## **REVIEW QUESTIONS**

- **10.1** The voltage  $V_o$  across the capacitor in Fig. 10.43 is: (a)  $5/0^\circ V$  (b)  $7.071/45^\circ V$ 
  - (c)  $7.071 / -45^{\circ} V$  (d)  $5 / -45^{\circ} V$





**10.2** The value of the current  $\mathbf{I}_o$  in the circuit in Fig. 10.44 is:





Figure 10.44 For Review Question 10.2.

- **10.3** Using nodal analysis, the value of  $V_o$  in the circuit of Fig. 10.45 is: (a) -24 V (b) -8 V
  - (a) -24 V (b) -3 V (c) 8 V (d) 24 V





**10.4** In the circuit of Fig. 10.46, current i(t) is: (a)  $10 \cos t A$  (b)  $10 \sin t A$  (c)  $5 \cos t A$ (d)  $5 \sin t A$  (e)  $4.472 \cos(t - 63.43^\circ) A$ 





- **10.5** Refer to the circuit in Fig. 10.47 and observe that the two sources do not have the same frequency. The current  $i_x(t)$  can be obtained by:
  - (a) source transformation
  - (b) the superposition theorem
  - (c) *PSpice*



Figure 10.47 For Review Question 10.5.

10.6For the circuit in Fig. 10.48, the Thevenin<br/>impedance at terminals a-b is:(a) 1  $\Omega$ (b)  $0.5 - j0.5 \Omega$ (c)  $0.5 + j0.5 \Omega$ (d)  $1 + j2 \Omega$ 

(e) 
$$1 - j2 \Omega$$



Figure 10.48 For Review Questions 10.6 and 10.7.

**10.7** In the circuit of Fig. 10.48, the Thevenin voltage at terminals *a-b* is:

(a) 
$$3.535 / - 45^{\circ} V$$
 (b)  $3.535 / 45^{\circ} V$   
(c)  $7.071 / - 45^{\circ} V$  (d)  $7.071 / 45^{\circ} V$ 

**10.8** Refer to the circuit in Fig. 10.49. The Norton equivalent impedance at terminals *a-b* is: (a)  $-i4 \Omega$  (b)  $-i2 \Omega$ 

(a) 
$$-j4 \Omega$$
 (b)  $-j2 \Omega$   
(c)  $j2 \Omega$  (d)  $j4 \Omega$ 



Figure 10.49 For Review Questions 10.8 and 10.9.

| 10.9 | The Norton current  | at terminals <i>a-b</i> in the circuit of |
|------|---------------------|-------------------------------------------|
|      | Fig. 10.49 is:      |                                           |
|      | (a) $1/0^{\circ}$ A | (b) $1.5 / -90^{\circ}$ A                 |
|      | ,                   | ,                                         |

(c)  $1.5/90^{\circ}$  A (d)  $3/90^{\circ}$  A

Answers: 10.1c, 10.2a, 10.3d, 10.4a, 10.5b, 10.6c, 10.7a, 10.8a, 10.9d, 10.10b.

# PROBLEMS

#### Section 10.2 Nodal Analysis

**10.1** Find  $v_o$  in the circuit in Fig. 10.50.



Figure 10.50 For Prob. 10.1.

- **10.2** For the circuit depicted in Fig. 10.51 below, determine  $i_o$ .
- **10.3** Determine  $v_o$  in the circuit of Fig. 10.52.





**10.4** Compute  $v_o(t)$  in the circuit of Fig. 10.53.



**10.5** Use nodal analysis to find  $v_o$  in the circuit of Fig. 10.54.



**10.6** Using nodal analysis, find  $i_o(t)$  in the circuit in Fig. 10.55.



<sup>10.10</sup> *PSpice* can handle a circuit with two independent sources of different frequencies.(a) True(b) False



**10.7** By nodal analysis, find  $i_o$  in the circuit in Fig. 10.56.



**10.8** Calculate the voltage at nodes 1 and 2 in the circuit of Fig. 10.57 using nodal analysis.











**10.10** Using nodal analysis, find  $\mathbf{V}_1$  and  $\mathbf{V}_2$  in the circuit of Fig. 10.59.



Figure 10.59 For Prob. 10.10.

**10.11** By nodal analysis, obtain current  $\mathbf{I}_o$  in the circuit in Fig. 10.60.



Figure 10.60 For Prob. 10.11.

**10.12** Use nodal analysis to obtain  $\mathbf{V}_o$  in the circuit of Fig. 10.61 below.



**10.13** Obtain V<sub>o</sub> in Fig. 10.62 using nodal analysis.





**10.14** Refer to Fig. 10.63. If  $v_s(t) = V_m \sin \omega t$  and  $v_o(t) = A \sin(\omega t + \phi)$ , derive the expressions for A and  $\phi$ .



Figure 10.63 For Prob. 10.14.

**10.15** For each of the circuits in Fig. 10.64, find  $\mathbf{V}_o/\mathbf{V}_i$  for  $\omega = 0, \omega \rightarrow \infty$ , and  $\omega^2 = 1/LC$ .



Figure 10.64 For Prob. 10.15.

**10.16** For the circuit in Fig. 10.65, determine  $\mathbf{V}_o/\mathbf{V}_s$ .





#### Section 10.3 Mesh Analysis

**10.17** Obtain the mesh currents  $I_1$  and  $I_2$  in the circuit of Fig. 10.66.



Figure 10.66 For Prob. 10.17.

**10.18** Solve for  $i_o$  in Fig. 10.67 using mesh analysis.



Figure 10.67 For Prob. 10.18.

- 10.19 Rework Prob. 10.5 using mesh analysis.
- **10.20** Using mesh analysis, find  $I_1$  and  $I_2$  in the circuit of Fig. 10.68.





**10.21** By using mesh analysis, find  $\mathbf{I}_1$  and  $\mathbf{I}_2$  in the circuit depicted in Fig. 10.69.





- 10.22 Repeat Prob. 10.11 using mesh analysis.
- **10.23** Use mesh analysis to determine current  $\mathbf{I}_o$  in the circuit of Fig. 10.70 below.
- **10.24** Determine  $\mathbf{V}_o$  and  $\mathbf{I}_o$  in the circuit of Fig. 10.71 using mesh analysis.



- 10.25 Compute I in Prob. 10.9 using mesh analysis.
- **10.26** Use mesh analysis to find  $\mathbf{I}_o$  in Fig. 10.28 (for Example 10.10).
- **10.27** Calculate  $\mathbf{I}_{o}$  in Fig. 10.30 (for Practice Prob. 10.10) using mesh analysis.
- **10.28** Compute  $\mathbf{V}_o$  in the circuit of Fig. 10.72 using mesh analysis.



Figure 10.72 For Prob. 10.28.

**10.29** Using mesh analysis, obtain  $\mathbf{I}_o$  in the circuit shown in Fig. 10.73.



Figure 10.73 For Prob. 10.29.

#### Section 10.4 Superposition Theorem





Figure 10.74 For Prob. 10.30.



Figure 10.75 For Prob. 10.31.

- **10.32** Rework Prob. 10.2 using the superposition theorem.
- **10.33** Solve for  $v_o(t)$  in the circuit of Fig. 10.76 using the superposition principle.





**10.34** Determine  $i_o$  in the circuit of Fig. 10.77.



Figure 10.77 For Prob. 10.34.





Figure 10.78 For Prob. 10.35.

#### Section 10.5 Source Transformation

**10.36** Using source transformation, find *i* in the circuit of Fig. 10.79.



Figure 10.79 For Prob. 10.36.

**10.37** Use source transformation to find  $v_o$  in the circuit in Fig. 10.80.



- 10.38 Solve Prob. 10.20 using source transformation.
- **10.39** Use the method of source transformation to find  $I_x$  in the circuit of Fig. 10.81.



Figure |0.8| For Prob. 10.39.

**10.40** Use the concept of source transformation to find  $\mathbf{V}_o$  in the circuit of Fig. 10.82.



## Section 10.6 Thevenin and Norton Equivalent Circuits

**10.41** Find the Thevenin and Norton equivalent circuits at terminals *a-b* for each of the circuits in Fig. 10.83.



Figure 10.83 For Prob. 10.41.

**10.42** For each of the circuits in Fig. 10.84, obtain Thevenin and Norton equivalent circuits at terminals *a-b*.





(a)



**10.43** Find the Thevenin and Norton equivalent circuits for the circuit shown in Fig. 10.85.



Figure 10.85 For Prob. 10.43.

**10.44** For the circuit depicted in Fig. 10.86, find the Thevenin equivalent circuit at terminals *a-b*.



Figure 10.86 For Prob. 10.44.

- 10.45 Repeat Prob. 10.1 using Thevenin's theorem.
- **10.46** Find the Thevenin equivalent of the circuit in Fig. 10.87 as seen from:



b (b) terminals c-d



Figure 10.87 For Prob. 10.46.

- 10.47 Solve Prob. 10.3 using Thevenin's theorem.
- **10.48** Using Thevenin's theorem, find  $v_o$  in the circuit in Fig. 10.88.



Figure 10.88 For Prob. 10.48.

**10.49** Obtain the Norton equivalent of the circuit depicted in Fig. 10.89 at terminals *a-b*.









Figure 10.90 For Prob. 10.50.

**10.51** Compute  $i_o$  in Fig. 10.91 using Norton's theorem.



Figure 10.91 For Prob. 10.51.

**10.52** At terminals *a-b*, obtain Thevenin and Norton equivalent circuits for the network depicted in Fig. 10.92. Take  $\omega = 10$  rad/s.



Figure 10.92 For Prob. 10.52.

#### Section 10.7 Op Amp AC Circuits

**10.53** For the differentiator shown in Fig. 10.93, obtain  $\mathbf{V}_o/\mathbf{V}_s$ . Find  $v_o(t)$  when  $v_s(t) = V_m \sin \omega t$  and  $\omega = 1/RC$ .





**10.54** The circuit in Fig. 10.94 is an integrator with a feedback resistor. Calculate  $v_o(t)$  if  $v_s = 2\cos 4 \times 10^4 t$  V.



Figure 10.94 For Prob. 10.54.

**10.55** Compute  $i_o(t)$  in the op amp circuit in Fig. 10.95 if  $v_s = 4 \cos 10^4 t$  V.











**10.57** Evaluate the voltage gain  $\mathbf{A}_v = \mathbf{V}_o/\mathbf{V}_s$  in the op amp circuit of Fig. 10.97. Find  $\mathbf{A}_v$  at  $\omega = 0$ ,  $\omega \to \infty$ ,  $\omega = 1/R_1C_1$ , and  $\omega = 1/R_2C_2$ .







10.59

In the op amp circuit of Fig. 10.98, find the closed-loop gain and phase shift if  $C_1 = C_2 = 1$  nF,  $R_1 = R_2 = 100 \text{ k}\Omega$ ,  $R_3 = 20 \text{ k}\Omega$ ,  $R_4 = 40 \text{ k}\Omega$ , and  $\omega = 2000 \text{ rad/s}$ .



Figure 10.98 For Prob. 10.58.

circuit of Fig. 10.99.

**10.61** For the op amp circuit in Fig. 10.101, obtain  $v_o(t)$ .



Figure 10.101 For Prob. 10.61.

**10.62** Obtain  $v_o(t)$  for the op amp circuit in Fig. 10.102 if  $v_s = 4\cos(1000t - 60^\circ)$  V.



Compute the closed-loop gain  $\mathbf{V}_o/\mathbf{V}_s$  for the op amp



**10.60** Determine  $v_o(t)$  in the op amp circuit in Fig. 10.100 below.





## Section 10.8 AC Analysis Using PSpice

- 10.63 Use *PSpice* to solve Example 10.10.
- 10.64 Solve Prob. 10.13 using *PSpice*.



**10.65** Obtain  $\mathbf{V}_o$  in the circuit of Fig. 10.103 using *PSpice*.



Figure 10.103 For Prob. 10.65.

**10.66** Use *PSpice* to find  $\mathbf{V}_1$ ,  $\mathbf{V}_2$ , and  $\mathbf{V}_3$  in the network of Fig. 10.104.



Figure 10.104 For Prob. 10.66.

**10.67** Determine  $V_1$ ,  $V_2$ , and  $V_3$  in the circuit of Fig. 10.105 using *PSpice*.





**10.68** Use *PSpice* to find  $v_o$  and  $i_o$  in the circuit of Fig. 10.106 below.

#### Section 10.9 Applications

**10.69** The op amp circuit in Fig. 10.107 is called an *inductance simulator*. Show that the input impedance is given by

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}_{\text{in}}}{\mathbf{I}_{\text{in}}} = j\omega L_{\text{eq}}$$

where

$$L_{\rm eq} = \frac{R_1 R_3 R_4}{R_2} C$$





**10.70** Figure 10.108 shows a Wien-bridge network. Show that the frequency at which the phase shift between the input and output signals is zero is  $f = \frac{1}{2}\pi RC$ , and that the necessary gain is  $\mathbf{A}_v = \mathbf{V}_o/\mathbf{V}_i = 3$  at that frequency.



Figure 10.108 For Prob. 10.70.

10.71 Consider the oscillator in Fig. 10.109.(a) Determine the oscillation frequency.







- **10.72** The oscillator circuit in Fig. 10.110 uses an ideal op amp.
  - (a) Calculate the minimum value of  $R_o$  that will cause oscillation to occur.
  - (b) Find the frequency of oscillation.





**10.73** Figure 10.111 shows a *Colpitts oscillator*. Show that the oscillation frequency is

$$f_o = \frac{1}{2\pi\sqrt{LC_T}}$$

where  $C_T = C_1 C_2 / (C_1 + C_2)$ . Assume  $R_i \gg X_{C_2}$ .



Figure [0.]] A Colpitts oscillator; for Prob. 10.73.

(*Hint:* Set the imaginary part of the impedance in the feedback circuit equal to zero.)

- **10.74** Design a Colpitts oscillator that will operate at 50 kHz.
- **10.75** Figure 10.112 shows a *Hartley oscillator*. Show that the frequency of oscillation is

$$f_o = \frac{1}{2\pi\sqrt{C(L_1 + L_2)}}$$



Figure 10.112 A Hartley oscillator; for Prob. 10.75.

10.76 Refer to the oscillator in Fig. 10.113.(a) Show that

$$\frac{\mathbf{V}_2}{\mathbf{V}_o} = \frac{1}{3 + j\left(\omega L/R - R/\omega L\right)}$$

- (b) Determine the oscillation frequency  $f_o$ .
- (c) Obtain the relationship between  $R_1$  and  $R_2$  in order for oscillation to occur.



Figure 10.113 For Prob. 10.76.