a constant, that you use to come up with
this equation.)

57. A tank with a constant cross-sectional area
is filled with water; however, the water leaks
through a small hole in its bottom.

(a) According toTorricelli’s law 27 of fluid
flow, the speed of the water exiting
from the hole is proportional to the
square root of the depth of the water
in the tank.

(b) An alternate form of Torricelli’s law
states that the rate with which the depth
of the water in the tank decreases is
proportional to the square root of the
depth.

(c) Before Torricelli formulated his law,
it was thought that the depth of the
water in a leaking tank would decrease
at a rate proportional to the depth in
the tank.28

58. In Aristotelian physics, objects of different
weights fall at different speeds. It was be-
lieved that an object falls at a speed propor-
tional to its weight.

59. Newton’s law of universal gravitation im-
plies that the acceleration of a body caused
by the earth’s gravitational pull is directed
toward the center of the earth and its magni-
tude is inversely proportional to the square
of the distance between the body and the
center of the earth. Assuming all other ex-
ternal forces are negligible, use this infor-

27Besides formulating this law of fluid mechanics,
Evangelista Torricelli (1608–1647),an Italian mathemati-
cian and physicist, is also remembered for inventing the
mercury barometer in 1643. In Florence, he servedbriefly
as Galileo Galilei’s assistant and secretary. He inherited
Galileo’s appointment, after the latter’s death in 1642,
as philosopher and chief mathematician to the court of
Grand Duke Ferdinando II of Tuscany.

28See Driver [?, p. 454].
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mation to find a first-order differential equa-
tion relating the variables, distance and ve-
locity, of a freely falling body.

60. A body is falling to earth. Apart from the
force due to gravity, assume that the only
other non-negligible force acting on the body
is the drag force. The force due to gravity
points downward. In the U. S. Customary
System, it has a magnitude ofmg D 32m,
wherem is the mass of the body. The drag
force results from the force exerted by the
air on the body opposing its motion—and so
points upward. Assume that its magnitude
is proportional to the velocity of the body.
The product of the mass of the body and the
rate of change in its velocity is equal to the
sum of the drag force and the force due to
gravity.

61. The rate with which water (H2O) forms in
the reaction

OH C H2 ! H2O C H;

is proportional to the product of the concen-
trations of hydrogenmolecules (H2) and hy-
droxide ions (OH).

62. One reaction among several reactions that
may take place in the decomposition of ozone
(O3) in the stratosphere is

O3 ! O2 C O:

The rate at which the concentration of ozone
is decreasingat any instant is proportional to
its concentration at that very instant.

Newton’s Second Law of Motion

63. A body with massm is moving along the
positivex-axis due to a force that attracts it
to the origin with a magnitude proportional
to its distance from the origin. The fric-
tional force opposing the motion of the body
is proportional to the body’s weight. Use
Newton’s second law of motion to find the
second-orderdifferential equation governing
the motion of the body along thex-axis.

64. Experiments confirm that a good model for
the drag force on a parachutist is a force
that is proportional to the square of the ve-
locity of the parachutist. The weight of the

parachutist ismg, whereg is the accelera-
tion due to gravity andm is the total mass of
theparachutist, including the parachute and
other equipment. Other than the weight and
drag force, ignore all other forces acting on
the parachutist. Find the rate of change of
the velocity of the parachutist using New-
ton’s second law of motion.

65. Suppose that it were possible to drill a straight
tunnel from Memphis to the diametrically
opposite point on the other side of the earth.
Imagine dropping a bowling ball into the tun-
nel. If, for the sake of simplicity, we assume
that the earth is a homogeneoussphere, then
it can be shown using physics, trigonometry,
and calculus that the gravitational force ex-
erted on the ball by the earth is directly pro-
portional to the distance of the ball from the
center of the earth. Ignore all other forces
exerted on the ball.

(a) Translate the above information con-
cerning the gravitational force exerted
on the bowling ball into a mathemati-
cal formula. Express it in terms of the
bowling ball’s position from the cen-
ter of the earth.

(b) Use Newton’s second law to obtain the
differential equation that models the
motion of the bowling ball.

66. (a) The Greek philosopher Aristotle (384–
322 B. C.) taught that an object falls at a
speed proportional to its weight. This was
the prevailing view of university professors,
even as late as the17th century. To demon-
strate the falsity of this notion, Galileo,29 as
legend has it, dragged cannonballs and mus-
ket balls of different weights, up the spiral
staircase of the Leaning Tower of Pisa and
dropped them from the top story, a height
of approximately 180 feet. With the aid of
Newton’s second law of motion, estimate

29A narrative of the life of Galileo Galilei (1564–
1642), Italian astronomer and physicist extraordinaire, is
wonderfully told in the bookGalileo’s Daughterby Dava
Sobel [?]. Letters written to him by his eldest daughter,
Suor Maria Celeste, a cloistered nun of the Order of the
Poor Clares, are woven masterfully into the story of the
life of this incredible genius.
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the time it takes for a 10-pound cannonball
to fall to the ground, assuming that air re-
sistancehas a negligible effect on the ball’s
motion.

(b) According to Aristotelian physics, how
long would it take a one-pound musket ball
to reach the ground? Base your answer on
part (a) and compare it with the time pre-
dicted by Newtonian physics.

67. A baseball is thrown vertically upward. The
thrower’s hand isy0 feet from the ground
when the ball is released. The baseball at-
tains a height ofh feet t1 seconds after its
release. After reaching a maximum height,
the baseball then falls back to this point at
some timet2 > t1.

(a) Show that the velocity of the baseball
at the moment of release is the prod-
uct of g and the average oft1 andt2.

(b) Show thath D y0 C 1
2

gt1t2.

Lengths of Plane Curves

67. Find a general formula for the length of a
plane curve defined by the parametric equa-
tions (1.2.1) by using equation (1.2.2).

68. Use the formula found in Problem 67 to find
the circumference of a circle given by the
parametric equations:

x D r cost; y D r sint:

69. Use the result of Problem 67 to find the gen-
eral formula for the length of a curve defined
by the functiony D f .x/ for ˛ � x � ˇ.
Hint. Setx D t so thaty D f .t/.

Stopping Distance of Trains

70. A 150-car freight train is approaching Car-
bondale, Illinois at a constant speed of 50
feet per second(approximately 34 mph). As
the train nears a railroad crossing, the lo-
comotive engineer sees a car stalled on the
tracks. It takes him 4 seconds to react before
he applies the brakes. It then takes the train
another 1.25 minutes to come to a full stop.
Assume that the deceleration of the train is
constant while the brakes are being applied.

(a) What is the deceleration of the train?

(b) How far does the train travel from the
moment the engineer sees the car until
the time the train comes to a full stop?
Do an Internet search to compareyour
answer to actual stopping distances of
trains.

Poiseuille’s Law

71. The volumetric rate of flow of a fluid, such
as water or natural gas, through a pipe of cir-
cular cross section is determined by a num-
ber of variables: the fluid’s viscosity, the
pipe’s radius and length, and the difference
in pressure between the ends of the pipe.
In parts (a) through (d), convert the given
proportional relationship into a differential
equation.

(a) The volumetric rate of flow is propor-
tional to the difference in pressure be-
tween the ends of the pipe when all
other variables are held constant.

(b) The volumetric rate of flow is inversely
proportional to the length of the pipe
when all other variables are held con-
stant.

(c) The volumetric rate of flow is inversely
proportional to the fluid’s viscosity when
all other variables are held constant.

(d) The volumetric rate of flow is propor-
tional to the pipe’s radius to the fourth
power when all other variables are held
constant

(e) Combine the proportional relationships
given in parts (a) through (d) into one
differential equation. The resulting equa-
tion is known asPoiseuille’s law.

(f) Explain why the air ducts for venti-
lating buildings generally have a large
radius.

(g) If arteriosclerosis reduces the effec-
tive radius of a person’s artery by 10%,
by what factor is the volumetric rate
of flow of the blood through the artery
reduced?
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Ptolemaic and Copernican Models
of the Universe

72. The Greek philosopher Aristotle (4th cen-
tury B. C.) taught that the Sun and other heav-
enly bodies revolved around the Earth but
that Earth itself was immobile, fixed in posi-
tion at the center of the universe. In the 2nd
century A. D., Claudius Ptolemy, an Alexan-
drian astronomer, refined Aristotle’s view by
theorizing that not only did the planets move
around the Earth in circular orbits called
deferents; but each planet also moved in a
second smaller circular orbit, called an
epicycle, the center of which moved along
the planet’s deferent. This model, known
as thePtolemaic system, helped explain the
observed retrograde motions of the planets,
something Aristotle’s thesis failed to do, and
was the prevailing cosmologic theory as late
as the seventeenth century. Since the Sun
moved around the Earth in the Ptolemaic sys-
tem, the daily transition of night to day and
back again to night meant that the Sun had
to make one complete revolution around the
Earth every twenty-four hours. This implied
the Sun moved at an enormous speed; and if
the movements of even more distant stars in
the heavens were to be explained, they had
to move at even greater speeds. This became
one of many arguments against the correct-
ness of the Ptolemaic system.

(a) In accordancewith the Ptolemaic sys-
tem, compute the speedof the Sun about
the Earth given a mean distanceof some
93; 000;000 miles between them.

(b) Research the Copernican system, the
heliocentric theory proposed by Nico-
laus Copernicus (1473–1543,a Polish
astronomer and cleric, and contrast it
with the Ptolemaic system.

Computer Algebra System Problems

73. Find the solutions of the differential equa-
tions in Problems 19 through 42 with the
aid of a CAS. Compare these solutions with
the solutions that you obtained by just using
pencil and paper. For some problems, the
CAS may seem to give different answers;

for these cases, provide the necessary alge-
bra to show the answers are equivalent.

74. The rate of change of a quantityQ with re-
spect to the timet is equal to

2�
p

te�t � 5t4 ln
p

3 C t4:

Usea CAS to determineQ up to a constant.



Chapter 2

Separable Equations

To be, or not to be–that is the question . . .

Hamlet’s soliloquy in Act 3, Scene 1,The Tragedy of Hamlet
by William Shakespeare

To separate, or not to separate–that is the question . . .

musings of a student faced with solving
a differential equation

2.1 Introduction to Separable Equations

In some of the problems in Chapter 1, we were given a differential equation and a so-
called alleged solution and then had to determine if this alleged solution truly satisfied
the equation. In real-life applications, however, this is not what happens. The differen-
tial equation comes without the solution. It is we who have to somehow come up with
the solution. Consequently, it now becomes incumbent on us to learn how to solve the
kinds of equations that we are most likely to encounter: in future courses and eventually
during the course of our professional careers. The most elementary kind of differential
equations in engineering and the mathematical sciences are calledfirst-order separable
equations. So just exactly what is a separable equation?

Separable Equation

Definition 2.1. A first-order differential equation

dy

dx
D f .x; y/ (2.1.1)

is said to beseparableif

f .x; y/ D g.x/ � h.y/; (2.1.2)

whereg depends only onx andh depends only ony.
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In other words, equation (2.1.1) is separable iff , a function of two variables, can
be separated by algebraic means into a product of two single-variable functions. For
example, the right-hand side of

dy

dx
D

4 cos.2x/

y C 1
(2.1.3)

in the notation of Definition 2.1 is

f .x; y/ D
4 cos.2x/

y C 1
:

Equation (2.1.3) is separable sincef can be rewritten as the product of

g.x/ D 4 cos.2x/;

which depends only onx and

h.y/ D
1

y C 1
;

which depends only ony. Note that the factor “4” could just as well be considered a
part ofh instead ofg.

Sometimes we may not realize separability unless we simplifyf .x; y/ by factor-
ing, employing trigonometric identities, using the laws of exponents, and so forth. For
example at first glance, the equation

dy

dx
D

ex ln x2

xex C xyexCy
(2.1.4)

seems not to be separable. However, if we replaceexCy with ex ey , then with factor-
ization the right-hand side simplifies to

ex ln x2

xex C xyexCy
D

ln x2

x.1 C yey/
D

ln x2

x
�

1

1 C yey
:

So the equation is separable since its right-hand side is the product of two factors, one
of which depends only onx while the other one depends ony.

Now don’t get the mistaken notion that all first-order equations are separable. Most
are not! Obviously, the equation

dy

dx
D y sinx

is separable as is
dy

dx
D x siny:

On the other hand, the equation

dy

dx
D sin.xy/


