Maple User Manual

Copyright © Maplesoft, a division of Waterloo Maple Inc. 1996-2010

Maple User Manual

Copyright

Maplesoft, Maple, MapleSim, Maple Application Center, Maple Student Center, Maplet, Maple T.A., and MapleNet are all trademarks of Waterloo Maple Inc.
© Maplesoft, a division of Waterloo Maple Inc. 1996-2010. All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means - electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Java and all Java based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Maplesoft is independent of Sun Microsystems, Inc.

MATLAB is a registered trademark of The MathWorks, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
NAG is a registered trademark of The Numerical Algorithms Group Ltd.
All other trademarks are the property of their respective owners.
This document was produced using a special version of Maple and DocBook.
Printed in Canada
ISBN 978-1-897310-89-2

Contents

Preface xiii
1 Getting Started 1
1.1 Introduction to Maple 2
Working in Maple 2
Starting the Standard Document Interface 3
Entering 2-D Math 5
Toolbar Options 9
Context Menus and Copy \& Drag 12
Saving a Maple Document 19
1.2 Entering Expressions 19
Execution Groups 19
Math Mode vs. Text Mode 20
Palettes 22
Symbol Names 29
Toolbar Icons 31
1.3 Point-and-Click Interaction 32
Assistants 32
Tutors 37
Context Menus 39
Task Templates 41
Exploration Assistant 43
1.4 Commands 45
The Maple Library 45
Entering Commands 46
Document Blocks 51
1.5 The Maple Help System 54
Accessing the Help System 54
Using the Help Navigator 56
Viewing Help Pages as Documents 57
Viewing Examples in 2-D Math 57
Copying Examples 57
1.6 Available Resources 58
Resources Available through the Maple Help System 58
Maple Tour and Quick Resources 59
Web Site Resources 60
2 Document Mode 63
2.1 In This Chapter 63
2.2 Introduction 63
2.3 Entering Expressions 64
Example 1 - Enter a Partial Derivative 65
Example 2 - Define a Mathematical Function 66
2.4 Evaluating Expressions 67
2.5 Editing Expressions and Updating Output 68
2.6 Performing Computations 69
Computing with Palettes 69
Context Menus 70
Assistants and Tutors 76
3 Worksheet Mode 79
3.1 In This Chapter 79
3.2 Input Prompt 80
Suppressing Output 81
1-D Math Input 81
Input Separators 82
3.3 Commands 82
The Maple Library 82
Top-Level Commands 83
Package Commands 84
3.4 Palettes 87
3.5 Context Menus 89
Example 1 - Using Context Menus 90
3.6 Assistants and Tutors 91
Launching an Assistant or Tutor 91
3.7 Task Templates 91
3.8 Text Regions 93
3.9 Names 94
Assigning to Names 94
Unassigning Names 95
Valid Names 96
3.10 Equation Labels 97
Displaying Equation Labels 97
Referring to a Previous Result 97
Execution Groups with Multiple Outputs 99
Label Numbering Schemes 99
Features of Equation Labels 100
4 Basic Computations 101
4.1 In This Chapter 101
4.2 Symbolic and Numeric Computation 102
Exact Computations 103
Floating-Point Computations 103
Converting Exact Quantities to Floating-Point Values 104
Sources of Error 105
4.3 Integer Operations 106
Non-Base 10 Numbers and Other Number Systems 108
4.4 Solving Equations 111
Solving Equations and Inequations 112
Other Specialized Solvers 121
4.5 Units, Scientific Constants, and Uncertainty 128
Units 128
Scientific Constants and Element Properties 134
Uncertainty Propagation 139
4.6 Restricting the Domain 143
Real Number Domain 143
Assumptions on Variables 144
5 Mathematical Problem Solving 149
5.1 In This Chapter 149
5.2 Algebra 150
Polynomial Algebra 150
5.3 Linear Algebra 159
Creating Matrices and Vectors 159
Accessing Entries in Matrices and Vectors 166
Linear Algebra Computations 168
Student LinearAlgebra Package 174
5.4 Calculus 175
Limits 175
Differentiation 177
Series 182
Integration 183
Differential Equations 186
Calculus Packages 186
5.5 Optimization 188
Point-and-Click Interface 188
Large Optimization Problems 191
MPS(X) File Support 192
Optimization Package Commands 192
5.6 Statistics 193
Probability Distributions and Random Variables 193
Statistical Computations 194
Plotting 195
Additional Information 198
5.7 Teaching and Learning with Maple 198
Student Packages and Tutors 199
Calculus Problem Solving Examples 206
5.8 Clickable Math Examples 213
Example 1 - Graph a Function and its Derivatives 213
Example 2 - Solve for x in a Quadratic Equation 218
Example 3 - Solve a Quadratic Trig Equation 223
Example 4 - Find the Inverse Function 226
Example 5 - Methods of Integration - Trig Substitution 230
Example 6 - Initial Value Problem 233
6 Plots and Animations 237
6.1 In This Chapter 237
6.2 Creating Plots 238
Interactive Plot Builder 238
Context Menu 246
Dragging to a Plot Region 249
The plot and plot3d Commands 249
The plots Package 257
Multiple Plots in the Same Plot Region 262
6.3 Customizing Plots 264
Interactive Plot Builder Options 264
Context Menu Options 264
The plot and plot3d Options 267
6.4 Analyzing Plots 269
Point Probe, Rotate, Pan, and Zoom Tools 269
6.5 Creating Animations 270
Interactive Plot Builder 270
The plots[animate] Command 271
The plot3d[viewpoint] Command 273
6.6 Playing Animations 275
Animation Context Bar 275
6.7 Customizing Animations 276
Interactive Plot Builder Animation Options 276
Context Menu Options 277
The animate Command Options 277
6.8 Exporting 279
6.9 Code for Color Plates 279
7 Creating Mathematical Documents 281
7.1 In This Chapter 281
7.2 Document Formatting 283
Copy and Paste 283
Quick Character Formatting 284
Quick Paragraph Formatting 286
Character and Paragraph Styles 288
Sections 295
Headers and Footers 297
Show or Hide Worksheet Content 298
Indentation and the Tab Key 299
7.3 Commands in Documents 300
Document Blocks 300
Typesetting 303
Auto-Execute 304
7.4 Tables 306
Creating a Table 306
Cell Contents 306
Navigating Table Cells 307
Modifying the Structural Layout of a Table 307
Modifying the Physical Dimensions of a Table 310
Modifying the Appearance of a Table 310
Printing Options 315
Execution Order Dependency 315
Tables and the Classic Worksheet 315
Additional Examples 316
7.5 Canvas 318
Insert a Canvas 319
Drawing 320
Canvas Style 321
Inserting Images 322
7.6 Hyperlinks 323
Inserting a Hyperlink in a Document 324
Bookmarks 327
7.7 Embedded Components 329
Adding Graphical Interface Components 329
Task Template with Embedded Components 331
7.8 Spell Checking 332
How to Use the Spellcheck Utility 332
Selecting a Suggestion 333
User Dictionary 333
7.9 Creating Graded Assignments 334
Creating a Question 334
Viewing Questions in Maple 334
Saving Test Content 335
7.10 Worksheet Compatibility 335
8 Maple Expressions 337
8.1 In This Chapter 337
8.2 Creating and Using Data Structures 337
Expression Sequences 338
Sets 338
Lists 339
Arrays 340
Tables 342
Matrices and Vectors 343
Functional Operators 343
Strings 347
8.3 Working with Maple Expressions 348
Low-Level Operations 348
Manipulating Expressions 353
Evaluating Expressions 359
9 Basic Programming 369
9.1 In This Chapter 369
9.2 Flow Control 370
Conditional Execution (if Statement) 370
Repetition (for Statement) 373
9.3 Iterative Commands 380
Creating a Sequence 380
Adding and Multiplying Expressions 381
Selecting Expression Operands 381
Mapping a Command over a Set or List 382
Mapping a Binary Command over Two Lists or Vectors 383
Additional Information 383
9.4 Procedures 383
Defining and Running Simple Procedures 383
Procedures with Inputs 384
Procedure Return Values 385
Displaying Procedure Definitions 385
Displaying Maple Library Procedure Definitions 385
Modules 386
9.5 Programming in Documents 387
Code Edit Region 387
Startup Code 388
Document Blocks 388
10 Embedded Components and Maplets 389
10.1 In This Chapter 389
10.2 Using Embedded Components 389
Interacting 389
Printing and Exporting a Document with Embedded Components 392
10.3 Creating Embedded Components 393
Inserting Components 393
Editing Component Properties: General Process 393
Removing Graphical Interface Components 394
Integrating Components into a Document 394
Example 2 - Creating Embedded Components 396
10.4 Using Maplets 400
Maplet File 400
Maple Document 401
10.5 Authoring Maplets 402
Simple Maplet 402
Maplet Builder 403
Maplets Package 407
Saving 409
11 Input, Output, and Interacting with Other Products 411
11.1 In This Chapter 411
11.2 Writing to Files 411
Saving Data to a File 411
Saving Expressions to a File 412
11.3 Reading from Files 414
Reading Data from a File 414
Reading Expressions from a File 415
11.4 Exporting to Other Formats 416
Exporting Documents 416
MapleNet 419
Maple T.A. 419
11.5 Connectivity 420
Translating Maple Code To Other Programming Languages 420
Accessing External Products from Maple 420
Accessing Maple from External Products 421
Sharing and Storing Maple Worksheet Content 423
Index 425

List of Tables

Table 1.1: Common Keystrokes for Entering Symbols and Formats 7
Table 1.2: Maple Toolbar Options 9
Table 1.3: Tab Icon Description 10
Table 1.4: Toolbar Icons and their Tools 10
Table 1.5: Toolbar Icon Availability 11
Table 1.6: Math Mode vs. Text Mode 21
Table 1.7: Palette Categories 23
Table 1.8: Managing Palettes 25
Table 1.9: Help Page Icons 56
Table 3.1: Top Commands 84
Table 3.2: Top Packages 86
Table 4.1: Select Integer Commands 107
Table 4.2: Modular Arithmetic Operators 110
Table 4.3: Overview of Solution Methods for Important Equation Types 111
Table 4.4: Sample Dimensions 129
Table 4.5: Scientific Constants 135
Table 5.1: Polynomial Arithmetic Operators 151
Table 5.2: Polynomial Coefficient and Degree Commands 156
Table 5.3: Select Other Polynomial Commands 157
Table 5.4: Additional Polynomial Help 158
Table 5.5: Matrix and Vector Arithmetic Operators 169
Table 5.6: Select Matrix and Vector Operators 171
Table 5.7: Select LinearAlgebra Package Commands 173
Table 5.8: Limits 176
Table 5.9: Optimization Package Commands 192
Table 5.10: Student and Instructor Resources 198
Table 6.1: Windows of the Interactive Plot Builder 239
Table 6.2: The plot and plot3d Commands 250
Table 6.3: Common Plot Options 267
Table 6.4: Plot Analysis Options 269
Table 6.5: The animate Command 271
Table 5.6: Animation Options 275
Table 9.1: Default Clause Values 374
Table 9.2: Iterative Commands 380
Table 9.3: The seq Command 380
Table 9.4: The add and mul Commands 381
Table 9.5: The select, remove, and selectremove Commands 382
Table 9.6: The map Command 382
Table 9.7: The zip Command 383
Table 10.1: Embedded Component Descriptions 389
Table 11.1: Summary of Content Translation When Exporting to Different Formats 418

Preface

Maple Software

Maple ${ }^{\text {TM }}$ software is a powerful system that you can use to solve mathematical problems from simple to complex. You can also create professional quality documents, presentations, and custom interactive computational tools in the Maple environment.

You can access the power of the Maple computational engine through a variety of interfaces.

Interface	Description
Standard (default)	A full-featured graphical user interface that helps you create electronic documents to show all your calculations, assumptions, and any margin of error in your results. You can also hide the computations to allow your reader to focus on the problem setup and final results. The advanced formatting features lets you create the customized document you need. Because the documents are live, you can edit the parameters and, with the click of a button, compute the new results. The Standard interface has two modes: Document mode and Worksheet mode. An interactive version of this manual is available in the Standard Work- sheet interface. From the Help menu, select Manuals, Resources, and more \rightarrow Manuals \rightarrow User Manual.
Classic	A basic worksheet environment for older computers with limited memory. The Classic interface does not offer all of the graphical user interface features that are available in the Standard interface. The Classic interface has only one mode, Worksheet mode.
Command-line version	A command-line interface for solving very large complex problems or batch processing with scripts. No graphical user interface features are available.
Maplet ${ }^{\mathrm{TM}}$ Applications	Graphical user interfaces containing windows, textbox regions, and other visual interfaces, which gives you point-and-click access to the power of Maple. You can perform calculations and plot functions without using the worksheet.
Maplesoft Calculator	Graphing A graphical calculator interface to the Maple computational engine. Using it, you can perform simple computations and create customizable, zoomable graphs. This is available on Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ only.

This manual describes how to use the Standard interface. As mentioned, the Standard interface offers two modes: Document mode and Worksheet mode. Using either mode, you can
create high quality interactive mathematical documents. Each mode offers the same features and functionality, the only difference is the default input region of each mode.

Shortcut Keys by Platform

This manual will frequently refer to context menus and command completion when entering expressions. The keyboard keys used to invoke these features differ based on your operating system.

This manual will only refer to the keyboard keys needed for a Windows operating system. The shortcut keys for your operating system can be viewed from the Help menu (Help \rightarrow Manuals, Resources, and more \rightarrow Shortcut Keys).

Context Menus

- Right-click, Windows and UNIX ${ }^{\circledR}$
- Control-click, Macintosh ${ }^{\circledR}$

That is, place the mouse over the input or output region and press the right button on the mouse or press and hold the Control key and click the mouse key for Macintosh.

For more information on Context Menus, see Context Menus (page 39).

Command Completion

- Esc, Macintosh, Windows, and UNIX
- Ctrl + Space, Windows
- Ctrl + Shift + Space, UNIX

Begin entering a command in a Maple document. Press the Esc key. Alternatively, use the platform-specific keys. For Windows, press and hold the Ctrl key and then press the Space bar.

For more information on Command Completion, see Command Completion (page 48).

In This Manual

This manual provides an introduction to the following Maple features:

- Ease-of-use when entering and solving problems
- Point-and-click interaction with various interfaces to help you solve problems quickly
- Maple commands and standard math notation
- Clickable Calculus
- The help system
- Online resources
- Performing computations
- Creating plots and animations
- The Maple programming language
- Using and creating custom Maplet applications
- File input and output, and using Maple with third party products
- Data structures

For a complete list of manuals, study guides, toolboxes, and other resources, visit the Maplesoft web site at http://www.maplesoft.com

Audience

The information in this manual is intended for first-time Maple users and users looking for a little more information.

Conventions

This manual uses the following typographical conventions.

- bold font - Maple command, package name, option name, dialog, menu, or text field
- italics - new or important concept
- Note - additional information relevant to the section
- Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related to this and other manuals, contact doc@maplesoft.com.

1 Getting Started

Don't worry about your difficulties in Mathematics. I can assure you mine are still greater.
~Albert Einstein
Mathematics touches us every day-from the simple chore of calculating the total cost of our purchases to the complex calculations used to construct the bridges we travel.

To harness the power of mathematics, Maplesoft provides a tool in an accessible and complete form. That tool is Maple.

In this chapter:

Section	Topics
Introduction to Maple (page 2) - The main features of Maple's Standard Interface	- Starting the Standard Document Interface - Entering commands and mathematical expressions - Toolbars - Context menus - Copy and drag keys - Saving Maple documents
Entering Expressions (page 19) - Methods of entering expressions in 1-D and 2-D Math	- Execution groups - Math Mode and Text Mode - Palettes - Symbol names - Toolbar icons
Point-and-Click Interaction (page 32) - An introduction to the point-and-click features in Maple	- Assistants - Tutors - Context menus - Task templates - Exploration Assistant
Commands (page 45) - An introduction to the commands of the Maple language	- Using commands from the Maple library - Entering commands - Document blocks

Section	Topics
The Maple Help System (page 54) - Accessing help on commands, packages, point-and-click features, and more	- How to access help for Maple features - Interacting with help pages - Viewing and interacting with examples
Available Resources (page 58) - Both online and from within Maple	- New user resources, including the Maple Tour and the Maple Portal - Examples - Online help - Maple web site resources

1.1 Introduction to Maple

Working in Maple

With Maple, you can create powerful interactive documents. The Maple environment lets you start solving problems right away by entering expressions in 2-D Math and solving these expressions using point-and-click interfaces. You can combine text and math in the same line, add tables to organize the content of your work, or insert images, sketch regions, and spreadsheets. You can visualize and animate problems in two and three dimensions, format text for academic papers or books, and insert hyperlinks to other Maple files, web sites, or email addresses. You can embed and program graphical user interface components, as well as devise custom solutions using the Maple programming language.

Figure 1.1: The Maple Environment

Starting the Standard Document Interface

To start Maple on:

Windows	From the Start menu, select All Programs \rightarrow Maple $14 \rightarrow$ Maple 14. Alternatively: Double-click the Maple 14 desktop icon.
Macintosh	1. From the Finder, select Applications and Maple 14. 2. Double-click Maple 14.

UNIX	Enter the full path, for example, /usr/local/maple/bin/xmaple
Alternatively:	
	1. Add the Maple directory (for example, /usr/local/maple/bin) to your command search path. 2. Enter $\mathbf{x m a p l e}$.

The first Maple session opens with a Startup dialog explaining the difference between Document Mode and Worksheet Mode. Using either mode, you can create high quality interactive mathematical documents. Each mode offers the same features and functionality; the only difference is the default input region of each mode.

Document Mode

Document mode uses Document Blocks as the default input region to hide Maple syntax. A Document Block region is indicated by two triangles located in the vertical Markers column along the left pane of the Maple Document, ΔL. If the Markers column is not visible, open the View menu and select Markers. This allows you to focus on the problem instead of the commands used to solve the problem. For example, when using context menus on Maple input in Document mode (invoked by right-clicking or Control-clicking for Macintosh), input and output are connected using an arrow or equal sign with self-documenting text indicating the calculation that had taken place. The command used to solve this expression is hidden.

$$
\Delta x^{2}+7 x+10 \xrightarrow{\text { solve }}\{x=-2\},\{x=-5\}
$$

When starting Standard Maple, the default mode is Document mode.

Worksheet Mode

Worksheet mode uses a Maple prompt as the default input region. The Maple input prompt is a red angle bracket, $[>$. When using content menus on input in Worksheet mode, all commands are displayed.

$$
\begin{aligned}
& {\left[>x^{2}+7 x+10\right.} \\
& >\operatorname{solve}\left(\left\{x^{\wedge} 2+7^{*} x+10=0\right\}\right) \\
& \{x=-2\},\{x=-5\}
\end{aligned}
$$

To work in Worksheet mode, select File \rightarrow New \rightarrow Worksheet Mode.

Document and Worksheet Modes

Regardless of which mode you are working in, you have the opportunity to show or hide your calculations. You can hide commands in Worksheet Mode by adding a document block from the Format menu, Format \rightarrow Create Document Block (see Document Blocks (page 51)), or you can show commands in Document mode by adding a Maple prompt from the Insert menu, Insert \rightarrow Execution Group \rightarrow Before / After Cursor (see Input Prompt (page 80)).

This chapter discusses features common to both modes. Specific aspects of Document mode are explained in Document Mode (page 63), and aspects of Worksheet mode are explained in Worksheet Mode (page 79).

The Startup dialog also contains links to items, such as various document options, help resources including updates and other introductory help pages, and application resources on the Maplesoft web site. Subsequent sessions display Tip of the Day information.

To start a Maple session:

1. In the Startup dialog, select Blank Document or Blank Worksheet. A blank document displays.
or
2. Close the Startup dialog.
3. From the File menu, select New, and then either Document Mode or Worksheet Mode. A blank document displays.

Every time you open a document, Maple displays a Quick Help pop-up list of important shortcut keys. To invoke Quick Help at any time, press the F1 key.

Entering 2-D Math

In Maple, the default format for entering mathematical expressions is 2-D Math. This results in mathematical expressions that are equivalent to the quality of math found in textbooks. Entering 2-D Math in Maple is done using common key strokes or palette items. For more information on palettes, see Palettes (page 22). An example of entering an expression using common key strokes is presented in the following section. An example of entering an expression using palette items is presented in Example 3 - Enter an Expression Using Palettes (page 27).

Common Operations

Entering mathematical expressions, such as $\frac{35}{99}+\frac{1}{9}, x^{2}+x$, and $x \cdot y$ is natural in 2-
D Math.
To enter a fraction:

1. Enter the numerator.
2. Press the forward slash (/) key.
3. Enter the denominator.
4. To leave the denominator, press the right arrow key.

To enter a power:

1. Enter the base.
2. Press the caret $\left(^{\wedge}\right)$ key.
3. Enter the exponent, which displays in math as a superscript.
4. To leave the exponent, press the right arrow key.

To enter a product:

1. Enter the first factor.
2. Press the asterisk (*) key, which displays in 2-D Math as a dot, •
3. Enter the second factor.

Implied Multiplication:
In most cases, you do not need to include the multiplication operator, • . Insert a space character between two quantities to multiply them.

Note: In some cases, you do not need to enter the multiplication operator or a space character. For example, Maple interprets a number followed by a variable as multiplication.

Important: Maple interprets a sequence of letters, for example, $x y$, as a single variable. To specify the product of two variables, you must insert a space character (or multiplication
operator), for example, $x y$ or $x \cdot y$. For more information, refer to the ?2DMathDetails help page.

Shortcuts for Entering Mathematical Expressions

Table 1.1: Common Keystrokes for Entering Symbols and Formats

Symbol/Formats	Key	Example
implicit multiplication	Space key	$\left(x^{2}-7 x y+3 y^{2}\right) x y$
explicit multiplication ${ }^{1}$	* (asterisk)	$2 \cdot 3$
fraction ${ }^{2}$	/ (forward slash)	$\frac{1}{4}$
exponent (superscript) ${ }^{2}$	${ }^{\wedge}$ (Shift + 6 or caret key)	x^{2}
subscript ${ }^{2}$	_ (Shift + underscore)	x_{a}
navigating expressions	Arrow keys	
command / symbol completion ${ }^{3}$	- Esc, Macintosh,Windows, and UNIX - Ctrl + Space, Windows - Ctrl + Shift + Space, UNIX	$a b$
square root	sqrt and then command completion	$\sqrt{25}$
exponential function ${ }^{2}$	exp and then command completion	e^{x}
enter / exit 2-D Math	F5 key Math and Text icons in the toolbar	$\frac{1}{4}$ versus $\quad 1 / 4$
${ }^{1}$ required for products of numbers		
2 use the right arrow key ${ }^{3}$ for more information,	to leave a denominator, superscri see Command Completion (page	pt, or subscript region 8).

For a complete list of shortcut keys, refer to the 2-D Math Shortcut Keys and Hints help page. To access this help page in the Maple software, in Math mode enter ?MathShortcuts
and then press Enter. For information on the Maple Help System, see The Maple Help System (page 54).

Example 1 - Enter and Evaluate an Expression Using Keystrokes

Review the following example:

$$
\frac{x^{2}+y^{2}}{2}
$$

In this example, you will enter $\frac{x^{2}+y^{2}}{2}$ and evaluate the expression.

Action	Result in Document
To enter the expression: 1. Enter \mathbf{x}.	x
2. Press Shift + $\mathbf{6}$ (the ${ }^{\wedge}$ or caret key). The cursor moves to the superscript position.	x
3. Enter 2.	x^{2}
4. Press the right arrow key. The cursor moves right and out of the superscript position.	x^{2}
5. Enter the + symbol.	$x^{2}+1$
6. Enter \mathbf{y}.	$x^{2}+y$
7. Press Shift +6 to move to the superscript position.	$x^{2}+3$
8. Enter $\mathbf{2}$ and press the right arrow key.	$x^{2}+y^{2}$
9. With the mouse, select the expression that will be the numerator of the fraction.	$x^{2}+y^{2}$
10. Enter the / symbol. The cursor moves to the denominator, with the entire expression in the numerator.	$\frac{x^{2}+y^{2}}{1}$
11. Enter 2.	$\frac{x^{2}+y^{2}}{2}$

Action	Result in Document
12. Press the right arrow key to move right and out of the denominator position.	$\frac{x^{2}+y^{2}}{2}$
To evaluate the expression and display the result inline: 13. Press Ctrl $+=($ Command $+=$, Macintosh $)$.	$\frac{x^{2}+y^{2}}{2}=$
	$\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$

To execute 2-D Math, you can use any of the following methods.

- Pressing Ctrl $+=(\mathbf{C o m m a n d}+=$, for Macintosh). That is, press and hold the $\mathbf{C t r l}$ (or Command) key, and then press the equal sign (=) key. This evaluates and displays results inline.
- Pressing the Enter key. This evaluates and displays results on the next line and centered.
- Right-click (Control-click for Macintosh) the input to invoke a context menu item. From the context menu, select Evaluate and Display Inline. See Context Menus (page 39) for more details.
- Using the context-menu item Evaluate.

Toolbar Options

The Maple toolbar offers several buttons to assist you when interacting with Maple. See Table 1.2.

Table 1.2: Maple Toolbar Options

Basic Usage	Icon	Equivalent Menu Option or Command
Inserts plain text after the current execution group.	T	From the Insert menu, select Text.
Inserts Maple Input after the current execution group. For details, refer to Execution Groups (page 19).	[>	From the Insert menu, select Execution Group and then After Cursor.
Encloses the selection in a subsection. For details, refer to Sections (page 295).	可	From the Format menu, select Indent.
Removes any section enclosing the selection.	唯	From the Format menu, select Outdent.
Executes all commands in the worksheet or document	!!!	From the Edit menu, select Execute and then Worksheet.

Basic Usage	Icon	Equivalent Menu Option or Command
Executes a selected area．	！	From the Edit menu，select Execute and then Selection．
Clears Maple＇s internal memory．For de－ tails，refer to the ？restart help page．	\＃	Enter restart．
Add and edit Maple code that is executed each time the worksheet is opened．For details，refer to the ？startupcode help page．	0	From the Edit menu，select Startup Code．
Adjusts the display size of document content．Note：plots，spreadsheets，im－ ages，and sketches remain unchanged．	國気的	From the View menu，select Zoom Factor and then a zoom size．
Opens the Maple help system．For details， refer to The Maple Help Sys－ tem（page 54）．	等	From the Help menu，select Maple Help．

For 1－D Math and text regions，the Tab icon in the toolbar allows you to set the Tab key to move between placeholders（or cells in a table）or to indent text．

Table 1．3：Tab Icon Description

Tab Icon	Description
\vec{n}	Tab icon off．Allows you to move between placeholders using the Tab key．
Text	Tab icon on．Allows you to indent in the worksheet using the Tab key．
Math	The Tab icon is disabled when using 2－D Math（Math mode），and as such，the Tab key allows you to move between placeholders．

Toolbar icons are controlled by the location of the cursor in the document．For example， place the cursor at an input region and the Text and Math icons are accessible while the others are dimmed．See Table 1.4 for a list of the tools available in each icon．

Table 1．4：Toolbar Icons and their Tools

Table 1.5: Toolbar Icon Availability

Region	Available Tools
Input region	Text and Math icons
Plot region	Drawing and Plot icons
Animation region	Drawing, Plot, and Animation icons
Canvas and Image regions	Drawing icon

The Text and Math icons allow you to enter text and math in the same line by choosing the appropriate input style at each stage when entering the sentence.

The derivative of $\sin (x)$ is $\cos (x)$.
For an example, see Example 6 - Enter Text and 2-D Math in the Same Line (page 31).
Using the tools available in these icons, you can customize the input style of the text and 2-D Math. For the Text and Math icons, the icon that is selected remains in that state until prompted otherwise; therefore, if the Text icon is selected and you press the Enter key, the new input region remains a Text region.

The Text and Math icons differ while at a Maple input prompt. The Math icon displays input as 2-D Math, whereas the Text icon displays Maple input. For details, refer to Math Mode vs. Text Mode (page 20).

$$
>\frac{x^{2}}{2}
$$

$>x^{\wedge} 2 / 2$;

To access the tools available in the Plot and Drawing icons, click a plot region. These tools allow you to manipulate the plot or draw shapes and enter text on the plot region. By clicking an animation region, you have the same features available for a plot region, in addition to tools for playing the animation in the Animation icon. For details on plots and animations, refer to Plots and Animations (page 237).

For the remaining icons, hover the mouse over the icon to display the icon description.

Context Menus and Copy \& Drag

Context Menus

Maple dynamically generates a context menu of applicable options when you right-click an object, expression, or region. The options available in the context menu depend on the selected input region. For example, you can manipulate and graph expressions, enhance plots, format text, manage palettes, structure tables, and more. When using context menus to perform an action on an expression, the input and output are connected with a self-documenting arrow or equal sign indicating the action that had taken place. For more information, see Context Menus (page 39).

Copy \& Drag

With Maple, you can drag input, output, or curves in a plot region into a new input region. This is done by highlighting the input or selecting the curve and dragging it with your mouse into a new input region. Dragging the highlighted region will cut or delete the original input. To prevent this, use the copy and drag feature.

- Ctrl + drag, Windows and UNIX
- Command + drag, Macintosh

That is, highlight the region you want to copy. Press and hold the Ctrl key while you drag the input to the new region using the mouse. The steps are the same for Macintosh with the exception of pressing the Command key.

Example 2 - Solve and Plot an Equation Using Context Menus and Copy \& Drag

Review the following example:

$$
5 x-7=3 x+2
$$

In this example, we will enter the equation and then solve and plot the equation using context menus and Maple's copy \& drag feature. This example will only refer to the keystrokes needed on a Windows operating system to invoke the context menus and the copy \& drag feature. For your operating system, refer to section Shortcut Keys by Platform (page xiv) for the equivalent keystrokes.

To solve the equation:

1. Enter the equation.
2. Right-click the equation and select Move to Left.

Input:

Result:

$$
5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0
$$

A brief description, "move to left" is displayed above the arrow that connects the input and output.
3. Right-click the output from the previous action, $2 x-9=0$, and select Solve \rightarrow Isolate Expression for $\rightarrow \mathbf{x}$.

Input:

$5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0$

Result:

$$
5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0 \quad \text { isolate for } \mathrm{x} \quad x=\frac{9}{2}
$$

Now that we have solved the equation, we can plot it. To do this, we will copy the equation $2 x-9=0$ to a new document block and use context menus again.
4. From the Format menu, select Create Document Block.
5. To copy the expression $2 x-9=0$, highlight only this expression from the previous result. Press and hold the Curl key and drag the expression to the new document block region.

Result:

$$
\begin{aligned}
& 5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0 \xrightarrow{\text { isolate for } \mathrm{x}} x=\frac{9}{2} \\
& 5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0 \xrightarrow{\text { isolate for } \mathrm{x}} x=\frac{9}{2} \\
& 5 x-7=3 x+2 \xrightarrow{\text { move to left }} 2 x-9=0 \xrightarrow{\text { isolate for } \mathrm{x}} x=\frac{9}{2} \\
& 2 x-9=0
\end{aligned}
$$

To plot the expression:

6. Right-click the equation, and select Left-hand Side.

Input:

Result:

$$
2 x-9=0 \xrightarrow{\text { left hand side }} 2 x-9
$$

7. Right-click the expression and select Plots \rightarrow 2-D Plot.

Input:

Result:

Saving a Maple Document

To save these examples you created, from the File menu, select Save. Maple documents are saved as .mw files.

1.2 Entering Expressions

Execution Groups

An execution group is a grouping of Maple input with its corresponding Maple output. It is distinguished by a large square bracket, called a group boundary, at the left. An execution group may also contain any or all of the following: a plot, a spreadsheet, text, embedded components, and a drawing canvas.

Execution groups are the fundamental computation and documentation elements in the document. If you place the cursor in an input command and press the Enter or Return key, Maple executes all of the input commands in the current execution group.

Math Mode vs. Text Mode

The default mode of entry in Document or Worksheet mode is Math Mode, which displays input in 2-D Math. In earlier releases of Maple, commands and expressions were entered using Maple Input or 1-D Math.

Important: With Maple input, you must terminate commands with a semicolon or colon.

```
> cos(alpha)^2+sin(alpha)^2;
```

$$
\cos (\alpha)^{2}+\sin (\alpha)^{2}
$$

$>a * \operatorname{int}(\exp (\operatorname{sqrt}(2) * x), x)$;

$$
\frac{1}{2} a \sqrt{2} \mathrm{e}^{\sqrt{2} x}
$$

```
> limit(f(x) ,x=infinity);
```

$$
\lim _{x \rightarrow \infty} f(x)
$$

$>\operatorname{sum}\left(a[k] * x^{\wedge} k, k=0 \ldots m\right)=\operatorname{product}\left(b[j] * x^{\wedge} j, j=0 . . n\right) ;$

$$
\sum_{k=0}^{m} a_{k} x^{k}=\prod_{j=0}^{n}\left(b_{j} x^{j}\right)
$$

In Document Mode, to enter input using Maple Input mode, insert a Maple prompt by clicking [> in the toolbar, and then click the Text button in the toolbar. In Worksheet Mode, simply click the Text button. See Figure 1.2.

Figure 1.2: Text and Math buttons on the Toolbar

Table 1.6: Math Mode vs. Text Mode

Math Mode	Text Mode
Maple's default setting. Executable standard math notation. This is also referred to as 2-D Math Input. $\begin{aligned} & >\int x^{2}+2 x+1 d x \\ & \quad \frac{1}{3} x^{3}+x^{2}+x \end{aligned}$	Executable Maple notation. This is also referred to as 1-D Math Input or Maple Input. $\begin{array}{r} >\operatorname{int}\left(\mathbf{x}^{\wedge} 2+2 * \mathbf{x}+1, \mathbf{x}\right) ; \\ \frac{1}{3} x^{3}+x^{2}+x \end{array}$
Access from the Insert \rightarrow 2-D Math menu.	Access from the Insert \rightarrow Maple Input menu.
When using 2-D Math, the Math mode icon is highlighted in the toolbar, Text Math	When entering Maple Input or text in a text region, the Text mode icon is highlighted in the toolbar, Text Math.
In Document Mode (or a document block), input is entered in a document block with a slanted cursor, \square l	In Document Mode (or a document block), input is entered with a vertical cursor, as plain text, Enter some text.
In Worksheet Mode, input is made at an input prompt with a slanted cursor, $[>L$.	In Worksheet Mode, input is made at an input prompt with a vertical cursor, $[>\mid$.
To convert a 2-D Math expression to 1-D Math, right-click the expression (Command-click, Macintosh) and select 2-D Math \rightarrow Convert To \rightarrow 1-D Math Input.	To convert a 1-D Math expression to 2-D Math, right-click the expression (Command-click, Macintosh) and select Convert To \rightarrow 2-D Math Input.
No termination symbol is required.	All input must end with a semi-colon (;) or a colon (:).
Palettes make entering expressions in familiar notation easier than entering foreign syntax and reduces the possibility of introducing typing errors.	Using palettes while in 1-D Math teaches you the related Maple command syntax.
	$\left.\int f \mathrm{~d} x \int_{a}^{b} f \mathrm{~d} x\right][>\operatorname{int}(\mathrm{f}, \mathrm{x}) ;$

If you prefer 1-D Math input, you can change the default math input notation.
To change math input notation for a session or globally across all documents:

1. From the Tools menu, select Options. The Options Dialog opens.
2. Click the Display tab.
3. In the Input Display drop-down list, select Maple Notation.
4. Click the Apply to Session or Apply Globally button.

Important: The new input display becomes the default setting after pressing the Enter key.

Palettes

Palettes are collections of related items that you can insert into a document by clicking or drag-and-dropping. The Maple environment provides access to over 20 palettes containing items such as symbols (∞), layouts $\left(A^{b}\right)$, mathematical operations $\left(\int_{a}^{b} f \mathrm{~d} x\right)$, and much more.

By default, palettes are displayed in the left pane of the Maple environment when you launch Maple. If the palettes are not displayed,

1. From the View menu, select Palettes.
2. Select Expand Docks.
3. Right-click (Control-click, Macintosh) the palette dock. From the context menu, select Show All Palettes.

Alternatively, from the main menu, select View \rightarrow Palettes \rightarrow Arrange Palettes to display specific palettes.

You can create a Favorites palette of the expressions and entities you use often by rightclicking (Control-click, Macintosh) the palette template you want to add and selecting Add To Favorites Palette from the context menu.

Table 1.7: Palette Categories

Palette Category	Palette Description	
Mathematical Palettes	Palettes for constructing expressions	
∇ Common Symbols $\begin{array}{llllll}\pi & \text { e } & \text { i } & j & I & \infty\end{array}$ $\sum \Pi \int \mathrm{d} \cap U$ $\geq>\ngtr \nsupseteq \leq<$ $\nless \not \subset \propto \approx \sim=$ $\neq \equiv \not \equiv \in \notin \subseteq$ $\backslash \varnothing \exists \forall \neg \wedge$ $\vee \underline{\vee} \Rightarrow \mathbb{C} \mathbb{N}$ $\mathbb{Q} \mathbb{Z} \Re \mathfrak{J}:=\\|$ $+-\times / \pm$ 干 ○ * • • ∇	Common Symbols, Relational \geq, Relational Round \geq, Operators \div, Large Operators \oiint, Negated \neq, Fenced $\langle\langle$, Arrows \nrightarrow, Constants and Symbols ∞. Punctuation - insert punctuation symbols, such as inserting the registered trademark and copyright symbols © into text regions Miscellaneous - insert miscellaneous math and other symbols outside the above categories \square	
Alphabetical Palettes Greek	Greek, Script \mathcal{H}, Fraktur \mathfrak{H}, Open Face \mathbb{C}, Cyrillic $Ж$, Diacritical Marks *, Roman Extended Upper Case \nVdash, Roman Ex-	
$\begin{array}{cccccc} A & B & \Gamma & \Delta & \mathrm{E} & \mathrm{Z} \\ \mathrm{H} & \Theta & \mathrm{I} & \mathrm{~K} & \Lambda & \mathrm{M} \\ \mathrm{~N} & \Xi & \mathrm{O} & \Pi & \mathrm{P} & \Sigma \\ \mathrm{~T} & \Upsilon & \mathrm{Y} & \Phi & \mathrm{X} & \Psi \\ \Omega & \alpha & \beta & \gamma & \delta & \epsilon \\ \varepsilon & \zeta & \eta & \theta & \vartheta & \imath \\ \kappa & \chi & \lambda & \mu & v & \xi \\ 0 & \pi & \varpi & \rho & \varrho & \sigma \\ \varsigma & \tau & v & \varphi & \phi & \chi \\ & & \psi & \omega & & \end{array}$	tended Lower Case æ	

Viewing and Arranging Palettes

By default, palettes display in palette docks at the right and left sides of the Maple window.
To view and manage palettes and palette docks, see Table 1.8.

Table 1.8: Managing Palettes

Example 3 - Enter an Expression Using Palettes

Review the following example:
$\sum_{i=1}^{10}\left(7 i^{2}-5 i\right)=2420$
In this example, we will enter $\sum_{i=0}^{10}\left(7 i^{2}-5 i\right)$ and evaluate the expression.

Action	Result in Document
1. Place the cursor in a new document block. In the Ex-	$\sum_{i=k}^{n} f$

Action	Result in Document
2. Enter \mathbf{i} and then press Tab. The left endpoint placeholder is selected. Notice that the color of the range placeholder has changed to black. Each placeholder must have an assigned value before you execute the expression. The Tab key advances you through the placeholders of an inserted palette item.	$\sum_{i=k}^{n} f$
3. Enter $\mathbf{1}$ and then press Tab. The right endpoint placeholder is selected.	$\sum_{i=1}^{n} f$
4. Enter $\mathbf{1 0}$ and then press Tab. The expression placeholder is selected.	$\sum_{i=1}^{10} f$
5. Enter $\left(\mathbf{7} \mathbf{i}^{2} \mathbf{- 5 i}\right)$. For instructions on entering this type of expression, see Example 1 - Enter and Evaluate an Expression (page 8).	$\sum_{i=1}^{10}\left(7 i^{2}-5 i\right)$
6. Press $\mathbf{C t r l}+=(\mathbf{C o m m a n d}+=$ for Macintosh $)$ to evaluate the summation.	$\sum_{i=1}^{10}\left(7 i^{2}-5 i\right)=2420$

Handwriting Palette

The Handwriting palette provides another way to find and insert desired symbols easily.

1. Draw the symbol with your mouse in the space provided.
2. Click the recognize button, $\xrightarrow{\pi} \pi$
available in the system. See Figure 1.3.
3. To view more symbols (where indicated with a box around the result), click the displayed symbol and choose one of the selections from the drop-down menu.
4. To insert a symbol, click the displayed symbol.

Figure 1.3: Handwriting Palette
For more information, refer to the ?handwritingpalette help page.

Symbol Names

Each symbol has a name, and some have aliases. By entering its name (or an alias) in Math mode, you can insert the symbol.

Note: If you hover the mouse pointer over a palette item, a tooltip displays the symbol's name.

To enter a symbol quickly, you can enter the first few characters of its name and then press the completion shortcut key, Esc (see Shortcut Keys by Platform (page xiv)). Symbol completion works in the same way as command completion (see Command Completion (page 48)).

- If a unique symbol name matches the characters entered, Maple inserts the corresponding symbol.
- If multiple symbol names match the characters entered, Maple displays the completion list, which lists all matches, including commands. To select an item, click its name or symbol.

Example 4 - Square Root

To find the square root of 603729 :

Action	Result in Document
1. In a new document block, enter sqrt.	sqrt
2. Press the symbol completion shortcut key, Esc. Maple displays a pop-up list of exact matches.	squrt
3. In the completion list, selectsart symbol with the x placeholder selected.	\sqrt{x}
4. Enter 603729.	$\sqrt{603729}$
5. Press Ctrl $+=($ Command $+=$, Macintosh $)$.	$\sqrt{603729}=777$

Example 5 - Complex Numbers

When you simply type the letter i in Math mode, it is in italics. This letter is just a variable, and is not the same as the imaginary unit $\sqrt{-1}$, denoted by I or i in Maple.

Multiply two complex numbers, $-0.123+0.745 \mathrm{i}$ and $4.2-\mathrm{i}$:

Action	Result in Document
1. In a new document block, enter $(-0.123+0.745 i$.	$(-0.123+0.745]$
2. Press the symbol completion shortcut key, Esc. Maple displays a pop-up list of partial and exact matches, including symbols and commands.	
3. Select the imaginary unit, (imaginary) i.	$(-0.123+0.745$]
4. Close the parentheses, enter a space (for implicit multiplication), and type the second expression in parentheses, using symbol completion for the second imaginary number.	$(-0.123+0.745 i)(4.2-i)$
5. Press $\mathbf{C t r l}+=($ Command $+=$, Macintosh) to evaluate the product.	$(-0.123+0.745 \mathrm{i})(4.2-\mathrm{i})=0.2284+3.2520 \mathrm{I}$

For more information on entering complex numbers, refer to the ?HowDoI help page.

Toolbar Icons

In the introduction section, you learned about the toolbar icons and context toolbars available in Maple (see Toolbar Options (page 9)). The toolbar can be used to format your document, alter plots and animations, draw in a canvas, write in both Math and Text modes in one line and much more. The last of these is demonstrated in the next example.

Example 6 - Enter Text and 2-D Math in the Same Line Using Toolbar Icons

Enter the following sentence:

Evaluate
$\int_{1}^{5}\left(3 x^{2}+2 \sqrt{x}+3 \sqrt[3]{x}\right) \mathrm{d} x$ and write in simplest terms.

Action	Result in Document
To enter this sentence: 1. Select the Text icon and enter Evaluate.	Text Math Dra C Text Evaluate\|
2. Select the Math icon. 3. From the Expression palette, select the definite integration template, $\int_{a}^{b} f \mathrm{~d} x$. The expression is displayed with the first placeholder highlighted.	$\frac{\text { Text Math Dra }}{\square}$
4. With the first placeholder highlighted, enter 1, then press Tab. 5. Enter $\mathbf{5}$ and press Tab to highlight the integrand region.	$\frac{\text { C 2D Math }}{\nabla{ }_{\Delta}^{\text {Evaluate } \int_{1}^{5} f \mathrm{~d} x}}$
6. Enter ($\mathbf{3} \mathbf{x}^{\wedge} \mathbf{2}$ and press the right arrow to leave the superscript position. 7. Enter +2.	Text Math DrawingC 2 Math Evaluate $\int_{1}^{5}\left(3 x^{2}+2\right] \mathrm{dimes} \mathrm{Ne}_{6}$

Action	Result in Document
8. Press the Space bar for implicit multiplication. Enter sqrt and press Esc to show the command completion options. Maple displays a pop-up list of exact matches. Select the square root symbol, \sqrt{x}. Maple inserts the symbol with the x placeholder selected. Alternatively, select the square root symbol from the Expression palette.	
9. Enter \mathbf{x}, then press the right arrow to leave the square root region. 10. Enter + 3, and then press the Space bar. 11. Select the n-th root symbol from the Expression palette, $\sqrt[n]{a}$	$\frac{\text { Text Math Drawing Plot Anima }}{$ C 2D Math Evaluate $\int_{1}^{5}\left(3 x^{2}+2 \sqrt{x}+3 \sqrt[n]{a} \mathrm{~d} x\right.$ Times New Roman }
12. Enter 3, then press Tab. 13. Enter \mathbf{x}), then press Tab. 14. Enter \mathbf{x} for the integration variable.	$\frac{\text { Text Math Drawing Plot Animal }}{$ C 20 Math $\overbrace{\text { Times New Roman }}^{\text {Evaluate } \int_{1}^{5}\left(3 x^{2}+2 \sqrt{x}+3 \sqrt[3]{x}\right) \mathrm{d} x}}$
15. Click the Text icon in the toolbar, then enter the rest of the sentence: "and write in simplest terms."	

1.3 Point-and-Click Interaction

Maple contains many built-in features that allow you to solve problems quickly without having to know any commands.

Assistants

Maple offers a set of assistants in the form of graphical user interfaces to perform many tasks without the need to use any syntax. An example of an assistant is shown in Figure 1.4.

Figure 1.4: Optimization Assistant
Using the Tools \rightarrow Assistants menu, you can access tools to help you accomplish various tasks. See Figure 1.5. In some cases, you can launch an assistant by entering an expression and selecting the assistant from the context menu that displays.

Figure 1.5: Accessing the Assistants from the Tools Menu

Example 7 - Curve Fitting Assistant

Enter a data sample and use the Curve Fitting Assistant to find the best approximation of a function to fit the data.

Action	Result in Document
2. Enter data as Independent Values and Dependent Values. Alternatively, you could import a file containing data. If you have more data than the space provided, click the Next Page button for more space. For this example, enter the data as shown.	Curve Fitting Assistant Enter data points below Independent Values (x) Dependent Values $(\mathrm{f}(\mathrm{x})$) Current Page 1 Previous Page Fit Clear Import Help Cancel
3. Once you have entered the data, click the Fit button. The second dialog of the Curve Fitting Assistant appears.	膡 Curve Fitting Assistant

Descriptions of Assistants

The remaining assistants are described below. Some of the assistants are interfaces to package commands. For more information on package commands, see Package Commands (page 47).

- Back-Solver - an interface that allows you to take a mathematical formula, involving multiple parameters, enter values for all but one of the parameters and solve for the remaining value. You can also plot the behavior of the formula as one of the parameters change.
- Curve Fitting - an interface to commands in the CurveFitting package. Data points can be entered as independent and dependent values, and interpolated with polynomials, rational functions, or splines.
- Data Analysis - an interface to the data analysis commands in the Statistics package.
- Equation Manipulator - an interface for interactively performing a sequence of operations on an equation. You can group terms, apply an operation to both sides of the equation, complete the square, and so on.
- Import Data - an interface to read data from an external file into Maple.
- Installer Builder - an interface to the InstallerBuilder package in which you can create installers for your Maple toolboxes.

For information on toolboxes, go to http://www.maplesoft.com/developers/index.aspx.

- Library Browser - an interface to manipulate the libraries in a specified directory.
- Maplet Builder - an interface to the Maplets package. The Maplets package contains commands for creating and displaying Maplet applications (point-and-click interfaces). Using the Maplet Builder, you can define the layout of a Maplet, drag-and-drop elements (visual and functional components of Maplets), set actions associated with elements, and directly run a Maplet application. The Maplet Builder is available in the Standard interface only.
- ODE Analyzer - an interface to obtain numeric or symbolic solutions to a single ordinary differential equation (ODE) or a system of ODEs and plot a solution of the result.
- Optimization - an interface to the solver commands in the Optimization package. The Optimization package is a collection of commands for numerically solving optimization problems, which involves finding the minimum or maximum of an objective function possibly subject to constraints.
- Plot Builder - an interface for creating two and three-dimensional plots, animations, and interactive plots.
- Scientific Constants - an interface to over 20000 values of physical constants and properties of chemical elements. All of these constants come with the corresponding unit and, if applicable, with the uncertainty or error, that is, how precisely the value of this constant is known.
- Special Functions - an interface to the properties of over 200 special functions, including the Hypergeometric, Bessel, Mathieu, Heun and Legendre families of functions.
- Units Calculator - an interface to convert between 500 units of measurement.
- Worksheet Migration - an interface to convert worksheets from Classic Maple (.mws files) to Standard Maple (.mw files)
- CAD Link - an interface to explore the properties of models from supported CAD applications (available on Microsoft Windows only)

Tutors

Maple provides over 40 interactive tutors to aid in the learning of

- Precalculus
- Calculus
- Multivariate Calculus
- Vector Calculus
- Differential Equations
- Linear Algebra
- Complex Variables

These tutors are easily accessible in the Tools menu by selecting Tutors. See Figure 1.6.

Figure 1.6: Accessing Tutors from the Tools Menu
Some of the tutors can also be accessed through the Student package. The Differential Equations tutor, DE Plots, is accessible through the DEtools package. For a definition of the term package, see Package Commands (page 47).

The Student package is a collection of subpackages designed to assist with the teaching and learning of standard undergraduate mathematics. The subpackages contain many commands for displaying functions, computations, and theorems in various ways, and include support for stepping through important computations.

The interactive commands help you explore concepts and solve problems using a point-and-click interface. These commands launch tutors that provide a graphical interface to some of the visualization and computation commands described above. See Figure 1.7 for an example of one of the tutors.

Figure 1.7: Calculus - Single Variable \rightarrow Differentiation Methods Tutor

Context Menus

A context menu is a dynamically generated menu of actions that are applicable for the region upon which it is invoked. Context menus allow you to perform calculations and manipulations on expressions without using Maple syntax. To display a context menu, right-click an object, expression, or region. Context menus are available for many input regions, including:

- expressions to perform calculations, manipulations, or plotting
- plot regions to apply plot options and manipulate the plot
- tables to modify the table properties
- palette regions to add or remove palettes and palette regions
- text regions to add annotations and format text
- spreadsheets to manipulate the spreadsheet

When performing calculations or manipulations on an expression, a self-documenting arrow or equal sign connects the input and output, indicating the action that took place. See Figures 1.8 and 1.9 for two examples of context menus.

$$
x^{2}+2 x+1 \stackrel{\text { factor }}{=}(x+1)^{2}
$$

Figure 1.8: Right-click the expression to see a menu of applicable operations

Figure 1.9: Right-click the plot to see a menu of plot options

Task Templates

Task templates help you perform specific tasks in Maple, such as:

- performing a mathematical computation such as solving an equation symbolically or numerically, or determining the Taylor approximation of a function of one variable
- constructing a Maple object such as a function
- creating a document such as an application

Each task contains a description along with a collection of content that you can insert directly into your document. Content consists of 2-D mathematics, commands, embedded components (for example, buttons), and plots. You specify the parameters of your problem and then execute the commands in the document. See Figure 1.10 for an example of a Task Template.

\begin{tabular}{|c|c|}
\hline 2. Browse Tasks \& - \times

\hline \multicolumn{2}{|l|}{File View}

\hline \begin{tabular}{l}
Overview
Algebra
Calculus - Differential
Calculus - Integral

Integration

Approximate Integration

T Approximate Definite Integral of a Function
T] Numeric Integration

\pm Methods of Integration

Applications

\square Series
Calculus - Multivariate
Calculus - Vector
Convert Expression to Function
Curve Fitting
Differential Equations
Document Templates
Evaluating
Geometry
Integers
Linear Algebra
Lists
Maple T.A.
Plots
Polynomials
Statistics
\square Transformations
Units, Constants, and Errors

 \&

Approximate Definite Integral of a Function

Description

Approximate the definite integral of a univariate function using a Riemann sum or a Newton-Cotes method.

Enter the function as an expression.

Specify the range of integration and the method of approximation, and then approximate the integral.

[$>$ Student[Calculus 1][

ApproximateInt $]((1), x=0$

$. .2 \pi$, method $=$ trapezoid $)$

1 _(inn $<\overbrace{2}^{2})$
\end{tabular}

\hline Task,ApproxDefIntegralUnivariateFon \&

\hline
\end{tabular}

Figure 1.10 Browse Tasks Dialog

Previewing Tasks

To preview Maple tasks,

- From the Tools menu, select Tasks, and then Browse. The Browse Tasks dialog opens and displays the list of tasks.

The tasks are sorted by subject to help you quickly find the desired task. In the Browse
Tasks dialog, you can view tasks without inserting them into your document.

Inserting a Task into the Document

To insert a task into your document,

1. Select the Insert into New Worksheet check box to insert the task into a new document.
2. Click one of the insert buttons.

- Click the Insert Default Content button. Maple inserts the default content. The default content level is set using the Options dialog. For instructions, see the ?usingtasks help page.
- Click the Insert Minimal Content button. Maple inserts only the commands and embedded components, for example, a button to launch the related assistant or tutor.
- Click the Copy Task to Clipboard button. Place the cursor where you want to insert the task, and then paste the task. Maple inserts the default content. Use this method to quickly insert a task multiple times.

Note: You can view the history of previously inserted tasks. From the Tools menu, select Tasks. Previously selected task names are displayed below the Browse menu item.

Before inserting a task, Maple checks whether the task variables have assigned values in your document. If any task variable is assigned, the Task Variables dialog opens to allow you to modify the names. Maple uses the edited variable names for all variable instances in the inserted task.

By default, the Task Variables dialog is displayed only if there is a naming conflict. You can set it to display every time you insert a task.

To specify that the Task Variables dialog be displayed every time you insert a task:

1. From the Tools menu, select Options.
2. Click the Display tab.
3. In the Show task variables on insert drop-down list, select Always.
4. Click Apply to Session or Apply Globally, as necessary.

Updating Parameters and Executing the Commands

In inserted Task Templates, parameters are marked as placeholders (in purple text) or specified using sliders or other embedded components.

1. Specify values for the parameters in placeholders or using graphical interface components. You can move to the next placeholder by pressing Tab.
2. Execute all commands in the task by:

- Placing the cursor in the first task command, and then pressing Enter repeatedly to execute each command.
- Selecting all the template commands, and then clicking the execute toolbar icon !.

3. If the template contains a button that computes the result, click it.

For more information on task templates, refer to the ?tasks help page.

Exploration Assistant

The Exploration Assistant allows you to interactively make parameter changes to expressions and view the result. The assistant can be used with almost any Maple expression or command that has at least one variable or parameter.

To launch the Exploration Assistant:

1. Enter an expression or command.
2. Right-click (Control-click, Macintosh) the expression or command. From the context menu, select Explore.
3. The Explore parameter selection dialog appears, where you can select the parameters to explore and the range for each parameter.

If you enter integer ranges, only integer values are allowed for parameters. To allow floatingpoint values, enter floating-point ranges.

Select skip for any of the parameters to leave that parameter as a variable.
4. Click Explore to continue to the Exploration Assistant. The assistant opens in a new document. You can use the slider or sliders to vary the parameters and see your changes as the expression output is updated.
5. Once you are finished interacting with the assistant, you can copy and paste the results into your document, or save the interactive document for later use.

Example 8 - Use the Exploration Assistant to Explore a Plot

In this example, we will explore how the plot of $\frac{\sin (a x)-b \cos (x)}{x}$ changes as we vary the parameters a and b.

Action	Result in Document
4. Click Explore. The Exploration Assistant opens in a new document. Move the sliders to see the plot as the parameters change.	Maplesoft Exploration Assistant
	$a: \square{ }^{3.656}$
	$b: \square 0.000$

1.4 Commands

Even though Maple comes with many features to solve problems and manipulate results without entering any commands, you may find that you prefer greater control and flexibility by using the set of commands and programming language that Maple offers.

The Maple Library

Commands are contained in the Maple library, which is divided into two groups: the main library and packages.

- The main library contains the most frequently used Maple commands.
- Packages contain related commands for performing tasks from disciplines such as Student Calculus, Statistics, or Differential Geometry. For example, the Optimization package contains commands for numerically solving optimization problems.

For details on top-level and package commands, see Commands (page 82).

Entering Commands

If you want to interact with Maple using commands, simply enter the command using 2-D math. Notice that commands and variable names display in italics. Maple commands are constructed in a format similar to command(arguments), based on the command you are using.

For example, to factor an expression, enter:
factor $\left(x^{2}+2 x+1\right)$

$$
(x+1)^{2}
$$

To differentiate an expression, enter:

$$
\operatorname{diff}(\sin (x), x)
$$

$$
\cos (x)
$$

To integrate an expression on the interval $[0,2 \pi]$, enter:

$$
\operatorname{int}(2 x+\cos (x), x=0 . .2 \pi)
$$

$$
4 \pi^{2}
$$

To plot an expression, enter:

$$
\operatorname{plot}\left(\sin (x) x^{2}, x=-10 \ldots 10\right)
$$

For a list of the top commands in Maple, see Top Commands (page 84).

Package Commands

There are two ways to access commands within a package, using the long form of the package command or the short form.

Long Form of Accessing Package Commands:
The long form specifies both the package and command names using the syntax package[command $\mathbf{(\text { arguments). }}$

LinearAlgebra[RandomMatrix](2)
$\left[\begin{array}{cc}44 & -31 \\ 92 & 67\end{array}\right]$

Short Form of Accessing Package Commands:
The short form makes all of the commands in the package available using the with command, with(package). If you are using a number of commands in a package, loading the entire package is recommended. When you execute the with command, a list of all commands in the package displays. To suppress the display of all command names, end the with(package)
command with a colon. Alternatively, you can load packages through the Tools menu, by selecting Load Package, and then the package name.
with(Optimization)
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve]

After loading a package, you can use the short-form names, that is, the command names, without the package name.

$$
\text { LSSolve }([x-2, x-6, x-9])
$$

$$
[12.3333333333333322,[x=5.66666666666666696]]
$$

For a list of the top packages in Maple, see Top Packages (page 86).

Command Completion

To help with syntax and reduce the amount of typing when entering Maple commands, you can use command completion. Command completion displays a list of all Maple packages, commands, and functions that match the entered text. If there are multiple ways to call a command, then the command completion list contains each one, with appropriate placeholders.

To use command completion:

1. Begin entering a command or package name.
2. Select Tools \rightarrow Complete Command or use the shortcut key Esc (see Shortcut Keys by Platform (page xiv)). If there is a unique completion, it is inserted. Otherwise, a list of possible matches is displayed.
3. Select the correct completion from the list.

4. Some inserted commands have placeholders, denoted by purple text. The first placeholder is highlighted after you insert it into the document. Replace it with your parameter, then move to the next placeholder by pressing the Tab key.

Equation Labels

Equation labels help to save time entering expressions by referencing Maple output. See Figure 1.11.

By default, equation labels are displayed. If equation labels are not displayed,

1. From the Tools menu, select Options, and click the Display tab. Ensure that the Show equation labels check box is selected.
2. From the Format menu, select Labels. Ensure that both Execution Group and Worksheet are selected.

Figure 1.11: Equation Label

To apply equation labels:

1. Enter an expression and press Enter. Note that the equation label is displayed to the right of the answer in the document.
2. In a new execution group, enter another expression that will reference the output of the previous execution group.
3. From the Insert menu, select Label. Alternatively, press Ctrl $+\mathbf{L}$ (Command $+\mathbf{L}$, for Macintosh) to open the Insert Label dialog. Enter the label number in the Insert Label dialog and click OK. The item is now a label. See Figure 1.12.

(1)

Figure 1.12: Inserting an Equation Label
4. Press Enter to obtain the result.

To change the format of equation labels:

- Select Format \rightarrow Labels \rightarrow Label Display. In the Format Labels dialog, select one of the numbering schemes.
- Optionally, enter an appropriate numbering prefix.

Figure 1.13: Format Labels Dialog: Adding a Prefix
The Label Reference menu item allows you to switch between the label name and its reference content. Place the cursor on the referenced equation label and select Format \rightarrow Labels \rightarrow Label Reference.

Figure 1.14: Label Reference
The label is associated with the last output within an execution group.
You cannot apply equation labels to the following:

- Error, warning, and information messages
- Tables, images, plots, sketches, or spreadsheets

Document Blocks

In Document mode, content is created as a series of document blocks. Document blocks allow you to hide the syntax used to perform calculations, which in turn lets you focus on the concept presented instead of the command used to manipulate or solve the problem. You can also create document blocks in Worksheet mode to perform the same function. Document blocks are typically collapsed to hide the Maple code, but these regions can also be expanded to reveal this code.

To create a document block:

From the Format menu, select Create Document Block. If text or math in one or more execution groups is selected, then a document block is created that contains those execution groups. If not, a new document block is created after the current execution group. For more information, see the next example.

Document block regions are identified using markers that are located in a vertical bar along the left pane of the document. See Figure 1.15. In addition to document block boundaries, these markers (icons) indicate the presence of hidden attributes in the document such as annotations, bookmarks, and numeric formatting.

To activate markers:

From the View menu, select Markers. See Figure 1.15.

Figure 1.15: Document Block Markers
To view code in a document block:

1. Place the cursor in a document block to be expanded.
2. From the View menu, select Expand Document Block.

Figure 1.16: Expanded Document Block
With the Document Block expanded, you can see the Maple command that was used to perform this calculation. In Figure 1.16, the solve command was used.

Also notice a red prompt ($>$) before the original expression and the solve command. Entering commands outside of a document block region is done at this input region. To insert an input region, click the [> button in the toolbar menu.

In Figure 1.16, an equation label was used to refer to the expression. For more information, see Equation Labels (page 49).

To collapse a Document Block:

- With your cursor inside the document block, select View \rightarrow Collapse Document Block.

You can use this process of expanding document blocks to begin learning Maple commands.
Changing the Display:
You can specify which parts of the input and output are displayed when the document block is collapsed. For each execution group in the block, you can choose to display either the input or the output.

- Place the cursor in the execution group.
- From the View menu, select Toggle Input/Output Display.

Also, you can choose to display output either inline or centered on a new line.

- From the View menu, select Inline Document Output.

Example 9 - Creating a Document Block in Worksheet Mode

In Worksheet mode, you can create the content using commands, and then use a document block to choose how much information to display.

Enter the following sentence using text and 2-D Math input and output:
The answer to $\int \sin (x) \mathrm{d} x$ is $-\cos (x)$.

1. At an input prompt, click the text icon, enter plain text. Enter "The answer to ". Note: these instructions are for Worksheet mode.	[The answer to	
2. Click the input prompt icon, [>, to enter Maple commands. Enter $\int \sin (x) \mathrm{d} x$, and then press Enter to execute the command.	[The answer to $\left[\begin{array}{lll} \gg & \int \sin (x) d x & \\ {[>} & -\cos (x) \end{array}\right.$	(1.3)
3. Again, click the text icon to insert the rest of the text, "is", and then enter another input prompt icon. Make sure to put spaces around all of the text, so the sentence displays properly.		(1.3)

4. To display the same output again, use the value command and an equation label. This allows you to insert text between the input and output of a single command: there are really two commands. Enter and execute the command, as shown.	$\begin{aligned} & {\left[\begin{array}{ll} \text { The answer to } \\ {\left[>\int \sin (x) d x\right.} \end{array}\right.} \\ & {\left[\begin{array}{ll} \text { is } & -\cos (x) \end{array}\right.} \\ & {[>\text { value }(\mathbf{(1 . 3)})} \\ & {[>} \end{aligned}$
5. To finish the sentence, click the text icon in the last execution group and enter a period.	$\begin{aligned} & {\left[\begin{array}{ll} {[\text { The answer to }} \\ {\left[>\int \sin (x) d x\right.} \end{array}\right.} \\ & {\left[\begin{array}{ll} \text { is } & -\cos (x) \end{array}\right.} \\ & {[>\text { value }(\text { (1.3) })} \\ & {[} \end{aligned}$
6. Select the entire sentence, then from the Format menu, select, Create Document Block. By default, only the text and output remains visible, and output is centered on a new line.	The answer to is $-\cos (x)$ (1.3) Δ $-\cos (x)$ (1.4)
7. To display the text and output on one line, place the cursor in the document block. From the View menu, select Inline Document Output.	\triangle The answer to $-\cos (x)$ is $-\cos (x)$.
8. To display input instead of output for the first expression, place the cursor in the first expression. From the View menu, select Toggle Input/Output Display. Only the first region displays input.	The answer to $\int \sin (x) \mathrm{d} x$ is $-\cos (x)$

1.5 The Maple Help System

The Maple program provides a custom help system consisting of almost 5000 reference pages. The help system is a convenient resource for determining the syntax of Maple commands and for learning about Maple features.

Accessing the Help System

There are several ways to access the Maple help system:

- From the Help menu, select Maple Help
- Click 啟 in the toolbar

To get help on a specific word:

- In a document, place the insertion point in a word for which you want to obtain help. From the Help menu, select Help on Alternatively, press F2 (Control + ?, for Macintosh) to access context-sensitive help.
- In a document, execute the command ?topic, for example, enter ?LinearAlgebra and press Enter

The Maple help system opens in a separate window with two panes. The left pane contains the Help Navigator where you initiate searches and browse the table of contents, and the right pane displays the final search result, such as a specific help page.

Figure 1.17: Example Help Page
Every help page in Maple lists the command's calling sequence, parameters, and a description, with examples of the command at the end of the page. Some help pages also contain hyperlinks to related help pages and hyperlinks to dictionary definitions. Hyperlinks to help pages display in green, while hyperlinks to dictionary definitions display in dark red.

Using the Help Navigator

The Help Navigator contains a field for topic or text-based searches. The Table of Contents tab provides a structured list of all topics in the help system.

To search the help system:

1. In the left pane, enter a string in the search field.
2. By default, a topic search is performed. To perform a text search, select the Text radio button.
3. Enter the term and click Search.

- Topic searches reveal a list of matching topics sorted by the precision of the match.
- Text searches reveal a list of topics based on keyword frequency.
- You can search all of the help system or specific Resources such as Help Pages, Tasks, Tutorials, and Manuals by selecting the Resources drop-down menu.

Search results are displayed as a list in the Search Results tab of the left pane. Click the Table of Contents tab to view a structured list of all topics in the help system.

To display potential matches in the right pane, click a topic preceded by an icon. Table 1.9 describes the different icons.

Table 1.9: Help Page Icons

Icon	Description
\square	A folder icon in the Table of Contents tab indicates that a topic can be expanded into subtopics.
We	Question mark icon indicates a help page and displays the associated help page in the right pane when selected.
The	WS icon indicates an example worksheet. Example worksheets open in a new tab in the Maple document.
T icon indicates a definition and displays the associated dictionary definition in the	
right pane when selected.	

Viewing Help Pages as Documents

In the help system, examples are not executable.
The Maple help system allows you to open help pages as documents that you can execute.
To open a help page as a document or worksheet:

- With the help page displayed in the right pane of the help system, from the View menu, select Open Page as Worksheet. A new worksheet tab opens and displays the help page as an executable document.

?	Alternatively, in the help system toolbar, click the open current help page in a worksheet window icon.

Viewing Examples in 2-D Math

You can choose to view the examples in most help pages in either 1-D Math (Maple input) or 2-D Math mode. The default is 1-D Math.

To change the math mode:
In the Maple help system:

- From the View menu, select or clear the Display Examples with 2D math check box.
- Click the 2-D Math icon, $\frac{\mathbf{X}^{\boldsymbol{n}} \mathbf{2}}{\mathbf{X}^{\mathbf{2}} \text {. }}$
- Note: Some input in help pages displays as 1-D Math, no matter which option you have chosen. This is for Maple procedures and other code that is best input in 1-D Math. For more information, see the ?helpnavigator help page.

Copying Examples

Instead of opening the entire page as a document, you can copy the Examples section only.

To copy examples:

1. With the help page displayed in the right pane of the help system, from the Edit menu, select Copy Examples.
2. Close or minimize the Help Navigator and return to your document.
3. In your document, place the cursor at the location where you want to paste the examples.
4. From the Edit menu, select Paste. The Examples section of the help page is inserted as executable content in your document.

1.6 Available Resources

Your work with Maple is supported by numerous resources.

Resources Available through the Maple Help System

Help Pages

Use the help system to find information about a specific topic, command, package, or feature. For more information, see The Maple Help System (page 54).

Dictionary

More than 5000 mathematical and engineering terms with over 300 figures and plots.

1. From the Help menu, select Maple Help.
2. Enter a search term. Dictionary entries that match your query are displayed in the left pane with a icon.

Tutorials and the Maple Portal

The Maple Portal includes material designed for all Maple users, from new users to users who want more advanced tutorials. The Maple Portal also includes specific sections for students, math educators, and engineers. The Maple Portal includes:

- How Do I... topics that give quick answers to essential questions
- Tutorials that provide an overview of topics from getting started to plotting, data manipulation, and interactive application development
- Navigation to portals with specialized information for students, math educators, and engineers

Access the portal from the Help menu (Help \rightarrow Manuals, Resources, and More \rightarrow Maple Portal).

Applications and Example Worksheets

Applications

Sample applications demonstrate how Maple can be used to find and document a solution to a specific problem. Some applications allow for input or contain animations that you can run; however, their primary use is for demonstrations. Topics include DC Motor Control Design, Digital Filter Design, Frequency Domain System Identification, Harmonic Oscillator, Image Processing, and Radiator Design with CAD Systems.

Examples

Example worksheets are executable documents covering topics that demonstrate syntax or invoke a user interface to make complex problems easy to solve and visualize. You can copy and modify the examples as needed. Topics include Algebra, Calculus, Connectivity, Discrete Mathematics, General Numerics and Symbolics, and Integral Transforms.

- From the Help menu, select Manuals, Resources, and more, and then Applications and Examples.

Manuals

You can access all of Maple's manuals from within Maple, including the Maple Programming Guide and this manual. You can execute examples, copy content into other documents, and search the contents using the Maple Help System.

- From the Help menu, select Manuals, Resources, and more and then Manuals.

Task Templates

Set of commands with placeholders that you can use to quickly perform a task. For details, see Task Templates (page 41).

- From the Tools menu, select Tasks, and then Browse.

Maple Tour and Quick Resources

Maple Tour

The Maple Tour consists of interactive sessions on several of the following topics: Ten Minute Tour, Numeric and Symbolic Computations, Matrix Computations, Differential Equations, Statistics, Programming and Code Generation, Units and Tolerances, and Education Assessment with Maple T.A.

- From the Help menu, select Take a Tour of Maple.

Quick Help and Quick References

The Quick Help dialog is a list of key commands and concepts.

- From the Help menu, select Quick Help. Alternatively, press F1. For additional information, click an item in the Quick Help.

The Quick Reference is a table of commands and information for new users that opens in a new window. It contains hyperlinks to help pages for more information.

- From the Help menu, select Quick Reference. Alternatively, press Ctrl + F2 (Command + F2, for Macintosh).

Web Site Resources

Welcome Center

A Maple web site offering all of Maplesoft's key user resources in one central location. In the Welcome Center, you can view sample applications, participate in user forums, access exclusive premium content, and listen to podcasts. You can also access our support services, view training videos, download user manuals, and more.
(http://www.maplesoft.com/welcome)

Student Help Center

The Student Help Center offers a Maple student forum, online math Oracles, training videos, and a math homework resource guide.
(http://www.maplesoft.com/studentcenter)

Teacher Resource Center

The Teacher Resource Center is designed to ensure you get the most out of your Maple teaching experience. It provides sample applications, course material, training videos, white papers, e-books, podcasts, and tips.

(http://www.maplesoft.com/teachercenter)

Application Center

Maple web site resource for free applications related to mathematics, education, science, engineering, computer science, statistics and data analysis, finance, communications, and graphics. Many applications are available in translations (French, Spanish, and German).

You can also search for Education and Research PowerTools, which provide free course curricula and are available as add-on Maple packages and courses. PowerTools are developed by experts in their fields to help users configure Maple for research in specific application areas.

(http://www.maplesoft.com/applications)

Training

Maplesoft offers a comprehensive set of complementary training materials. From complete training videos to recorded training seminars to downloadable documentation, you have many options to get familiar with Maplesoft products. In addition, whether you are an expert or someone who is considering a new license purchase, a custom training session that is right for you and/or your organization can be created.

(http://www.maplesoft.com/support/training)

MaplePrimes

A web community dedicated to sharing experiences, techniques, and opinions about Maple and related products, as well as general interest topics in math and computing.
(http://www.mapleprimes.com)

Online Help

All of Maple's help pages are available online.
(http://www.maplesoft.com/support/help)

Technical Support

A Maple web site containing FAQs, downloads and service packs, links to discussion groups, and a form for requesting technical support.
(http://www.maplesoft.com/support)
For a complete list of resources, refer to the ?MapleResources help page.

2 Document Mode

Using the Maple software, you can create powerful interactive documents. You can visualize and animate problems in two and three dimensions. You can solve complex problems with simple point-and-click interfaces or easy-to-modify interactive documents. You can also devise custom solutions using the Maple programming language. While you work, you can document your process, providing text descriptions.

2.1 In This Chapter

Section	Topics
Introduction (page 63)	- Comparison of Document and Worksheet Modes
Entering Expressions (page 64) - Overview of tools for creating complex mathematical expressions	- Palettes - Symbol Names - Mathematical Functions
Evaluating Expressions (page 67) - How to evaluate expressions	- Displaying the Value Inline - Displaying the Value on the Following Line
Editing Expressions and Updating Output (page 68) - How to update expressions and regenerate results	- Updating a Single Computation - Updating a Group of Computations - Updating All Computations in a Document
Performing Computations (page 69)- Overview of tools for performing computations and solving problems	- Computing with Palettes - Context Menus - Assistants and Tutors

2.2 Introduction

Maple has two modes: Document mode and Worksheet mode.
Document mode is designed for quickly performing calculations. You can enter a mathematical expression, and then evaluate, manipulate, solve, or plot it with a few keystrokes or mouse clicks. This chapter provides an overview of Document mode.

Document mode sample:
Find the value of the derivative of $\ln \left(x^{2}+1\right)$ at $x=4$.

$$
\ln \left(x^{2}+1\right) \xrightarrow{\text { differentiate w.r.t. } \mathrm{x}} \frac{2 x}{x^{2}+1} \xrightarrow{\text { evaluate at point }} \frac{8}{17}
$$

Integrate $\sin \left(\frac{1}{x}\right)$ over the interval $[0, \pi]$.

$$
\int_{0}^{\pi} \sin \left(\frac{1}{x}\right) \mathrm{d} x=\sin \left(\frac{1}{\pi}\right) \pi-\mathrm{Ci}\left(\frac{1}{\pi}\right)
$$

Worksheet mode is designed for interactive use through commands and programming using the Maple language. The Worksheet mode supports the features available in Document mode described in this chapter. For information on using Worksheet mode, see Chapter 3, Worksheet Mode (page 79). Note: To enter a Maple input prompt while in Document mode, click [> in the Maple toolbar.

Important: In any Maple document, you can use Document mode and Worksheet mode.
Interactive document features include:

- Embedded graphical interface components, like buttons, sliders, and check boxes
- Automatic execution of marked regions when a file is opened
- Tables
- Character and paragraph formatting styles
- Hyperlinks

These features are described in Chapter 7, Creating Mathematical Documents (page 281).
Note: This chapter and Chapter 1 were created using Document mode. All of the other chapters were created using Worksheet mode.

2.3 Entering Expressions

Chapter 1 provided an introduction to entering simple expressions in 2-D Math (see Entering Expressions (page 19)). It is also easy to enter mathematical expressions, such as:

- Piecewise-continuous functions: $|x|=\left\{\begin{array}{cc}-x & x<0 \\ 0 & x=0 \\ x & 0<x\end{array}\right.$
- Limits: $\delta(x)=\lim _{\epsilon \rightarrow 0} \epsilon|x|^{\epsilon-1}$
- Continued fractions: $\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}$
and more complex expressions.
Mathematical expressions can contain the following objects.
- Numbers: integers, rational numbers, complex numbers, floating-point values, finite field elements, i, ∞, \ldots
- Operators: $+,-,!, /, \cdot \int, \lim _{x \rightarrow a} \frac{\partial}{\partial x}, \ldots$
- Constants: π, e, \ldots
- Mathematical functions: $\sin (x), \cos \left(\frac{\pi}{3}\right), \Gamma(2), \ldots$
- Names (variables): $x, y, z, \alpha, \beta, \ldots$
- Data structures: sets, lists, Arrays, Vectors, Matrices, ...

Maple contains over a thousand symbols. For some numbers, operators, and names, you can press the corresponding key, for example, $\mathbf{9},=,>$, or \mathbf{x}. Most symbols are not available on the keyboard, but you can insert them easily using two methods, palettes and symbol names.

Example 1 - Enter a Partial Derivative

To insert a symbol, you can use palettes or symbol names.
Enter the partial derivative $\frac{\partial}{\partial t} \mathrm{e}^{-t^{2}}$ using palettes.

Action	Result in Document
1. In the Expression palette, click the partial differ- entiation item $\frac{\partial}{\partial x} f$. Maple inserts the partial deriv- ative. The variable placeholder is selected.	$\frac{\partial}{\partial x} f$
2. Enter t, and then press Tab. The expression placeholder is selected.	$\frac{\partial}{\partial t} f$
3. Enter $\mathrm{e}^{-t^{2}}$. Note: To enter the exponential e, use the expression palette or command completion.	$\frac{\partial}{\partial t} \mathrm{e}^{-t^{2}}$

To evaluate the integral and display the result inline, press Ctrl+=(Command+=, for Macintosh) or Enter. For more information, see Computing with Palettes (page 69).

You can enter any expression using symbol names and the symbol completion list.

Action	Result in Document
1. Begin typing the name of the symbol, diff, and press the symbol completion key (see Shortcut Keys by Platform (page xiv)).	diff
2. Select the partial differentiation item, diff (inline partial) $\frac{\delta}{8 x}$	$\frac{\partial}{\partial x}$
3. Replace the placeholder with \mathbf{t}. Use the right arrow to move out of the denominator. Enter $\mathrm{e}^{-t^{2}}$ as in the previous example.	$\frac{\partial}{\partial t} \mathrm{e}^{-t^{2}}$

Example 2 - Define a Mathematical Function

Define the function twice, which doubles its input.

Action	Result in Document
1. In the Expression palette, click the single variable function definition item, $f: a \rightarrow y$.	$f:=a \rightarrow y$
2. Replace the placeholder \mathbf{f} with the function name, twice. Press Tab to move to the next placeholder.	twice $:=a \rightarrow y$
3. Replace the parameter placeholder, a, with the inde- pendent variable x. Press Tab.	twice $:=x \rightarrow y$
4. Replace the output placeholder, \mathbf{y}, with the desired output, $2 x$.	twice $:=x \rightarrow 2 x$
$x \rightarrow 2 x$	

$$
\begin{aligned}
& \text { twice }(1342)=2684 \\
& \text { twice }(y-z)=2 y-2 z
\end{aligned}
$$

Note: To insert the right arrow symbol \rightarrow, you can also enter the characters $->$ in Math mode. In this case, symbol completion is automatic.

Important: The expression $2 x$ is different from the function $x \rightarrow 2 x$.
For more information on functions, see Functional Operators (page 343).

2.4 Evaluating Expressions

To evaluate a mathematical expression, place the cursor in the expression and press Ctrl + $=($ Command $+=$, for Macintosh). That is, press and hold the Ctrl (or Command) key, and then press the equal sign $(=)$ key.

To the right of the expression, Maple inserts an equal sign and then the value of the expression.

$$
\frac{2}{9}+\frac{7}{11}=\frac{85}{99}
$$

You can replace the inserted equal sign with text or mathematical content.

To replace the equal sign:

1. Select the equal sign. Press Delete.
2. Enter the replacement text or mathematical content.

For example, you can replace the equal sign with the text "is equal to".

$$
\frac{2}{9}+\frac{7}{11} \text { is equal to } \frac{85}{99}
$$

In mathematical content, pressing Enter evaluates the expression and displays it centered on the following line. The cursor moves to a new line below the output.

$$
\frac{2}{9}+\frac{7}{11}
$$

$$
\begin{equation*}
\frac{85}{99} \tag{2.1}
\end{equation*}
$$

By default, Maple labels output that is generated by pressing Enter. For information on equation labels, see Equation Labels (page 97). In this manual, labels are generally not displayed.

In text, pressing Enter inserts a line break.
You can use the basic algebraic operators, such as + and - , with most expressions, including polynomials-see Polynomial Algebra (page 150)—and matrices and vectors-see Matrix Arithmetic (page 169).

$$
\begin{aligned}
& \left(2 x^{2}-x+1\right)-\left(x^{2}+2 x+12\right)=x^{2}-3 x-11 \\
& \text { 3. }\left[\begin{array}{ccc}
-4 & 8 & 99 \\
27 & 69 & 29
\end{array}\right]=\left[\begin{array}{rrr}
-12 & 24 & 297 \\
81 & 207 & 87
\end{array}\right]
\end{aligned}
$$

2.5 Editing Expressions and Updating Output

One important feature of Maple is that your documents are live. That is, you can edit expressions and quickly recalculate results.

To update one computation:

1. Edit the expression.
2. Press Ctrl $+=$ (Command $+=$, for Macintosh) or Enter.

The result is updated.
To update a group of computations:

1. Edit the expressions.
2. Select all edited expressions and the results to recalculate.
3. Click the Execute toolbar icon ! .

All selected results are updated.

To update all output in a Maple document:

- Click the Execute All toolbar icon I!! .

All results in the document are updated.

2.6 Performing Computations

Using the Document mode, you can access the power of the advanced Maple mathematical engine without learning Maple syntax. In addition to solving problems, you can also easily plot expressions.

The primary tools for syntax-free computation are:

- Palettes
- Context menus
- Assistants and tutors

Note: The Document mode is designed for quick calculations, but it also supports Maple commands. For information on commands, see Commands (page 82) in Chapter 3, Worksheet Mode (page 79).

Important: In Document mode, you can execute a statement only if you enter it in Math mode. To use a Maple command, you must enter it in Math mode.

Computing with Palettes

As discussed in Entering Expressions (page 64), some palettes contain mathematical operations.

To perform a computation using a palette mathematical operation:

1. In a palette that contains operators, such as the Expression palette, click an operator item.
2. In the inserted item, specify values in the placeholders.
3. To execute the operation and display the result, press Ctrl$+=($ Command $+=$, for Macintosh) or Enter.

For example, to evaluate $\frac{\partial}{\partial t} \mathrm{e}^{-t^{2}}$ inline:

1. Using the Expression palette, enter the partial derivative. See Example 1 - Enter a Partial Derivative (page 65).
2. Press Ctrl $+=$ (Command $+=$, for Macintosh $)$.

$$
\frac{\partial}{\partial t} \mathrm{e}^{-t^{2}}=-2 t \mathrm{e}^{-t^{2}}
$$

Context Menus

A context menu is a pop-up menu that lists the operations and actions you can perform on a particular expression. See Figure 2.1.

$\frac{2}{9}+\frac{11}{7}$		
	Cut	Ctrl+X
	Copy	$\mathrm{Ctrl}+\mathrm{C}$
	Copy full precision	
	Copy as MathML	
	Paste	Ctrl +V
	Evaluate	
	Evaluate and Display Inline	Ctrl $+=$
	Explore	
	Apply a Command	
	Approximate	,
	Assign to a Name	
	Denominator	
	Numerator	
	Integer Functions	-
	Units	,
	2-D Math	,

Figure 2.1: Context Menu
To display the context menu for an expression:

- Right-click (Control-click, for Macintosh) the expression.

The context menu is displayed beside the mouse pointer.
You can evaluate expressions using context menus.

- The Evaluate and Display Inline operation (see Figure 2.1) is equivalent to pressing $\mathbf{C t r l}+=(\mathbf{C o m m a n d}+=$, for Macintosh). That is, it inserts an equal sign $(=)$ and then the value of the expression.
- The Evaluate operation (see Figure 2.1) is equivalent to pressing Enter. That is, it evaluates the expression and displays the result centered on the following line.

For more information on evaluation, see Evaluating Expressions (page 67).
From the context menu, you can also select operations different from evaluation. To the right of the expression, Maple inserts a right arrow symbol (\rightarrow) and then the result.

For example, use the Approximate operation to approximate a fraction:

$$
\frac{2}{3} \xrightarrow{\text { at } 10 \text { digits }} 0.6666666667
$$

You can perform a sequence of operations by repeatedly using context menus. For example, to compute the derivative of $\cos \left(x^{2}\right)$, use the Differentiate operation on the expression, and then to evaluate the result at a point, use the Evaluate at a Point operation on the output and enter 10:

$$
\cos \left(x^{2}\right) \xrightarrow{\text { differentiate w.r.t. } \mathrm{x}}-2 \sin \left(x^{2}\right) x \xrightarrow{\text { evaluate at point }}-20 \sin (100)
$$

The following subsections provide detailed instructions on performing a few of the numerous operations available using context menus. Figures in the subsections show related context menus or palettes.

Approximating the Value of an Expression

To approximate a fraction numerically:

1. Enter a fraction.
2. Display the context menu. See Figure 2.2.
3. From the context menu, select Approximate, and then the number of significant digits to use: 5, 10, 20, 50, or $\mathbf{1 0 0}$.

Figure 2.2: Approximating the Value of a Fraction

$$
\frac{2}{3} \xrightarrow{\text { at } 10 \text { digits }} 0.6666666667
$$

You can replace the inserted right arrow with text or mathematical content.

To replace the right arrow (\rightarrow):

1. Select the arrow and text. Press Delete.
2. Enter the replacement text or mathematical content.

Note: To replace the right arrow with text, you must first press F5 to switch to Text mode.
For example, you can replace the arrow with the text "is approximately equal to" or the symbol \approx.
$\frac{2}{3}$ is approximately equal to 0.6666666667

$$
\frac{2}{3} \approx 0.6666666667
$$

Solving an Equation

You can find an exact (symbolic) solution or an approximate (numeric) solution of an equation. For more information on symbolic and numeric computations, see Symbolic and Numeric Computation (page 102).

To solve an equation:

1. Enter an equation.
2. Display the context menu. See Figure 2.3.
3. From the context menu, select Solve or Numerically Solve in the Solve menu item.

Figure 2.3: Finding the Approximate Solution to an Equation

$$
\begin{aligned}
& \frac{7 x^{2}}{3}-\frac{x}{\pi}=12 \xrightarrow{\text { solve }}\left\{x=\frac{3}{14} \frac{1+\sqrt{1+112 \pi^{2}}}{\pi}\right\},\left\{x=-\frac{3}{14} \frac{-1+\sqrt{1+112 \pi^{2}}}{\pi}\right\} \\
& \frac{7 x^{2}}{3}-\frac{x}{\pi}=12 \xrightarrow{\text { solve }}-2.200603126,2.337021648
\end{aligned}
$$

For more information on solving equations, including solving inequations, differential equations, and other types of equations, see Solving Equations (page 111).

Using Units

You can create expressions with units. To specify a unit for an expression, use the Units palettes. The Units (FPS) palette (Figure 2.4) contains important units from the foot-poundsecond (FPS) system of units used in the United States. The Units (SI) palette (Figure 2.5) contains important units from the international system (SI) of units.

∇ Units (SI)		
$\llbracket u n i t \rrbracket$	$\llbracket m \rrbracket$	$\llbracket s \rrbracket$
$\llbracket N \rrbracket$	$\llbracket k g \rrbracket$	$\llbracket P a \rrbracket$
$\llbracket W \rrbracket$	$\llbracket J \rrbracket$	$\llbracket K \rrbracket$
$\llbracket T \rrbracket$	$\llbracket A \rrbracket$	$\llbracket V \rrbracket$
$\llbracket C \rrbracket$	$\llbracket \Omega \rrbracket$	$\llbracket F \rrbracket$
$\llbracket H \rrbracket$	$\llbracket r a d \rrbracket$	$\llbracket s r \rrbracket$
$\llbracket m o l \rrbracket$	$\llbracket l v \rrbracket$	$\llbracket l m \rrbracket$
$\llbracket S \rrbracket$	$\llbracket W b \rrbracket$	$\llbracket N p \rrbracket$

Figure 2.4: FPS Units Palette
Figure 2.5: SI Units Palette

To insert an expression with a unit:

1. Enter the expression.
2. In a unit palette, click a unit symbol.

Note: To include a reciprocal unit, divide by the unit.
To evaluate an expression that contains units:

1. Enter the expression using the units palettes to insert units.
2. Right-click (Control-click, for Macintosh) the expression.
3. From the context menu, select Units and then Simplify.

For example, compute the electric current passing through a wire that conducts 590 coulombs in 2.9 seconds.
$\xrightarrow[2.9 \llbracket s \rrbracket]{590 \llbracket C \rrbracket} \xrightarrow{\text { simplify units }} 203.4482759 \llbracket A \rrbracket$

For more information on using units, see Units (page 128).

Assistants and Tutors

Assistants and tutors provide point-and-click interfaces with buttons, text input regions, and sliders. For details on assistants and tutors, see Point-and-Click Interaction (page 32).

Assistants and tutors can be launched from the Tools menu or the context menu for an expression. For example, you can use the Linear System Solving tutor to solve a linear system, specified by a matrix or a set of equations.

Example 3 - Using a Context Menu to Open the Linear System Solving Tutor

Use the Linear System Solving tutor to solve the following system of linear equations, written in matrix form:
$\left[\begin{array}{ccccc}1 & 3 & 0 & -2 & -1 \\ 4 & 2 & -1 & 5 & 7 \\ 0 & -3 & 5 & 4 & -7 \\ 1 & -1 & 3 & 6 & 5\end{array}\right]$

Action	Result in Document
1. In a new document block, create the matrix or set of linear equations to be solved.	$\left[\begin{array}{ccccc}1 & 3 & 0 & -2 & -1 \\ 4 & 2 & -1 & 5 & 7 \\ 0 & -3 & 5 & 4 & -7 \\ 1 & -1 & 3 & 6 & 5\end{array}\right]$
2. Load the Student[LinearAlgebra] package. From the Tools menu, select Load Package \rightarrow Student Linear AIgebra. This makes the tutors in that package available. For details, see Package Commands (page 47).	Loading Student:-LinearAlgebra

Action	Result in Document	
3. Right-click the matrix and select Tutors \rightarrow Linear Algebra \rightarrow Linear System Solving.... The Linear System Solving dialog appears, where you can choose the solving method. Gaussian Elimination reduces the matrix to rowechelon form, then performs back-substitution to solve the system. Gauss Jordan Elimination reduces the matrix to reduced row-echelon form, where the equations are already solved. For this example, choose Gaussian Elimination.	Linear Algebra - Linear Syste Gaussian Elimination Gauss Cancel	Solving Jordan Elimination
4. The Gaussian Elimination dialog opens. You can specify the Gaussian elimination step-by-step, or you can use the Next Step or All Steps buttons to have Maple perform the steps for you. 5. Once the matrix is in row-echelon (upper-triangular) form, click the Solve System button to move to the next step.		- System Solver -Click on any button toapply a row operationAdd multiple \checkmark times row 1 \checkmark add to Add Multiply 2 row 1 \square Multiply Swap row 1 \square with row 2

For more information on linear systems and matrices, see Linear Algebra (page 159).

3 Worksheet Mode

The Worksheet mode of the Standard Worksheet interface is designed for:

- Interactive use through Maple commands, which offers advanced functionality and customized control not available using context menus or other syntax-free methods
- Programming using the powerful Maple language

Using Worksheet mode, you have access to all of the Maple features described in Chapter 1, and most of those described in Chapter 2, including:

- Math and Text modes
- Palettes
- Context menus
- Assistants and tutors

For information on these features, see Chapter 1, Getting Started (page 1) and Chapter 2, Document Mode (page 63).

Note: Using a document block, you can use all Document mode features in Worksheet mode. For information on document blocks, see Document Blocks (page 51).

Note: This chapter and the following chapters except Chapter 7 were created using Worksheet mode.

3.1 In This Chapter

Section	Topics
Input Prompt (page 80) - Where you enter input	- The Input Prompt (>) - Suppressing Output - 2-D and 1-D Math Input - Input Separators
Commands (page 82) - Thousands of routines for performing computations and other operations	- The Maple Library - Top-Level Commands - Package Commands - Lists of Common Commands and Packages
Palettes (page 87) - Items that you can insert by clicking or dragging	- Using Palettes
Context Menus (page 89)- Pop-up menus of common operations	- Using Context Menus

Section	Topics
Assistants and Tutors (page 91)- Graphical interfaces with buttons and sliders	- Launching Assistants and Tutors
Task Templates (page 91) - Sets of commands with placeholders that you can insert and use to perform a task	- Viewing Task Templates - Inserting a Task Template - Performing the Task
Text Regions (page 93) - Areas in the document in which you can enter text	- Inserting a Text Region - Formatting Text
Names (page 94) - References to the expressions you assign to them	- Assigning to Names - Unassigning Names - Valid Names
Equation Labels (page 97) - Automatically generated labels that you can use to refer to expressions	- Displaying Equation Labels - Referring to a Previous Result - Execution Groups with Multiple Outputs - Label Numbering Schemes - Features of Equation Labels

3.2 Input Prompt

In Worksheet mode, you enter input at the Maple input prompt ($>$). The default mode for input is Math mode (2-D Math).

To evaluate input:

- Press Enter.

Maple displays the result (output) below the input.
For example, to find the value of $\sin ^{3}\left(\frac{\pi}{3}\right)$, enter the expression, and then press Enter.
$>\sin ^{3}\left(\frac{\pi}{3}\right)$

$$
\begin{equation*}
\frac{3}{8} \sqrt{3} \tag{3.1}
\end{equation*}
$$

For example, compute the sum of two fractions.
$>\frac{2}{9}+\frac{7}{11}$

$$
\begin{equation*}
\frac{85}{99} \tag{3.2}
\end{equation*}
$$

Suppressing Output

To suppress the output, enter a colon (:) at the end of the input.
$>\frac{2}{9}+\frac{7}{11}$:
A set of Maple input and its output are referred to as an execution group.

1-D Math Input

You can also insert input using Text mode (1-D Math). The input is entered as a one-dimensional sequence of characters. 1-D Math input is red.

To enter input using 1-D Math:

- At the input prompt, press F5 or click the Text button in the toolbar, Text Math, to switch from 2-D Math to 1-D Math.

```
> 123^2 - 29857/120;
```

$$
\frac{1785623}{120}
$$

Important: 1-D Math input must end with a semicolon or colon. If you use a semicolon, Maple displays the output; if you use a colon, Maple suppresses the output.

```
> 123^2 - 29857/120:
```

To set the default input mode to 1-D Math:

1. From the Tools menu, select Options. The Options dialog is displayed.
2. On the Display tab, in the Input display drop-down list, select Maple Notation.
3. Click Apply to Session (to set for only the current session) or Apply Globally (to set for all Maple sessions).

To convert 2-D Math input to 1-D Math input:

1. Select the 2-D Math input.
2. From the Format menu, select Convert To, and then 1-D Math Input.

Important: In Document mode, you can execute a statement only if you enter it in Math mode.

Input Separators

In 1-D and 2-D Math input, you can use a semicolon or colon to separate multiple inputs in the same input line.
$>\sqrt{4.4} ; \tan (3.2)$

$$
2.097617696
$$

0.05847385446

If you do not specify a semicolon or colon, Maple interprets it as a single input. This can either give unexpected results, as below, or an error.
$>\sqrt{4.4} \tan (3$

$$
\begin{equation*}
0.1226557919 \tag{3.2}
\end{equation*}
$$

3.3 Commands

Maple contains a large set of commands and a powerful programming language. Most Maple commands are written using the Maple programming language.

You can enter commands using 1-D or 2-D Math. You must use 1-D Math input when programming in Maple. Basic Programming (page 369) provides an introduction to Maple programming.

To learn how to use Maple commands, see the appropriate help page, or use task templates. For more information, see The Maple Help System (page 54) and Task Templates (page 91).

The Maple Library

Maple's commands are contained in the Maple library. There are two types of commands: top-level commands and package commands.

- The top-level commands are the most frequently used Maple commands.
- Packages contain related specialized commands in areas such as calculus, linear algebra, vector calculus, and code generation.

For a complete list of packages and commands, refer to the index help pages. To access the index overview help page, enter ?index, and then press Enter. For information on the Maple Help System, see The Maple Help System (page 54).

Top-Level Commands

To use a top-level command, enter its name followed by parentheses (()) containing any parameters. This is referred to as a calling sequence for the command.
command(arguments)
Note: In 1-D Math input, include a semicolon or colon at the end of the calling sequence.
For example, to differentiate an expression, use the diff command. The required parameters are the expression to differentiate, which must be specified first, and the independent variable.
$>\operatorname{diff}(\tan (x) \sin (x), x)$

$$
\left(1+\tan (x)^{2}\right) \sin (x)+\tan (x) \cos (x)
$$

For a complete list of functions (commands that implement mathematical functions), such as BesselI and AiryAi, available in the library, refer to the ?initialfunctions help page.
$>\frac{\operatorname{BesselI}(0.1,1)}{\operatorname{AiryAi}(2.2)}$

$$
47.53037086
$$

For detailed information on the properties of a function, use the FunctionAdvisor command.
> FunctionAdvisor('definition', BesselI)

$$
\left[\operatorname{BesselI}(a, z)=\frac{z^{a} \text { hypergeom }\left([],[1+a], \frac{1}{4} z^{2}\right)}{\Gamma(1+a) 2^{a}} \text {, with no restrictions on }(a, z)\right]
$$

For detailed information on how to use a function in Maple, refer to its help page.
For example:
> ?Bessel
Note: In 1-D and 2-D Math input, when accessing a help page using ?, you do not need to include a trailing semicolon or colon.

Top Commands

Here are a few of the most frequently used Maple commands. A complete list of top-level commands is available at Help \rightarrow Manuals, Resources, and more \rightarrow List of Commands.

Table 3.1: Top Commands

Command Name	Description
plot and plot3d	Create a two-dimensional and three-dimensional plot of functions.
solve	Solve one or more equations or inequalities for their unknowns.
fsolve	Solve one or more equations using floating-point arithmetic.
eval	Evaluate an expression at a given point.
evalf	Numerically evaluate expressions.
dsolve	Solve ordinary differential equations (ODEs).
int	Compute an indefinite or definite integral.
diff	Compute an ordinary or partial derivative, as the context dictates.
limit	Calculate the limiting value of a function.
sum	For symbolic summation. It is used to compute a closed form for an indefinite or definite sum.
assume/is	Set variable properties and relationships between variables. Similar function- ality is provided by the assuming command.
assuming	Compute the value of an expression under assumptions.
simplify	Apply simplification rules to an expression.
expand	Distribute products over sums.
normal	Normalize a rational expression.
convert	Convert an expression to a different type or form.
type	Type-checking command. In many contexts, it is not necessary to know the exact value of an expression; it suffices to know that an expression belongs to a broad class, or group, of expressions that share some common properties. These classes or groups are known as types.
	Generalized series expansion.
series	Apply a procedure to each operand of an expression.
map	

Package Commands

To use a package command, the calling sequence must include the package name, and the command name enclosed in square brackets ([]).

package[command](arguments)

If you are frequently using the commands in a package, load the package.

To load a package:

- Use the with command, specifying the package as an argument.

The with command displays a list of the package commands loaded (unless you suppress the output by entering a colon at the end of the calling sequence).

After loading a package, you can use the short form names of its commands. That is, you can enter the commands without specifying the package name.

For example, use the NLPSolve command from the Optimization package to find a local minimum of an expression and the value of the independent variable at which the minimum occurs.
$>$ Optimization $[$ NLPSolve $]\left(\frac{\sin (x)}{x}, x=1 . .15\right)$

$$
[-0.0913252028230576718,[x=10.9041216700744900]]
$$

> with(Optimization);
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve]

$$
>\operatorname{NLPSolve}\left(\frac{\sin (x)}{x}, x=1 . .15\right)
$$

$$
[-0.0913252028230576718,[x=10.9041216700744900]]
$$

For more information on optimization, see Optimization (page 188).

To unload a package:

- Use the unwith command, specifying the package as an argument.
> unwith(Optimization)
Alternatively, use the restart command. The restart command clears Maple's internal memory. The effects include unassigning all names and unloading all packages. For more information, refer to the ?restart help page.

Note: To execute the examples in this manual, you may be required to use the unassign or restart command between examples.

Some packages contain commands that have the same name as a top-level command. For example, the plots package contains a changecoords command. Maple also contains a toplevel changecoords command.

```
> with(plots):
```

After the plots package is loaded, the name changecoords refers to the plots[changecoords] command. To use the top-level changecoords command, unload the package or use the restart command. (For alternative methods of accessing the top-level command, see the ?rebound help page.)

Top Packages

Here are a few of the most frequently used Maple packages. A complete list of packages is available in the Maple help system at Help \rightarrow Manuals, Resources, and more \rightarrow List of Packages.

Table 3.2: Top Packages

Package Name	Description
CodeGeneration	The Code Generation package is a collection of commands and subpack- ages that enable the translation of Maple code to other programming lan- guages, such as C, Fortran, MATLAB ${ }^{\circledR}$, Visual Basic ${ }^{\circledR}$, and Java ${ }^{\text {TM }}$.
LinearAlgebra	The Linear Algebra package contains commands to construct and manip- ulate Matrices and Vectors, and solve linear algebra problems. LinearAl- gebra routines operate on three principal data structures: Matrices, Vectors, and scalars.
Optimization	The Optimization package is a collection of commands for numerically solving optimization problems, which involve finding the minimum or maximum of an objective function possibly subject to constraints.
Physics	The Physics package implements computational representations and related operations for most of the objects used in mathematical physics computa- tions.
RealDomain	The Real Domain package provides an environment in which Maple as- sumes that the basic underlying number system is the field of real numbers instead of the complex number field.
ScientificConstants	The Scientific Constants package provides access to the values of various physical constants, for example, the velocity of light and the atomic weight of sodium. This package provides the units for each of the constant values, allowing for greater understanding of an equation. The package also provides units-matching for error checking of the solution.
ScientificErrorAnalysis	The Scientific Error Analysis package provides representation and con- struction of numerical quantities that have a central value and an associated uncertainty (or error), which is a measure of the degree of precision to which the quantity's value is known. Various first-order calculations of error analysis can be performed with these quantities.
Statistics	The Statistics package is a collection of tools for mathematical statistics and data analysis. The package supports a wide range of common statist- ical tasks such as quantitative and graphical data analysis, simulation, and curve fitting.

Package Name	Description
Student	The Student package is a collection of subpackages designed to assist with teaching and learning standard undergraduate mathematics. The many commands display functions, computations, and theorems in various ways, including stepping through important computations. The Student package contains the following subpackages: - Calculus1 - single-variable calculus - LinearAlgebra - linear algebra - MultivariateCalculus - multivariate calculus - NumericalAnalysis - numerical analysis - Precalculus - precalculus - VectorCalculus - multivariate vector calculus
Units	The Units package contains commands for unit conversion and provides environments for performing calculations with units. It accepts approxim- ately 300 distinct unit names (for example, meters and grams) and over 550 units with various contexts (for example, standard miles and U.S. survey miles). Maple also contains two Units palettes that allow you to enter the unit for an expression quickly.
VectorCalculus	The Vector Calculus package is a collection of commands that perform multivariate and vector calculus operations. A large set of predefined or- thogonal coordinate systems is available. All computations in the package can be performed in any of these coordinate systems. It contains a facility for adding a custom but orthogonal coordinate system and using that new coordinate system for your computations.

3.4 Palettes

Palettes are collections of related items that you can insert by clicking or dragging. For example, see Figure 3.1.

Expression

$$
\begin{aligned}
& \int f \mathrm{~d} x \int_{a}^{b} f \mathrm{~d} x \sum_{i=k}^{n} f \prod_{i=k}^{n} f \quad \frac{\mathrm{~d}}{\mathrm{~d} x} f \frac{\partial}{\partial x} f \\
& \lim _{x \rightarrow a} f \quad a+b \quad a-b \quad a \cdot b \quad \frac{a}{b} \quad a^{b} \\
& a_{n} \quad a_{*} \quad \sqrt{a} \quad \sqrt[n]{a} \quad a!\quad|a| \\
& \mathrm{e}^{a} \ln (a) \quad \log _{10}(a) \log _{b}(a) \sin (a) \cos (a) \\
& \tan (a) \quad\binom{a}{b} \quad f(a) \quad f(a, b) \quad f:=a \rightarrow y \\
& f:=\left.(a, b) \rightarrow z f(x)\right|_{x=a}\left\{\begin{array}{cc}
-x & x<a \\
x & x \geq a
\end{array}\right.
\end{aligned}
$$

Figure 3.1: Expression Palette
You can use palettes to enter input.
For example, evaluate a definite integral using the definite integration item $\int_{a}^{b} f \mathrm{~d} x$ in the Expression palette.

In 2-D Math, clicking the definite integration item inserts:
$>\int_{a}^{b} f \mathrm{~d} x$

1. Enter values in the placeholders. To move to the next placeholder, press Tab. Note: If pressing the Tab key inserts a tab, click the Tab icon \vec{n} in the toolbar.
2. To evaluate the integral, press Enter.
$>\int_{0}^{1} \tanh (x) d x$

$$
-\ln (2)+\ln \left(\mathrm{e}^{-1}+\mathrm{e}\right)
$$

In 1-D Math, clicking the definite integration item inserts the corresponding command calling sequence.

```
> int(f,x=a..b);
```

Specify the problem values (using the Tab to move to the next placeholder), and then press Enter.

```
> int(tanh(x), x = 0..1);
```

$$
-\ln (2)+\ln \left(\mathrm{e}^{-1}+\mathrm{e}\right)
$$

Note: Some palette items cannot be inserted into 1-D Math because they are not defined in the Maple language. When the cursor is in 1-D Math input, unavailable palette items are dimmed.

For more information on viewing and using palettes, see Palettes (page 22) in Chapter 1.

3.5 Context Menus

A context menu is a pop-up menu that lists the operations and actions you can perform on a particular expression. See Figure 3.2.
>946929

Figure 3.2: Integer Context Menu
In Worksheet mode, you can use context menus to perform operations on 2-D Math and output.

To use a context menu:

1. Right-click (Control-click, for Macintosh) the expression. The context menu is displayed.
2. From the context menu, select an operation.

Maple inserts a new execution group containing:

- The calling sequence that performs the operation
- The result of the operation

Example 1 - Using Context Menus

Determine the rational expression (fraction) that approximates the floating-point number $0.3463678+1.7643$.

Notice that an equation label reference has been used. For information on equation labels and equation label references, see Equation Labels (page 97).

For more information on context menus, see Context Menus (page 70) in Chapter 2.

3.6 Assistants and Tutors

Assistants and tutors provide point-and-click interfaces with buttons, text input regions, and sliders. See Figure 3.3.

Figure 3.3: ODE Analyzer Assistant

Launching an Assistant or Tutor

To launch an assistant or tutor:

1. Open the Tools menu.
2. Select Assistants or Tutors.
3. Navigate to and select one of the assistants or tutors.

For more information on assistants and tutors, see Assistants (page 32) in Chapter 1.

3.7 Task Templates

Maple can solve a diverse set of problems. The task template facility helps you quickly find and use the commands required to perform common tasks.

After inserting a task template, specify the parameters of your problem in the placeholders, and then execute the commands, or click a button.

The Task Browser (Figure 3.4) organizes task templates by subject.

To launch the Task Browser:

- From the Tools menu, select Tasks, and then Browse.

You can also browse the task templates in the Table of Contents of the Maple Help System.

Figure 3.4: Task Browser
For details on inserting and using task templates, see Task Templates (page 41). You can also create your own task templates for performing common tasks. For details, refer to the ?creatingtasks help page.

3.8 Text Regions

To add descriptive text in Worksheet mode, use a text region.

To insert a text region:

- In the toolbar, click the Text region icon T.

The default mode in a text region is Text mode.
In a text region, you can:

- Enter text with inline mathematical content by switching between Text and Math modes. To toggle between Text mode and Math mode, press F5 or click the Math and Text toolbar icons, Text Math. Note: The mathematical content in a text region is not evaluated. To enter mathematical content that is evaluated, enter it at an Input Prompt (page 80).
- Insert any palette item. Palette items are inserted in Math mode (2-D Math). Note: After you insert a palette item, you must press F5 or click the toolbar icon to return to Text mode.

You can format text in a text region. Features include:

- Character styles
- Paragraph styles
- Sections and subsections
- Tables

For more information on formatting documents, see Creating Mathematical Documents (page 281).

3.9 Names

Instead of re-entering an expression every time you need it, you can assign it to a name or add an equation label to it. Then you can quickly refer to the expression using the name or an equation label reference. For information on labels, see the following section, Equation Labels (page 97).

Assigning to Names

You can assign any Maple expression to a name: numeric values, data structures, procedures (a type of Maple program), and other Maple objects.

Initially, the value of a name is itself.
$>a$

$$
a
$$

The assignment operator $(:=)$ associates an expression with a name.
$>a:=\pi$

$$
a:=\pi
$$

Recall that you can enter π using the following two methods.

- Use the Common Symbols palette
- In 2-D Math enter pi, and then press the symbol completion shortcut key. See Shortcuts for Entering Mathematical Expressions (page 7).

When Maple evaluates an expression that contains a name, it replaces the name with its value. For example:
$>\cos (a)$

For information on Maple evaluation rules, see Evaluating Expressions (page 359).

Mathematical Functions

To define a function, assign it to a name.
For example, define a function that computes the cube of its argument.

```
cube:=x->\mp@subsup{x}{}{3}
```

For information on creating functions, see Define a Mathematical Function (page 66).

```
> cube(3); cube(1.666)
```


4.624076296

Note: To insert the right arrow, enter the characters ->. In 2-D Math, Maple replaces -> with the right arrow symbol \rightarrow. In 1-D Math, the characters are not replaced.

For example, define a function that squares its argument.

```
> square := x -> x^2:
> square (32);
```

For more information on functions, see Functional Operators (page 343).

Protected Names

Protected names are valid names that are predefined or reserved.
If you attempt to assign to a protected name, Maple returns an error.

```
\(>\sin :=2\)
Error, attempting to assign to 'sin` which is protected
```

For more information, refer to the ? type/protected and ?protect help pages.

Unassigning Names

The unassign command resets the value of a name to itself. Note: You must enclose the name in right single quotes (' ').

```
> unassign('a')
```

$>a$

$$
a
$$

Right single quotes (unevaluation quotes) prevent Maple from evaluating the name. For more information on unevaluation quotes, see Delaying Evaluation (page 366) or refer to the ? uneval help page.

See also Unassigning a Name Using Unevaluation Quotes (page 368).
Unassigning all names:
The restart command clears Maple's internal memory. The effects include unassigning all names. For more information, refer to the ?restart help page.

Note: To execute the examples in this manual, you may be required to use the unassign or restart command between examples.

Valid Names

A Maple name must be one of the following.

- A sequence of alphanumeric and underscore (_) characters that begins with an alphabetical character. Note: To enter an underscore character in 2-D Math, enter a backslash character followed by an underscore character, that is, _.
- A sequence of characters enclosed in left single quotes (${ }^{`}$).

Important: Do not begin a name with an underscore character. Maple reserves names that begin with an underscore for use by the Maple library.

Examples of valid names:

- a
- a1
- polynomial
- polynomial1_divided_by_polynomial2
- `2a`
- 'x y`

3.10 Equation Labels

Maple marks the output of each execution group with a unique equation label.
Note: The equation label is displayed to the right of the output.
$>\int \sin (x) \mathrm{d} x$

$$
\begin{equation*}
-\cos (x) \tag{3.4}
\end{equation*}
$$

Using equation labels, you can refer to the result in other computations.
$>\int(3.4) d x$

$$
\begin{equation*}
-\sin (x) \tag{3.5}
\end{equation*}
$$

Displaying Equation Labels

Important: By default, equation labels are displayed. If equation label display is turned off, complete both of the following operations.

- From the Format menu, select Equation Labels, and then ensure that Worksheet is selected.
- In the Options dialog (Tools \rightarrow Options), on the Display tab, ensure that Show equation labels is selected.

Referring to a Previous Result

Instead of re-entering previous results in computations, you can use equation label references. Each time you need to refer to a previous result, insert an equation label reference.

To insert an equation label reference:

- From the Insert menu, select Label. (Alternatively, press Ctrl+L; Command+L, Macintosh.)
- In the Insert Label dialog (see Figure 3.5), enter the label value, and then click OK.

Figure 3.5: Insert Label Dialog
Maple inserts the reference.
For example:
To integrate the product of (3.4) and (3.5):

| Action | Result in Document |
| :--- | :--- | :--- |
| 1. In the Expression palette, click the indefinite integ-
 ration item $\int f \mathrm{~d} x$
 rand placeholder is highlighted. | $>\int f \mathrm{~d} x$ |
| 2. Press Ctrl+L (Command $+\mathbf{L}$, for Macintosh).
 3. In the Insert Label dialog, enter 3.4. Click $\mathbf{O K}$. | $>\int f \mathrm{~d} x$ |

Execution Groups with Multiple Outputs

An equation label is associated with the last output within an execution group.
$>\left(\frac{2}{3.5}\right)^{2} ; \cos \left(\frac{\pi}{6}\right)$

$$
\begin{gather*}
0.3265306122 \\
\frac{1}{2} \sqrt{3} \tag{3.7}
\end{gather*}
$$

$>(3.7)^{2}$

$$
\begin{equation*}
\frac{3}{4} \tag{3.8}
\end{equation*}
$$

Label Numbering Schemes

You can number equation labels in two ways:

- Flat - Each label is a single number, for example, 1, 2, or 3.
- Sections - Each label is numbered according to the section in which it occurs. For example, 2.1 is the first equation in the second section, and 1.3.2 is the second equation in the third subsection of the first section.

To change the equation label numbering scheme:

- From the Format menu, select Equation Labels \rightarrow Label Display. In the Format Labels dialog (Figure 3.6), select one of the formats.
- Optionally, enter a prefix.

```
>> \int\operatorname{sin}(x)dx
                -cos(x)


Figure 3.6: Format Labels Dialog: Adding a Prefix

\section*{Features of Equation Labels}

Although equation labels are not descriptive names, labels offer other important features.
- Each label is unique, whereas a name may be inadvertently assigned more than once for different purposes.
- Maple labels the output values sequentially. If you remove or insert an output, Maple automatically re-numbers all equation labels and updates the label references.
- If you change the equation label format (see Label Numbering Schemes (page 99)), Maple automatically updates all equation labels and label references.

For information on assigning to, using, and unassigning names, see Names (page 94).
For more information on equation labels, refer to the ?equationlabel help page.
The following chapters describe how to use Maple to perform tasks such as solving equations, producing plots and animations, and creating mathematical documents. The chapters were created using Worksheet mode. Except where noted, all features are available in both Worksheet mode and Document mode.

\section*{4 Basic Computations}

This chapter discusses key concepts related to performing basic computations with Maple. It discusses important features that are relevant to all Maple users. After learning about these concepts, you will learn how to use Maple to solve problems in specific mathematical disciplines in the following chapter.

\subsection*{4.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Symbolic and Numeric Computation (page 102)An overview of exact and floating-point computation & \begin{tabular}{l}
- Exact Computations \\
- Floating-Point Computations \\
- Converting Exact Quantities to Floating-Point Values \\
- Sources of Error
\end{tabular} \\
\hline Integer Operations (page 106) - How to perform integer computations & \begin{tabular}{l}
- Important Integer Commands \\
- Non-Base 10 Numbers \\
- Finite Rings and Fields \\
- Gaussian Integers
\end{tabular} \\
\hline Solving Equations (page 111) - How to solve standard mathematical equations & \begin{tabular}{l}
- Equations and Inequations \\
- Ordinary Differential Equations \\
- Partial Differential Equations \\
- Integer Equations \\
- Integer Equations in a Finite Field \\
- Linear Systems \\
- Recurrence Relations
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Units, Scientific Constants, and Uncertainty (page 128) - How to construct and compute with expressions that have units, scientific constants, or uncertainty & \begin{tabular}{l}
Units \\
- Conversions \\
- Applying Units to an Expression \\
- Performing Computations with Units \\
- Changing the Current System of Units \\
- Extensibility \\
Scientific Constants \\
- Scientific Constants \\
- Element and Isotope Properties \\
- Value, Units, and Uncertainty \\
- Performing Computations \\
- Modification and Extensibility \\
Uncertainty Propagation \\
- Quantities with Uncertainty \\
- Performing Computations with Quantities with Uncertainty
\end{tabular} \\
\hline Restricting the Domain (page 143) - How to restrict the domain for computations & \begin{tabular}{l}
- Real Number Domain \\
- Assumptions on Variables
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.2 Symbolic and Numeric Computation}

Symbolic computation is the mathematical manipulation of expressions involving symbolic or abstract quantities, such as variables, functions, and operators; and exact numbers, such as integers, rationals, \(\pi\), and \(\mathrm{e}^{2}\). The goal of such manipulations may be to transform an expression to a simpler form or to relate the expression to other, better understood formulas.

Numeric computation is the manipulation of expressions in the context of finite-precision arithmetic. Expressions involving exact numbers, for example, \(\sqrt{2}\), are replaced by close approximations using floating-point numbers, for example 1.41421. These computations generally involve some error. Understanding and controlling this error is often of as much importance as the computed result.

In Maple, numeric computation is normally performed if you use floating-point numbers (numbers containing a decimal point) or the evalf command. The plot command (see Plots and Animations (page 237)) uses numeric computation, while commands such as int, limit,
and gcd (see Integer Operations (page 106) and Mathematical Problem Solving (page 149)) generally use only symbolic computation to achieve their results.

\section*{Exact Computations}

In Maple, integers, rational numbers, mathematical constants such as \(\pi\) and \(\infty\), and mathematical structures such as matrices with these as entries are treated as exact quantities. Names, such as \(\mathrm{x}, \mathrm{y}\), my_variable, and mathematical functions, such as \(\sin (x)\) and

LambertW \((k, z)\), are symbolic objects. Names can be assigned exact quantities as their values, and functions can be evaluated at symbolic or exact arguments.
\(>\frac{3}{2}+\frac{1}{3}, 1+\frac{\pi}{2}\)
\[
\frac{11}{6}, 1+\frac{1}{2} \pi
\]

Important: Unless requested to do otherwise (see the following section), Maple evaluates expressions containing exact quantities to exact results, as you would do if you were performing the calculation by hand, and not to numeric approximations, as you normally obtain from a standard hand-held calculator.
\(>\sin (1), \sin (\pi), \sin (x)\)
\[
\sin (1), 0, \sin (x)
\]
\(>\int \tan (t) \mathrm{d} t\)
\[
-\ln (\cos (t))
\]
\(>\sqrt{32}\)
\[
4 \sqrt{2}
\]

\section*{Floating-Point Computations}

In some situations, a numeric approximation of an exact quantity is required. For example, the plot command requires the expression it is plotting to evaluate to numeric values that can be rendered on the screen: \(\pi\) cannot be so rendered, but 3.14159 can be. Maple distin-
guishes approximate from exact quantities by the presence or absence of a decimal point: 1.9 is approximate, while \(\frac{19}{10}\) is exact.

Note: An alternative representation of floating-point numbers, called e-notation, may not include an explicit decimal point: \(1 e 5=100000\)., \(3 e-2=.03\).

In the presence of a floating-point (approximate) quantity in an expression, Maple generally computes using numeric approximations. Arithmetic involving mixed exact and floatingpoint quantities results in a floating-point result.
\(>1.5+\frac{2}{3}\)

\subsection*{2.166666667}

If a mathematical function is passed a floating-point argument, it normally attempts to produce a floating-point approximation of the result.
\(>\sin (1.5), \int_{0.0}^{1.0} \mathrm{e}^{x} \mathrm{~d} x\)
\(0.9974949866,1.718281828\)

\section*{Converting Exact Quantities to Floating-Point Values}

To convert an exact quantity to a numeric approximation of that quantity, use the evalf command or the Approximate context menu operation (see Approximating the Value of an Expression (page 71)).
\[
>\operatorname{evalf}(\pi), \operatorname{evalf}(\sin (3)), e v a l f\left(\frac{3}{2}+\frac{1}{3}\right)
\]
\(3.141592654,0.1411200081,1.833333333\)

By default, Maple computes such approximations using 10 digit arithmetic. You can modify this in one of two ways:
- Locally, you can pass the precision as an index to the evalf call.
\(>\operatorname{evalf}[20](\exp (2)), \operatorname{evalf}\left(\Gamma\left(\frac{2}{3}\right)\right)\)
\[
7.3890560989306502272,1.354117939
\]
- Globally, you can set the value of the Digits environment variable.
\(>\) Digits \(:=25\) :
\(>\operatorname{evalf}\left(\tan \left(\frac{\pi}{3}\right)\right)\)
1.732050807568877293527446

For more information, see the ?evalf and ?Digits help pages.
Note: When appropriate, Maple performs floating-point computations directly using your computer's underlying hardware.

\section*{Sources of Error}

By its nature, floating-point computation normally involves some error. Controlling the effect of this error is the subject of active research in Numerical Analysis. Some sources of error are:
- An exact quantity may not be exactly representable in decimal form: \(\frac{1}{3}\) and \(\pi\) are examples.
- Small errors can accumulate after many arithmetic operations.
- Subtraction of nearly equal quantities can result in essentially no useful information. For example, consider the computation \(x-\sin (x)\) for \(x \approx 0\).
\(>\left.(x-\sin (x))\right|_{x=.00001}\)
\[
0 .
\]

No correct digits remain. If, however, you use Maple to analyze this expression, and replace this form with a representation that is more accurate for small values of \(x\), a fully accurate 10 -digit result can be obtained.
\(>t:=\operatorname{taylor}(x-\sin (x), x)\)
\[
t:=\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)
\]
\(>\left.t\right|_{x=0.00001}\)
\[
1.66666666710^{-16}
\]

For information on evaluating an expression at a point, see Substituting a Value for a Subexpression (page 359). For information on creating a series approximation, see Series (page 182). For more information on floating-point numbers, refer to the ?float and ?type/float help pages.

\subsection*{4.3 Integer Operations}

In addition to the basic arithmetic operators, Maple has many specialized commands for performing more complicated integer computations, such as factoring an integer, testing whether an integer is a prime number, and determining the greatest common divisor (GCD) of a pair of integers.

Note: Many integer operations are available as task templates (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse, under Integer Operations).

You can quickly perform many integer operations using context menus. Selecting an integer, and then right-clicking (for Macintosh, Control-clicking) displays a context menu with integer commands. For example, the context menu item Integer Factors applies the ifactor command to compute the prime factorization of the given integer. See Figure 4.1.
\(>9469629\)


Figure 4.1: Context Menu for an Integer
The result of applying Integer Factors is shown:
> 9469629
\[
\begin{equation*}
9469629 \tag{4.1}
\end{equation*}
\]
\(>\) ifactor((4.1))
\[
\begin{equation*}
(3)^{4}(13)(17)(23)^{2} \tag{4.2}
\end{equation*}
\]

Maple inserts the command ifactor, using an equation label reference to the integer 946929. For more information on equation labels, see Equation Labels (page 97).

For more information on using context menus in Worksheet mode, see Context Menus (page 89). For information on using context menus in Document mode, see Context Menus (page 70).

Maple has many other integer commands, including those listed in Table 4.1.
Table 4.1: Select Integer Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline abs & absolute value (displays in 2-D math as \(|a|\) ) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline factorial & factorial (displays in 2-D math as \(a!\) ) \\
\hline ifactor & prime factorization \\
\hline iged & greatest common divisor \\
\hline iquo & quotient of integer division \\
\hline irem & remainder of integer division \\
\hline iroot & integer approximation of nth root \\
\hline isprime & test primality \\
\hline isqrt & integer approximation of square root \\
\hline max, min & maximum and minimum of a set \\
\hline mod & modular arithmetic (See Finite Rings and Fields (page 109).) \\
\hline numtheory[divisors] & set of positive divisors \\
\hline \(\boldsymbol{>}\) iquo(209, 17) & \\
\hline
\end{tabular}
```

> irem(209,17)

```
\(>\operatorname{igcd}(2024,4862)\)

For information on finding integer solutions to equations, see Integer Equations (page 126).

\section*{Non-Base 10 Numbers and Other Number Systems}

Maple supports:
- Non-base 10 numbers
- Finite ring and field arithmetic
- Gaussian integers

\section*{Non-Base 10 Numbers}

To represent an expression in another base, use the convert command.
```

> convert(6000, 'binary')

```
```

> convert(34271,'hex')

```

For information on enclosing keywords in right single quotes ('), see Delaying Evaluation (page 366).

You can also use the convert/base command.
> convert(34271,'base', 16)
\[
[15,13,5,8]
\]

Note: The convert/base command returns a list of digit values in order of increasing significance.

\section*{Finite Rings and Fields}

Maple supports computations over the integers modulo m .
The mod operator evaluates an expression over the integers modulo m .
\(>27 \bmod 4\)
3

By default, the mod operator uses positive representation (modp command). Symmetric representation is available using the mods command.
```

> modp(27,4)

```
\(>\operatorname{mods}(27,4)\)
\(-1\)

For information on setting symmetric representation as the default, refer to the \(\boldsymbol{? m o d}\) help page.

The modular arithmetic operators are listed in Table 4.2.

Table 4.2: Modular Arithmetic Operators
\begin{tabular}{|l|c|l|}
\hline Operation & Operator & Example \\
\hline Addition & + & \(>7+6 \bmod 5\) \\
& & - \\
\hline Subtraction & \(>\operatorname{mods}(3-16,11)\) \\
& & \\
\hline Multiplication (displays in 2-D Math as \(\cdot)\) & \(*\) & \(>13 \cdot 5 \bmod 3\) \\
\hline
\end{tabular}

For information on solving an equation modulo an integer, see Integer Equations in a Finite Field (page 126).

The mod operator also supports polynomial and matrix arithmetic over finite rings and fields. For more information, refer to the \(\boldsymbol{? m o d}\) help page.

\section*{Gaussian Integers}

Gaussian integers are complex numbers in which the real and imaginary parts are integers.
The GaussInt package contains commands that perform Gaussian integer operations.
The GIfactor command returns the Gaussian integer factorization.
\(>\) GaussInt[GIfactor] \((173+16\) I)
\[
(1+2 \mathrm{I})(41-66 \mathrm{I})
\]

In Maple, complex numbers are represented as \(\mathbf{a}+\mathbf{b} * \mathbf{I}\), where the uppercase I represents the imaginary unit \(\sqrt{-1}\).

You can also enter the imaginary unit using the following two methods.
- In the Common Symbols palette, click the I, i or j item. See Palettes (page 22).
- Enter \(i\) or \(j\), and then press the symbol completion key. See Symbol Names (page 29).

Note that the output will still be displayed with I, no matter what symbol was used for input.
You can customize Maple's settings to use a different symbol for \(\sqrt{-1}\). For more information on entering complex numbers, including how to customize this setting, refer to the ?HowDoI help page.

The GIsqrt command approximates the square root in the Gaussian integers.
```

> GaussInt $[$ GIsqrt $](9-5 \mathrm{j})$

```
\[
3-I
\]

For more information on Gaussian integers including a list of GaussInt package commands, refer to the ?GaussInt help page.

\subsection*{4.4 Solving Equations}

You can solve a variety of equation types, including those described in Table 4.3.
Table 4.3: Overview of Solution Methods for Important Equation Types
\begin{tabular}{|l|l|}
\hline Equation Type & Solution Method \\
\hline Equations and inequations & solve and fsolve commands \\
\hline Ordinary differential equations & ODE Analyzer Assistant (and dsolve command) \\
\hline Partial differential equations & pdsolve command \\
\hline Integer equations & isolve command \\
\hline Integer equations in a finite field & msolve command \\
\hline Linear integral equations & intsolve command \\
\hline Linear systems & LinearAlgebra[LinearSolve] command \\
\hline Recurrence relations & rsolve command \\
\hline
\end{tabular}

Note: Many solve operations are available in context menus and as task templates (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse). Most of this section focuses on other methods.

\section*{Solving Equations and Inequations}

Using Maple, you can symbolically solve equations and inequations. You can also solve equations numerically.

To solve an equation or set of equations using context menus:
1. Right-click (for Macintosh, Control-click) the equations.
2. From the context menu, select Solve (or Solve Numerically). See Figure 4.2.
\(>\frac{7 x^{2}}{3}-x=12\)
\[
\frac{7}{3} x^{2}-x=12
\]


Figure 4.2: Context Menu for an Equation
In Worksheet mode, Maple inserts a calling sequence that solves the equation followed by the solutions.

If you select Solve, Maple computes exact solutions.
\(>\frac{7 x^{2}}{3}-x=12\)
\[
\begin{equation*}
\frac{7}{3} x^{2}-x=12 \tag{4.3}
\end{equation*}
\]
\(>\operatorname{solve}(\{(4.3)\})\)
\[
\begin{equation*}
\left\{x=\frac{3}{14}+\frac{3}{14} \sqrt{113}\right\},\left\{x=\frac{3}{14}-\frac{3}{14} \sqrt{113}\right\} \tag{4.4}
\end{equation*}
\]

If you select Solve Numerically, Maple computes floating-point solutions.
\(>\frac{7 x^{2}}{3}-x=12\)
\[
\begin{equation*}
\frac{7}{3} x^{2}-x=12 \tag{4.5}
\end{equation*}
\]
\(>\) fsolve \((\{(4.5)\})\)
\[
\begin{equation*}
\{x=-2.063602674\},\{x=2.492174103\} \tag{4.6}
\end{equation*}
\]

For information on solving equations and inequations symbolically using the solve command, see the following section. For information on solving equations numerically using the fsolve command, see Numerically Solving Equations (page 117).

\section*{Symbolically Solving Equations and Inequations}

The solve command is a general solver that determines exact symbolic solutions to equations or inequations. The solutions to a single equation or inequation are returned as an expression sequence. For details, see Creating and Using Data Structures (page 337). If Maple does not find any solutions, the solve command returns the empty expression sequence.
\[
\begin{aligned}
>\operatorname{solve}\left(x^{2}+3 x+14=\right. & 0) \\
& -\frac{3}{2}+\frac{1}{2} \mathrm{I} \sqrt{47},-\frac{3}{2}-\frac{1}{2} \mathrm{I} \sqrt{47}
\end{aligned}
\]

In general, solve computes solutions in the field of complex numbers. To restrict the problem to only real solutions, see Restricting the Domain (page 143).

It is recommended that you verify the solutions returned by the solve command. For details, see Working with Solutions (page 119).

To return the solutions as a list, enclose the calling sequence in brackets ([ ]).
\[
\begin{aligned}
& >\left[\operatorname{solve}\left(x^{2}+x=256 y, x\right)\right] \\
& \qquad\left[-\frac{1}{2}+\frac{1}{2} \sqrt{1+1024 y},-\frac{1}{2}-\frac{1}{2} \sqrt{1+1024 y}\right]
\end{aligned}
\]

Expressions: You can specify expressions instead of equations. The solve command automatically equates them to zero.
```

solve(}\mp@subsup{\textrm{e}}{}{z}+z

```
-LambertW(1)

Multiple Equations: To solve multiple equations or inequations, specify them as a Creating and Using Data Structures (page 337).
\[
\begin{aligned}
& >\operatorname{solve}\left(\left[x y^{2}-y=5, x>0\right]\right) \\
& \left\{x=\frac{y+5}{y^{2}}, \frac{y+5}{y^{2}}=\frac{y+5}{y^{2}}, 0<y\right\},\left\{x=\frac{y+5}{y^{2}}, \frac{y+5}{y^{2}}=\frac{y+5}{y^{2}},-5<y, y<0\right\} \\
& >\operatorname{solve}\left(\left\{x y^{2}-y=5, x<0\right\}\right) \\
& \qquad\left\{x=\frac{y+5}{y^{2}}, \frac{y+5}{y^{2}}=\frac{y+5}{y^{2}}, y<-5\right\}
\end{aligned}
\]

Solving for Specific Unknowns: By default, the solve command returns solutions for all unknowns. You can specify the unknowns for which to solve.
\[
\begin{aligned}
& >\operatorname{solve}\left(q^{2}-r s+\frac{q}{r}=5, q\right) \\
& \qquad \frac{1}{2} \frac{-1+\sqrt{1+4 r^{3} s+20 r^{2}}}{r},-\frac{1}{2} \frac{1+\sqrt{1+4 r^{3} s+20 r^{2}}}{r}
\end{aligned}
\]

To solve for multiple unknowns, specify them as a list.
\[
\begin{aligned}
>\text { solve }\left(\left\{\frac{q}{s}-\frac{r}{s+1}+\frac{q}{r}\right.\right. & =5, r s=1\},[q, r]) \\
& {\left[\left[q=\frac{5 s^{2}+1+5 s}{s+1+s^{3}+s^{2}}, r=\frac{1}{s}\right]\right] }
\end{aligned}
\]

Transcendental Equations: In general, the solve command returns one solution to transcendental equations.
\(>\) equation \(1:=\sin (x)=\cos (x)\) :
> solve(equationl)
\[
\frac{1}{4} \pi
\]

To produce all solutions, use the allsolutions option.
> solve(equation 1, allsolutions \(=\) true \()\)
\[
\frac{1}{4} \pi+\pi \_Z 1 \sim
\]

Maple uses variables of the form _ \(\mathbf{Z N} \sim\), where \(\mathbf{N}\) is a positive integer, to represent arbitrary integers. The tilde ( \(\sim\) ) indicates that it is a quantity with an assumption. For information about names with assumptions, see Assumptions on Variables (page 144).

RootOf Structure: The solve command may return solutions, for example, to higher order polynomial equations, in an implicit form using RootOf structures.
\[
\begin{align*}
& >\left[\text { solve }\left(x^{5}-2 x^{4}+3 x^{3}-2\right)\right] \\
& {\left[1, \operatorname{RootOf}\left(\_Z^{4}-Z^{3}+2_{-} Z^{2}+2_{-} Z+2, \text { index }=1\right), \operatorname{RootOf}\left(Z_{-}^{A}-Z^{3}+2_{-} Z^{2}+2 \_Z+2,\right.\right.} \\
& \text { index }=2) \text {, RootOf }\left(Z_{-} \overline{4}-Z^{3}+2 \_Z^{2}+2 \_Z+2 \text {, index }=\overline{3}\right) \text {, RootOf }\left(Z^{\overline{4}}-Z^{3}+2 Z^{2}\right.  \tag{4.7}\\
& \left.\left.+2 \_Z+2 \text {, index }=4\right)\right]
\end{align*}
\]

These RootOf structures are placeholders for the roots of the equation \(z^{4}-z^{3}+2 z^{2}+2 z+2\). The index parameter numbers and orders the four solutions.

Like any symbolic expression, you can convert RootOf structures to a floating-point value using the evalf command.
```

> evalf((4.7))

```
\[
\begin{aligned}
& {[1 ., 0.984001051867989+1.52659083388421 \mathrm{I},-0.484001051867989+0.609947140486231 \mathrm{I},} \\
& \quad-0.484001051867989-0.609947140486231 \mathrm{I}, 0.984001051867989-1.52659083388421 \mathrm{I}]
\end{aligned}
\]

Some equations are difficult to solve symbolically. For example, polynomial equations of order five and greater do not in general have a solution in terms of radicals. If the solve command does not find any solutions, it is recommended that you use the Maple numerical solver, fsolve. For information, see the following section, Numerically Solving Equations.

For more information on the solve command, including how to solve equations defined as procedures and how to find parametric solutions, refer to the ?solve/details help page.

For information on verifying and using solutions returned by the solve command, see Working with Solutions (page 119).

\section*{Numerically Solving Equations}

The fsolve command solves equations numerically. The behavior of the fsolve command is similar to that of the solve command.
\(>\) equation \(2:=z \cos (z)=2\) :
> fsolve(equation2,z)
\[
\begin{equation*}
23.64662473 \tag{4.8}
\end{equation*}
\]

Note: You can also numerically solve equations using the context menus. See Solving Equations and Inequations (page 112).

It is recommended that you verify the solutions returned by the fsolve command. For details, see Working with Solutions (page 119).

Multiple Equations: To solve multiple equations, specify them as a set. For more information, see Creating and Using Data Structures (page 337). The fsolve command solves for all unknowns.
\[
>\text { fsolve }\left(\left\{\ln (x)=y^{2}+1, x y=\mathrm{e}^{y}\right\}\right)
\]
\[
\{x=3.396618823, y=0.4719962637\}
\]

Univariate Polynomial Equations: In general, the fsolve command finds one real solution. However, for a univariate polynomial equation, the fsolve command returns all real roots.
```

> equation3:= 午-3 (2 - 2y+1:

```
> fsolve (equation3, y)
\[
0.3365322739,1.940392664
\]

Controlling the Number of Solutions: To limit the number of roots returned, specify the maxsols option.
```

> fsolve(equation3, y,'maxsols'= 1)

```
0.3365322739

To find additional solutions to a general equation, use the avoid option to ignore known solutions.
\(>\) fsolve(equation \(2, z\), 'avoid \(=\{z=(4.8)\})\)
\(-2.498755763\)

Complex Solutions: To search for a complex solution or find all complex and real roots for a univariate polynomial, specify the complex option for the fsolve command.
\(>f\) solve(equation \(3, y\),'complex')
\[
\begin{aligned}
& -1.13846246879373-0.485062494059435 \mathrm{I},-1.13846246879373+0.485062494059435 \mathrm{I}, \\
& 0.336532273926790,1.94039266366067
\end{aligned}
\]

If the fsolve command does not find any solutions, it is recommended that you specify a range in which to search for solutions, or specify an initial value.

Range: To search for a solution in a range, specify the range in the calling sequence. The range can be real or complex.
\(>\) fsolve(equation \(2, z,\{z=100 \ldots 200\}\) )
149.2390528

The syntax for specifying a region in the complex plane is lower-left point..upper-right point.
\(>\) fsolve(equation \(3, y,\{y=-2-I . .0\}\), 'complex');
\(-1.13846246879373-0.485062494059435\) I

Initial Values: You can specify a value for each unknown. The fsolve command uses these as initial values for the unknowns in the numerical method.
> fsolve(equation2, \(\{z=100\}\) )
\[
\begin{equation*}
\{z=98.98037599\} \tag{4.9}
\end{equation*}
\]

For more information and examples, refer to the ?fsolve/details help page.
For information on verifying and using solutions returned by the fsolve command, see the following section, Working with Solutions.

\section*{Working with Solutions}

Verifying: It is recommended that you always verify solutions (that the solve and fsolve commands return) using the eval command.
```

> equation4:= sin}(x)=-\operatorname{cos}(x)
> solve(equation4)

```
\[
\begin{equation*}
-\frac{1}{4} \pi \tag{4.10}
\end{equation*}
\]
\(>\operatorname{eval}(\) equation \(4, x=(4.10))\)
\[
\begin{equation*}
-\frac{1}{2} \sqrt{2}=-\frac{1}{2} \sqrt{2} \tag{4.11}
\end{equation*}
\]
\(>\) equation \(5:=\cos (z)=\frac{2}{z}\).
> fsolve(equation5)
\[
\begin{equation*}
-2.498755763 \tag{4.12}
\end{equation*}
\]
\(>\operatorname{eval}(\) equation \(5,\{z=(4.12)\})\)
\[
\begin{equation*}
-0.8003983544=-0.8003983540 \tag{4.13}
\end{equation*}
\]

For more information, see Substituting a Value for a Subexpression (page 359).
Assigning the Value of a Solution to a Variable: To assign the value of a solution to the corresponding variable as an expression, use the assign command.

For example, consider the numeric solution in (4.9), \(\{z=98.98037599\}\), found using the starting value \(z=100\).
```

$>\operatorname{assign}(4.9))$

```
\(>z\)

Creating a Function from a Solution: The assign command assigns a value as an expression to a name. It does not define a function. To convert a solution to a function, use the unapply command.

Consider one of the solutions for \(\mathbf{q}\) to the equation \(q^{2}-r s+\frac{q}{r}=5\).
\[
\begin{aligned}
& >\text { solutions }:=\left[\text { solve }\left(q^{2}-r s+\frac{q}{r}=5, q\right)\right] \\
& \text { solutions }:=\left[\frac{1}{2} \frac{-1+\sqrt{1+4 r^{3} s+20 r^{2}}}{r},-\frac{1}{2} \frac{1+\sqrt{1+4 r^{3} s+20 r^{2}}}{r}\right]
\end{aligned}
\]
\(>f:=\) unapply \((\) solutions \([1], r, s)\)
\[
f:=(r, s) \rightarrow \frac{1}{2} \frac{-1+\sqrt{1+4 r^{3} s+20 r^{2}}}{r}
\]

Here, solutions[1] selects the first element of the list of solutions. For more information on selecting elements, see Accessing Elements (page 338).

You can evaluate this function at symbolic or numeric values.
\(>f(x, y)\)
\[
\frac{1}{2} \frac{-1+\sqrt{1+4 x^{3} y+20 x^{2}}}{x}
\]
\(>f\left(\frac{1}{\sqrt{2}}, 1\right)\)
\[
\frac{1}{2} \sqrt{2}(-1+\sqrt{11+\sqrt{2}})
\]
\(>f(5.7,2.1)\)

For more information on defining and using functions, see Functional Operators (page 343).

\section*{Other Specialized Solvers}

In addition to equations and inequations, Maple can solve other equations including:
- Ordinary differential equations (ODEs)
- Partial differential equations (PDEs)
- Integer equations
- Integer equations in a finite field
- Linear systems
- Recurrence relations

\section*{Ordinary Differential Equations (ODEs)}

Maple can solve ODEs and ODE systems, including initial value and boundary value problems, symbolically and numerically.

ODE Analyzer Assistant The ODE Analyzer Assistant is a point-and-click interface to the Maple ODE solving routines.

\section*{To open the ODE Analyzer:}
- From the Tools menu, select Assistants, and then ODE Analyzer.

Maple inserts the dsolve[interactive]() calling sequence in the document. The ODE Analyzer Assistant (Figure 4.3) is displayed.


Figure 4.3: ODE Analyzer Assistant
In the main ODE Analyzer Assistant window, you can define ODEs, initial or boundary value conditions, and parameters. To define derivatives, use the diff command. For example, \(\operatorname{diff}(\mathbf{x}(\mathbf{t}), \mathbf{t})\) corresponds to \(\frac{d x(t)}{d t}\), and \(\operatorname{diff}(\mathbf{x}(\mathbf{t}), \mathbf{t}, \mathbf{t})\) corresponds to \(\frac{d^{2} x(t)}{d t^{2}}\). For more information on the diff command, see The diff Command (page 178).

After defining an ODE, you can solve it numerically or symbolically.
To solve a system numerically using the ODE Analyzer Assistant:
1. Ensure that the conditions guarantee uniqueness of the solution.
2. Ensure that all parameters have fixed values.
3. Click the Solve Numerically button.
4. In the Solve Numerically window (Figure 4.4), you can specify the numeric method and relevant parameters and error tolerances to use for solving the problem.
5. To compute solution values at a point, click the Solve button.


Figure 4.4: ODE Analyzer Assistant: Solve Numerically Dialog

\section*{To solve a system symbolically using the ODE Analyzer Assistant:}
1. Click the Solve Symbolically button.
2. In the Solve Symbolically window (Figure 4.5), you can specify the method and relevant method-specific options to use for solving the problem.
3. To compute the solution, click the Solve button.


Figure 4.5: ODE Analyzer Assistant: Solve Symbolically Dialog
When solving numerically or symbolically, you can view a plot of the solution by clicking the Plot button.
- To plot the solution to a symbolic problem, all conditions and parameters must be set.
- To customize the plot, click the Plot Options button to open the Plot Options window.

To view the corresponding Maple commands as you solve the problem or plot the solution, select the Show Maple commands check box.

You can control the return value of the ODE Analyzer using the On Quit, Return dropdown list. You can select to return nothing, the displayed plot, the computed numeric procedure (for numeric solutions), the solution (for symbolic solutions), or the Maple commands needed to produce the solution values and the displayed plot.

For more information, refer to the ?ODEAnalyzer help page.

\section*{The dsolve Command}

The ODE Analyzer provides a point-and-click interface to the Maple dsolve command.
For ODEs or systems of ODEs, the dsolve command can find:
- Closed form solutions
- Numerical solutions
- Series solutions

In addition, the dsolve command can find:
- Formal power series solutions to linear ODEs with polynomial coefficients
- Formal solutions to linear ODEs with polynomial coefficients

To access all available functionality, use the dsolve command directly. For more information, refer to the ?dsolve help page.

\section*{Partial Differential Equations (PDEs)}

To solve a PDE or PDE system symbolically or numerically, use the pdsolve command. PDE systems can contain ODEs, algebraic equations, and inequations.

For example, solve the following PDE symbolically. For help entering a partial derivative, see Example 1 - Enter a Partial Derivative (page 65).
\[
\begin{align*}
>x\left(\frac{\partial}{\partial y} f(x, y)\right)-y\left(\frac{\partial}{\partial x} f(x, y)\right) & =0 \\
x\left(\frac{\partial}{\partial y} f(x, y)\right)-y\left(\frac{\partial}{\partial x} f(x, y)\right) & =0 \tag{4.14}
\end{align*}
\]
> pdsolve((4.14))
\[
f(x, y){ }^{\prime} F l\left(x^{2}+y^{2}\right)
\]

The solution is an arbitrary univariate function applied to \(x^{2}+y^{2}\).
Maple generally prints only the return value, errors, and warnings during a computation. To print information about the techniques Maple uses, increase the infolevel setting for the command.

To return all information, set infolevel to 5 .
```

> infolevel[pdsolve]:= 5:
> pdsolve((4.14))
Checking arguments ...
First set of solution methods (general or quase general solution)
Second set of solution methods (complete solutions)
Trying methods for first order PDEs
Second set of solution methods successful

$$
f(x, y)={ }_{-} F 1\left(x^{2}+y^{2}\right)
$$

```

For more information on solving PDEs, including numeric solutions and solving PDE systems, refer to the ?pdsolve help page.

\section*{Integer Equations}

To find only integer solutions to an equation, use the isolve command. The isolve command finds solutions for all variables. For more information, refer to the ?isolve help page.
\(>\) isolve \(\left(\left\{x^{2}+y=13\right\}\right)\)
\[
\left\{x=Z 1, y=-Z Z 1^{2}+13\right\}
\]

\section*{Integer Equations in a Finite Field}

To solve an equation modulo an integer, use the msolve command. The msolve command finds solutions for all variables. For more information, refer to the ?msolve help page.
\(>\operatorname{msolve}\left(\left\{x^{2}=1\right\}, 13\right)\)
\[
\{x=1\},\{x=12\}
\]

\section*{Solving Linear Systems}

To solve a linear system, use the LinearAlgebra[LinearSolve] command. The LinearSolve command returns the vector \(\mathbf{x}\) that satisfies \(\mathbf{A .} \mathbf{x}=\mathbf{B}\). For more information, refer to the ?LinearAlgebra[LinearSolve] help page.

For example, construct an augmented matrix using the Matrix palette (see Creating Matrices and Vectors (page 159)) in which the first four columns contain the entries of \(\mathbf{A}\) and the final column contains the entries of \(\mathbf{B}\).
\(>\) linearsystem \(:=\left[\begin{array}{ccccc}\frac{59}{10} & \frac{44}{25} & \frac{17}{2} & \frac{1}{100} & \frac{1}{2} \\ 1 & 0 & 7 & \frac{533}{100} & \frac{61}{50} \\ 98 & \frac{21}{10} & \frac{3}{10} & 7 & \frac{2178}{25} \\ 23 & 9 & 12 & \frac{51}{10} & \frac{786}{25}\end{array}\right]\)
> LinearAlgebra[LinearSolve](linearsystem)
\[
\left[\begin{array}{c}
\frac{31753441047}{41858667400} \\
\frac{16991806239}{8371733480} \\
-\frac{1489266217}{1674346696} \\
\frac{262603866}{209293337}
\end{array}\right]
\]

For more information on using Maple to solve linear algebra problems, see Linear Algebra (page 159).

\section*{Solving Recurrence Relations}

To solve a recurrence relation, use the rsolve command. The rsolve command finds the general term of the function. For more information, refer to the ?rsolve help page.
\[
\begin{aligned}
& >\operatorname{rsolve}(\{f(n)=f(n-1)+f(n-2), f(0)=1, f(1)=1\},\{f(n)\}) \\
& \left\{f(n)=\left(-\frac{1}{10} \sqrt{5}+\frac{1}{2}\right)\left(-\frac{1}{2} \sqrt{5}+\frac{1}{2}\right)^{n}+\left(\frac{1}{10} \sqrt{5}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2} \sqrt{5}\right)^{n}\right\}
\end{aligned}
\]

\subsection*{4.5 Units, Scientific Constants, and Uncertainty}

In addition to manipulating exact symbolic and numeric quantities, Maple can perform computations with units and uncertainties.

Maple supports hundreds of units, for example, miles, coulombs, and bars, and provides facilities for adding custom units.

Maple has a library of hundreds of scientific constants with units, including element and isotope properties.

To support computations with uncertainties, Maple propagates errors through computations.

\section*{Units}

The Units package in Maple provides a library of units, and facilities for using units in computations. It is fully extensible so that you can add units and unit systems as required.

Note: Some unit operations are available as task templates (see Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse) and through context menus.

\section*{Overview of Units}

A dimension is a measurable quantity, for example, length or force. The set of dimensions that are fundamental and independent are known as base dimensions.

In Maple, the base dimensions include length, mass, time, electric current, thermodynamic temperature, amount of substance, luminous intensity, information, and currency. For a complete list, enter and execute Units[GetDimensions]().

Complex dimensions (or composite dimensions) measure other quantities in terms of a combination of base dimensions. For example, the complex dimension force is a measurement of \(\frac{\text { mass } \cdot \text { length }}{\text { time }^{2}}\).

Each dimension, base or complex, has associated units. (Base units measure a base dimension. Complex units measure a complex dimension.) Maple supports over 40 units of length, including feet, miles, meters, angstroms, microns, and astronomical units. A length must be measured in terms of a unit, for example, a length of 2 parsecs.

Table 4.4 lists some dimensions, their corresponding base dimensions, and example units.

Table 4.4: Sample Dimensions
\begin{tabular}{|l|c|l|}
\hline Dimension & Base Dimensions & Example Units \\
\hline Time & time & \begin{tabular}{l} 
second, minute, hour, day, week, \\
month, year, millennium, blink, lune
\end{tabular} \\
\hline Energy & \(\frac{\text { length }^{2} \cdot \text { mass }}{\text { time }^{2}}\) & \begin{tabular}{l} 
joule, electron volt, erg, watt hour, \\
calorie, Calorie, British thermal unit
\end{tabular} \\
\hline Electric potential & \(\frac{\text { length }^{2} \cdot \text { mass }}{\text { time }^{3} \cdot \text { electric current }^{2}}\) & volt, abvolt, statvolt \\
\hline
\end{tabular}

For the complete list of units (and their contexts and symbols) available for a dimension, refer to the corresponding help page, for example, the ?Units/length help page for the units of length.

Each unit has a context. The context differentiates between different definitions of the unit. For example, the standard and US survey miles are different units of length, and the second is a unit of time and of angle. You can specify the context for a unit by appending the context as an index to the unit, for example, mile[US_survey]. If you do not specify a context, Maple uses the default context.

Units are collected into systems, for example, the foot-pound-second (FPS) system and international system, or système international, (SI). Each system has a default set of units used for measurements. In the FPS system, the foot, pound, and second are used to measure the dimensions of length, mass, and time. The unit of speed is the foot/second. In SI, the meter, kilogram, and second are used to measure the dimensions of length, mass, and time. The units of speed, magnetic flux, and power are the meter/second, weber, and watt, respectively.

\section*{Unit Conversions}

To convert a value measured in a unit to the corresponding value in a different unit, use the Units Calculator.
- From the Tools \(\rightarrow\) Assistants menu, select Units Calculator.

The Units Calculator application (Figure 4.6) opens.


Convert between over 500 units of measurement. See Units help index for details.
First, select a dimension from the drop-down box. Then select the units to convert from and to. Click the "Perform Unit Conversion" button. The "Convert Back" button converts in the opposite direction.


Perform Unit Conversion Convert Back

Figure 4.6: Units Calculator Assistant
To perform a conversion:
1. In the Convert text field, enter the numeric value to convert.
2. In the Dimension drop-down list, select the dimensions of the unit.
3. In the From and To drop-down lists, select the original unit and the unit to which to convert.

\section*{4. Click Perform Unit Conversion.}

The same conversion can be done with the convert/units command.
```

> convert(1.0, ' units', 'lbfft(radius)', ' Nm(radius)')

```
1.355817948

Using the Units Calculator, you can convert temperatures and temperature changes.
- To perform a temperature conversion, in the Dimension drop-down list, select temperature(absolute).
- To perform a temperature change conversion, in the Dimension drop-down list, select temperature(relative).

To convert temperature changes, the Units Calculator uses the convert/units command. For example, an increase of 32 degrees Fahrenheit corresponds to an increase of almost 18 degrees Celsius.
```

> convert(32.0, 'units',' 'degF, ' 'degC')

```
17.77777778

To convert absolute temperatures, the Unit Converter uses the convert/temperature command. For example, 32 degrees Fahrenheit corresponds to 0 degrees Celsius.
```

> convert(32, ' temperature', ' }\operatorname{deg}F\mathrm{ , ' ' degC')

```

0

\section*{Applying Units to an Expression}

To insert a unit, use the Units palettes. The Units (FPS) palette (Figure 4.7) contains important units from the foot-pound-second system of units. The Units (SI) palette (Figure 4.8) contains important units from the international system of units.


Figure 4.7: Units (FPS) Palette
\begin{tabular}{|ccc|}
\hline\(\nabla\) Units (SI) & \\
\hline\(\llbracket u n i t \rrbracket\) & \(\llbracket m \rrbracket\) & \(\llbracket s \rrbracket\) \\
\(\llbracket N \rrbracket\) & \(\llbracket k g \rrbracket\) & \(\llbracket P a \rrbracket\) \\
\(\llbracket W \rrbracket\) & \(\llbracket J \rrbracket\) & \(\llbracket K \rrbracket\) \\
\(\llbracket T \rrbracket\) & \(\llbracket A \rrbracket\) & \(\llbracket V \rrbracket\) \\
\(\llbracket C \rrbracket\) & \(\llbracket \Omega \rrbracket\) & \(\llbracket F \rrbracket\) \\
\(\llbracket H \rrbracket\) & \(\llbracket \mathrm{rad} \rrbracket\) & \(\llbracket s r \rrbracket\) \\
\(\llbracket m o l \rrbracket\) & \(\llbracket l x \rrbracket\) & \(\llbracket l m \rrbracket\) \\
\(\llbracket S \rrbracket\) & \(\llbracket W b \rrbracket\) & \(\llbracket N p \rrbracket\) \\
\hline
\end{tabular}

Figure 4.8: Units (SI) Palette

\section*{To insert a unit:}
- In a Units palette, click a unit symbol.
\(>3 \llbracket f t \rrbracket\)
\[
3 \llbracket f \rrbracket
\]

\section*{To insert a unit that is unavailable in the palettes:}
1. In a Units palette, click the unit symbol 【unit】. Maple inserts a Unit object with the placeholder selected.
2. In the placeholder, enter the unit name (or symbol).

For example, to enter 0.01 standard (the default context) miles, you can specify the unit name, mile, or symbol, mi.
\(>0.01 \llbracket\) mile \(\rrbracket\)
\[
0.01 \llbracket m i \rrbracket
\]

The context of a unit is displayed only if it is not the default context.
Important: In 1-D Math input, the quantity and unit (entered using the top-level Unit command) are a product, not a single entity. The following calling sequences define different expressions.
\[
\begin{array}{cc}
>1 * \operatorname{Unit}(\mathrm{~m}) /(2 * \operatorname{Unit}(\mathrm{~s})) ; & >1 * \operatorname{Unit}(\mathrm{~m}) / 2 * \text { Unit(s); } \\
\frac{1}{2} \frac{\llbracket m \rrbracket}{\llbracket s \rrbracket} & \frac{1}{2} \llbracket m \rrbracket \llbracket s \rrbracket
\end{array}
\]

Some units support prefixes. For example, SI units support prefixes to names and symbols. You can specify 1000 meters using kilometer or \(\mathbf{k m}\). For more information, refer to the ?Units/prefixes help page.
\[
>1.5 \llbracket k m_{S I} \rrbracket
\]
\[
1.5 \llbracket k m \rrbracket
\]

\section*{Performing Computations with Units}

In the default Maple environment, you cannot perform computations with quantities that have units. You can perform only unit conversions. For more information about the default environment, refer to the ?Units/default help page.

To compute with expressions that have units, you must load a Units environment, Natural or Standard. It is recommended that you use the Standard environment.
\(>\) with(Units[Standard]):
In the Standard Units environment, commands that support expressions with units return results with the correct units.
\(>\) area \(:=3 \llbracket f t \rrbracket \cdot \frac{1}{8} \llbracket m i l e \rrbracket\)
\[
\text { area }:=\frac{14370939}{78125} \llbracket m^{2} \rrbracket
\]
\(>\frac{\left(-12 \sin (x)+x^{2}\right) \llbracket m \rrbracket}{\llbracket s \rrbracket}\)
\[
\begin{equation*}
\left(-12 \sin (x)+x^{2}\right) \llbracket \frac{m}{s} \rrbracket \tag{4.15}
\end{equation*}
\]
\(>\operatorname{int}((4.15), x \llbracket s \rrbracket)\)
\[
\begin{equation*}
\left(12 \cos (x)+\frac{1}{3} x^{3}\right) \llbracket m \rrbracket \tag{4.16}
\end{equation*}
\]
\(>\operatorname{diff}((4.16), x \llbracket s \rrbracket)\)
\[
\left(-12 \sin (x)+x^{2}\right) \llbracket \frac{m}{s} \rrbracket
\]

For information on differentiation and integration, see Calculus (page 175).

\section*{Changing the Current System of Units}

If a computation includes multiple units, all units are expressed using units from the current system of units.
\[
>132.25 \llbracket \text { mile } \rrbracket
\]
\[
\begin{equation*}
132.25 \llbracket m i \rrbracket \tag{4.17}
\end{equation*}
\]

By default, Maple uses the SI system of units, in which length is measured in meters and time is measured in seconds.
\(>\frac{(4.17)}{3 \llbracket \text { hour } \rrbracket}\)
\[
19.70701333 \llbracket \frac{\mathrm{~m}}{\mathrm{~s}} \rrbracket
\]

To view the name of the default system of units, use the Units[UsingSystem] command.
```

> with(Units):
> UsingSystem()

```

\section*{SI}

To change the system of units, use the Units[UseSystem] command.
> UseSystem (FPS) :
\(>(4.17) \cdot 3 \llbracket m \rrbracket \cdot 1.1 \llbracket \mathrm{~kg} \rrbracket\)
\[
1.66672074110^{7} \llbracket f t^{2} l b \rrbracket
\]

\section*{Extensibility}

You can extend the set of:
- Base dimensions and units
- Complex dimensions
- Complex units
- Systems of units

For more information, refer to the ?Units[AddBaseUnit], ?Units[AddDimension], ?Units[AddUnit], and ?Units[AddSystem] help pages.

For more information about units, refer to the ?Units help page.

\section*{Scientific Constants and Element Properties}

Computations often require not only units (see Units (page 128)), but also the values of scientific constants, including properties of elements and their isotopes. Maple supports computations with scientific constants. You can use the built-in constants and add custom constants.

\section*{Overview of Scientific Constants and Element Properties}

The ScientificConstants package provides the values of constant physical quantities, for example, the velocity of light and the atomic weight of sodium. The ScientificConstants package also provides the units for the constant values, allowing for greater understanding of the equation as well as unit-matching for error checking of the solution.

The quantities available in the ScientificConstants package are divided into two distinct categories.
- Physical constants
- Chemical element (and isotope) properties

\section*{Scientific Constants}

\section*{List of Scientific Constants}

You have access to scientific constants important in engineering, physics, chemistry, and other fields. Table 4.5 lists some of the supported constants. For a complete list of scientific constants, refer to the ?ScientificConstants/PhysicalConstants help page.

Table 4.5: Scientific Constants
\begin{tabular}{|l|c|}
\hline Name & Symbol \\
\hline Newtonian_constant_of_gravitation & G \\
\hline Planck_constant & h \\
\hline elementary_charge & e \\
\hline Bohr_radius & \(\mathrm{a}[0]\) \\
\hline deuteron_magnetic_moment & \(\mathrm{mu}[\mathrm{d}]\) \\
\hline Avogadro_constant & \(\mathrm{N}[\mathrm{A}]\) \\
\hline Faraday_constant & F \\
\hline
\end{tabular}

You can specify a constant using either its name or symbol.

\section*{Accessing Constant Definition}

The GetConstant command in the ScientificConstants package returns the complete definition of a constant.

To view the definition of the Newtonian gravitational constant, specify the symbol \(\mathbf{G}\) (or its name) in a call to the GetConstant command.
> with(ScientificConstants):
> GetConstant( 'G')
Newtonian_constant_of_gravitation, symbol \(=G\), value \(=6.67310^{-11}\), uncertainty \(=1.010^{-13}\), units
\[
=\frac{m^{3}}{k g s^{2}}
\]

For information on accessing a constant's value, units, or uncertainty, see Value, Units, and Uncertainty (page 137).

\section*{Element Properties}

Maple also contains element properties and isotope properties.

\section*{Elements}

Maple supports all 117 elements of the periodic table. Each element has a unique name, atomic number, and chemical symbol. You can specify an element using any of these labels. For a complete list of supported elements, refer to the ?ScientificConstants/elements help page.

Maple supports key element properties, including atomic weight (atomicweight), electron affinity (electronaffinity), and density. For a complete list of element properties, refer to the ?ScientificConstants/properties help page.

\section*{Isotopes}

Isotopes, variant forms of an element that contain the same number of protons but a different number of neutrons, exist for many elements.

To see the list of supported isotopes for an element, use the GetIsotopes command.
\(>\) GetIsotopes( 'element' \(=\) 'Li')
\[
\mathrm{Li}_{4}, \mathrm{Li}_{5}, \mathrm{Li}_{6}, \mathrm{Li}_{7}, \mathrm{Li}_{8}, \mathrm{Li}_{9}, \mathrm{Li}_{10}, \mathrm{Li}_{11}, \mathrm{Li}_{12}
\]

Maple supports isotopes and has a distinct set of properties for isotopes, including abundance, binding energy (bindingenergy), and mass excess (massexcess). For a complete list of isotope properties, refer to the ?ScientificConstants/properties help page.

\section*{Accessing an Element or Isotope Property Definition}

The GetElement command in the ScientificConstants package returns the complete definition of an element or isotope.
```

> GetElement('Li')

```

```

 =0.0005, units =eV], atomicweight = [value =6.941, uncertainty = 0.002, units = amu],
 boilingpoint }=[\mathrm{ value }=1615.,\mathrm{ uncertainty }=\mathrm{ undefined, units }=K],\mathrm{ ionizationenergy }=[\mathrm{ value
 =5.3917, uncertainty = undefined, units =eV], density }=[value=0.534, uncertainty
 =undefined, units = \frac{g}{\mp@subsup{\textrm{cm}}{}{3}}],\mathrm{ electronegativity }=[\mathrm{ value }=0.98,\mathrm{ uncertainty }=\mathrm{ undefined, units}
 =1], meltingpoint = [value =453.65, uncertainty = undefined, units =K]
 > GetElement('Li[4]')
Li}\mp@subsup{4}{4}{},\mathrm{ massexcess }=[\mathrm{ value =25320.173, uncertainty }=212.132, units =keV], bindingenergy = [value
=4618.058, uncertainty =212.132, units = keV], atomicmass }=[value =4.027182329 10'6
uncertainty =227.733, units = uamu}

```

\section*{Value, Units, and Uncertainty}

To use constants or element properties, you must first construct a ScientificConstants object.
To construct a scientific constant, use the Constant command.
\(>G:=\operatorname{Constant}(' G\) ') :
To construct an element (or isotope) property, use the Element command.
\(>\) LiAtomicWeight \(:=\) Element \((\) 'Li', atomicweight \()\)
\[
\text { LiAtomicWeight }:=\text { Element }(\mathrm{Li}, \text { atomicweight })
\]

\section*{Value}

To obtain the value of a ScientificConstants object, use the evalf command.
\(>\operatorname{evalf}(G)\)
\[
1.06891206110^{-9}
\]
> evalf(LiAtomicWeight)
\[
2.54100604210^{-26}
\]

Note: The value returned depends on the current system of units.

\section*{Units}

To obtain the units for a ScientificConstants object, use the GetUnit command.
> GetUnit \((G)\)
\[
\llbracket \frac{f t^{3}}{l b s^{2}} \rrbracket
\]
> GetUnit(LiAtomicWeight)
\[
\llbracket l \downarrow
\]

For information on changing the default system of units, for example, from SI to foot-poundsecond, see Changing the Current System of Units (page 133).

\section*{Value and Units}

If you are performing computations with units, you can access the value and units for a ScientificConstants object by specifying the units option when constructing the object, and then evaluating the object.
\(>\operatorname{evalf}(\) Constant ('G', units))
\[
1.06891206110^{-9} \llbracket \frac{f t^{3}}{l b s^{2}} \rrbracket
\]

\[
1.83502216210^{-26} \llbracket l b \rrbracket
\]

\section*{Uncertainty}

The value of a constant is often determined by direct measurement or derived from measured values. Hence, it has an associated uncertainty. To obtain the uncertainty in the value of a ScientificConstants object, use the GetError command.
\(>\operatorname{GetError}(G)\)
\[
1.010^{-13}
\]
> GetError(LiAtomicWeight)
\[
3.32108040010^{-30}
\]

\section*{Performing Computations}

You can use constant values in any computation. To use constant values with units, use a Units environment as described in Performing Computations with Units (page 132). For information on computing with quantities that have an uncertainty, see the following section.

\section*{Modification and Extensibility}

You can change the definition of a scientific constant or element (or isotope) property.
For more information, refer to the ?ScientificConstants[ModifyConstant] and ?ScientificConstants[ModifyElement] help pages.

You can extend the set of:
- Constants
- Elements (and isotopes)
- Element (or isotope) properties

For more information, refer to the ?ScientificConstants[AddConstant], ?ScientificConstants[AddElement], and ?ScientificConstants[AddProperty] help pages.

For more information about constants, refer to the ?ScientificConstants help page.

\section*{Uncertainty Propagation}

Some computations involve uncertainties (or errors). Using the ScientificErrorAnalysis package, you can propagate the uncertainty in these values through the computation to indicate the possible error in the final result.

The ScientificErrorAnalysis package does not perform interval arithmetic. That is, the error of an object does not represent an interval in which possible values must be contained. (To perform interval arithmetic, use the Tolerances package. For more information, refer to the ?Tolerances help page.) The quantities represent unknown values with a central tendency. For more information on central tendency, refer to any text on error analysis for the physical sciences or engineering.

\section*{Quantities with Uncertainty}

Creating: To construct quantities with uncertainty, use the Quantity command. You must specify the value and uncertainty. The uncertainty can be defined absolutely, relatively, or in units of the last digit. For more information on uncertainty specification, refer to the ?ScientificErrorAnalysis[Quantity] help page.

The output displays the value and uncertainty of the quantity.
> with(ScientificConstants): with(ScientificErrorAnalysis):
> Quantity \((105,1.2)\)
Quantity \((105,1.2)\)
> Quantity(105, 0.03,'relative')
Quantity (105, 3.15)

To specify the error in units of the last digit, the value must be of floating-point type.
> Quantity(105.0, 12, 'uld')
Quantity(105.0, 1.2)
To access the value and uncertainty of a quantity with uncertainty, use the evalf and ScientificErrorAnalysis[GetError] commands.
\(>\operatorname{evalf}((4.18))\)
\[
105 .
\]
\(>\operatorname{GetError}(\mathbf{( 4 . 1 8 )})\)
3.15

Rounding: To round the error of a quantity with uncertainty, use the ApplyRule command. For a description of the predefined rounding rules, refer to the ?ScientificErrorAnalysis/rules help page.
\(>\operatorname{GetError}(\operatorname{ApplyRule}(\) (4.18), , round[2]'))

Units: Quantities with errors can have units. For example, the scientific constants and element (and isotope) properties in the ScientificConstants packages are quantities with errors and units.

To construct a new quantity with units and an uncertainty, include units in the Quantity calling sequence.

For an absolute error, you must specify the units in both the value and error.
> with(Units[Standard]) : with(ScientificErrorAnalysis) :
\(>\) Quantity \((3.5 \llbracket m \rrbracket, 0.1 \llbracket m \rrbracket)\)
ScientificErrorAnalysis:-Quantity \((3.5 \llbracket m \rrbracket, 0.1 \llbracket m \rrbracket)\)
For a relative error, you can specify the units in only the value.
\(>\) Quantity \((3.5 \llbracket m \rrbracket, 0.1\), 'relative')
ScientificErrorAnalysis:-Quantity \((3.5 \llbracket m \rrbracket, 0.35 \llbracket m \rrbracket)\)
For information on the correlation between, variance of, and covariance between quantities with uncertainty, refer to the ?ScientificErrorAnalysis help page.

\section*{Performing Computations with Quantities with Uncertainty}

Many Maple commands support quantities with uncertainty.
\(>q 1:=\operatorname{Quantity}(31 ., 2):\).
\(>q 2:=\operatorname{Quantity}(20 ., 1):\).
Compute the value of the derivative of \(q I \cdot x^{2}+\sin (q 2 \cdot x)\) at \(x=\sin (\pi / 4)\).
\[
\begin{aligned}
& >d l:=\operatorname{diff}\left(q 1 \cdot x^{2}+\sin (q 2 \cdot x), x\right) \\
& d 1:=2 \text { ScientificErrorAnalysis:-Quantity }(31 ., 2 .) x+\cos (\text { ScientificErrorAnalysis:-Quantity }(20, \text {, } \\
& \text { 1.) x) ScientificErrorAnalysis:-Quantity }(20 ., 1 .) \\
& >d 2:=\operatorname{eval}\left(d 1, x=\sin \left(\frac{\pi}{4}\right)\right):
\end{aligned}
\]

To convert the solution to a single quantity with uncertainty, use the combine/errors command.
\(>\) result \(:=\) combine ( \(d 2\),'errors'):
The value of the result is:
```

> evalf(result)

```

The uncertainty of the result is:
> GetError(result)
14.42690612

\section*{Additional Information}

For information on topics including:
- Creating new rounding rules,
- Setting the default rounding rule, and
- Creating a new interface to quantities with uncertainty,
refer to the ?ScientificErrorAnalysis help page.

\subsection*{4.6 Restricting the Domain}

By default, Maple computes in the complex number system. Most computations are performed without any restrictions or assumptions on the variables. Maple often returns results that are extraneous or unsimplified when computing in the field of complex numbers. Using restrictions, you can more easily and efficiently perform computations in a smaller domain.

Maple has facilities for performing computations in the real number system and for applying assumptions to variables.

\section*{Real Number Domain}

To force Maple to perform computations in the field of real numbers, use the RealDomain package.

The RealDomain package contains a small subset of Maple commands related to basic precalculus and calculus mathematics, for example, arccos, limit, and log, and the symbolic manipulation of expressions and formulae, for example, expand, eval, and solve. For a complete list of commands, refer to the ?RealDomain help page.

After you load the RealDomain package, Maple assumes that all variables are real. Commands return simplified results appropriate to the field of real numbers.
> with(RealDomain):
\(>\operatorname{simplify}\left(\sqrt{x^{2}}\right)\)
\[
|x|
\]
\[
>\ln \left(\mathrm{e}^{x}\right)
\]

Some commands that generally return NULL instead return a numeric result when you use the RealDomain package.
\[
>(-32)^{\left(\frac{1}{5}\right)}
\]

Complex return values are excluded or replaced by undefined.
\(>\operatorname{solve}\left(x^{2}=-1\right)\)
```

>arcsin}(\mp@subsup{\textrm{e}}{}{2}

```
undefined

\section*{Assumptions on Variables}

To simplify problem solving, it is recommended that you always apply any known assumptions to variables. You can impose assumptions using the assume command. To apply assumptions for a single computation, use the assuming command.

Note: The assume and assuming commands are not supported by the RealDomain package.

\section*{The assume Command}

You can use the assume command to set variable properties, for example, \(\mathbf{x}:\) :real, and relationships between variables, for example, \(\mathbf{x}<\mathbf{0}\) or \(\mathbf{x}<\mathbf{y}\). For information on valid properties, refer to the ?assume help page. For information on the double colon (::) operator, refer to the ? type help page.

The assume command allows improved simplification of symbolic expressions, especially multiple-valued functions, for example, computing the square root.

To assume that \(\mathbf{x}\) is a positive real number, use the following calling sequence. Then compute the square root of \(x^{2}\).
\(>\operatorname{assume}(0<x): \sqrt{x^{2}}\)
\[
x \sim
\]

The trailing tilde ( \(\sim\) ) on the name \(\mathbf{x}\) indicates that it carries assumptions.
When you use the assume command to place another assumption on \(\mathbf{x}\), all previous assumptions are removed.
\(>\operatorname{assume}(x<0): \sqrt{x^{2}}\)
\[
-x \sim
\]

Displaying Assumptions: To view the assumptions on an expression, use the about command.
```

> about(x)
Originally x, renamed x~:
is assumed to be: RealRange(-infinity,Open(0))

```

Imposing Multiple Assumptions: To simultaneously impose multiple conditions on an expression, specify multiple arguments in the assume calling sequence.
\(>\operatorname{assume}(0<x, x<2)\)
To specify additional assumptions without replacing previous assumptions, use the additionally command. The syntax of the additionally calling sequence is the same as that of the assume command.
```

> additionally(x :: integer): about(x)
Originally x, renamed x~:
is assumed to be: 1

```

The only integer in the open interval \((\mathbf{0}, \mathbf{2})\) is \(\mathbf{1}\).
Testing Properties: To test whether an expression always satisfies a condition, use the is command.
\(>\operatorname{assume}(15<x, 7<y):\) is \((100<x y)\)
true
The following test returns false because there are values of \(\mathbf{x}\) and \(\mathbf{y}(\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{1 0})\) that satisfy the assumptions, but do not satisfy the relation in the is calling sequence.
```

> assume(x :: nonnegint, 10\leqy): is (10<x+y)

```
false
To test whether an expression can satisfy a condition, use the coulditbe command.
```

> coulditbe(10<x+y)

```
    true

Removing Assumptions: To remove all assumptions on a variable, unassign its name.
```

> unassign ('x', 'y')

```

For more information, see Unassigning Names (page 95).
For more information on the assume command, refer to the ?assume help page.

\section*{The assuming Command}

To perform a single evaluation under assumptions on the names in an expression, use the assuming command.

The syntax of the assuming command is <expression> assuming <property or relation>. Properties and relations are introduced in The assume Command (page 144).

The frac command returns the fractional part of an expression.
\(>\operatorname{frac}(x)\) assuming \(x::\) integer

\section*{0}

Using the assuming command is equivalent to imposing assumptions with the assume command, evaluating the expression, and then removing the assumptions.
```

> about(x)
x:
nothing known about this object

```

If you do not specify the names to which to apply a property, it is applied to all names.
\(>\sqrt{\left(\frac{a}{b}\right)^{2}}\) assuming positive
\[
\frac{a}{b}
\]

Assumptions placed on names using the assume command are ignored by the assuming command, unless you include the additionally option.
```

> assume (x < 1)

```
\(>i s\left(1-x^{2}>0\right)\) assuming \(x>-1\)
false
\(>i s\left(1-x^{2}>0\right)\) assuming additionally, \(x>-1\)
true

The assuming command does not affect variables inside procedures. (For information on procedures, see Procedures (page 383).) You must use the assume command.
```

>f := proc(x) sqrt(a^2) + x end proc;

```
\[
f:=\operatorname{proc}(x) \operatorname{sqrt}\left(a^{\wedge} 2\right)+x \text { end proc }
\]
\(>f(1)\) assuming \(a>0\)
\[
\sqrt{a^{2}}+1
\]
\(>\operatorname{assume}(a>0): f(1)\)
\[
a \sim+1
\]

For more information on the assuming command, refer to the ?assuming help page.

\section*{5 Mathematical Problem Solving}

This chapter focuses on solving problems in specific mathematical disciplines. The areas described below are not all that Maple provides, but represent the most commonly used packages. Examples are provided to teach you how to use the different methods of calculation available in Maple, including tutors, assistants, commands, task templates, plotting, and context menus.

The examples in this chapter assume knowledge of entering commands and mathematical symbols. For information, see Entering Expressions (page 19). For information on basic computations, including integer operations and solving equations, see Basic Computations (page 101).

\subsection*{5.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Algebra (page 150) - Performing algebra computations & - Polynomial Algebra \\
\hline Linear Algebra (page 159) - Performing linear algebra computations & \begin{tabular}{l}
- Creating Matrices and Vectors \\
- Accessing Entries in Matrices and Vectors \\
- Linear Algebra Computations \\
- Student LinearAlgebra Package
\end{tabular} \\
\hline Calculus (page 175) - Performing calculus computations & \begin{tabular}{l}
- Limits \\
- Differentiation \\
- Series \\
- Integration \\
- Differential Equations \\
- Calculus Packages
\end{tabular} \\
\hline Optimization (page 188) - Performing optimization computations using the Optimization package & \begin{tabular}{l}
- Point-and-Click Interface \\
- Efficient Computation \\
- MPS(X) File Support
\end{tabular} \\
\hline Statistics (page 193) - Performing statistics computations using the Statistics package & \begin{tabular}{l}
- Probability Distributions and Random Variables \\
- Statistical Computations \\
- Plotting
\end{tabular} \\
\hline Teaching and Learning with Maple (page 198) Student and Instructor resources for using Maple in an academic setting & \begin{tabular}{l}
- Table of Student and Instructor Resources \\
- Student Packages and Tutors
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Section & Topics \\
\hline \begin{tabular}{l} 
Clickable Math Examples (page 213) - Solve math \\
problems using some of the interactive methods \\
available in Maple
\end{tabular} & Step-by-Step examples \\
\hline
\end{tabular}

\subsection*{5.2 Algebra}

Maple contains a variety of commands that perform integer operations, such as factoring and modular arithmetic, as described in Integer Operations (page 106). In addition, it supports polynomial algebra.

For information on matrix and vector algebra, see Linear Algebra (page 159).

\section*{Polynomial Algebra}

A Maple polynomial is an expression in powers of an unknown. Univariate polynomials are polynomials in one unknown, for example, \(x^{3}-2 x+13\). Multivariate polynomials are polynomials in multiple unknowns, such as \(x^{3} y-\frac{3}{2} x y^{2}+7 x\).

The coefficients can be integers, rational numbers, irrational numbers, floating-point numbers, complex numbers, variables, or a combination of these types.
\(>a x^{2}+7 x-\frac{b}{2}\)
\[
a x^{2}+7 x-\frac{1}{2} b
\]

\section*{Arithmetic}

The polynomial arithmetic operators are the standard Maple arithmetic operators excluding the division operator (/). (The division operator accepts polynomial arguments, but does not perform polynomial division.)

Polynomial division is an important operation. The quo and rem commands find the quotient and remainder of a polynomial division. See Table 5.1. (The iquo and irem commands find the quotient and remainder of an integer division. For more information, see Integer Operations (page 106).)

Table 5.1: Polynomial Arithmetic Operators
\begin{tabular}{|c|c|c|}
\hline Operation & Operator & Example \\
\hline Addition & + & \[
\begin{array}{r}
>\left(x^{2}+1\right)+\left(3 x^{3}-5 x+2\right) \\
x^{2}+3+3 x^{3}-5 x
\end{array}
\] \\
\hline Subtraction & - & \[
\begin{array}{r}
>\left(x^{2}+1\right)-\left(3 x^{3}-5 x+2\right) \\
x^{2}-1-3 x^{3}+5 x
\end{array}
\] \\
\hline Multiplication \({ }^{1}\) & * & \[
\begin{array}{r}
>\left(x^{2}+1\right) \cdot\left(3 x^{3}-5 x+2\right) \\
\left(x^{2}+1\right)\left(3 x^{3}-5 x+2\right)
\end{array}
\] \\
\hline Division: Quotient and Remainder & quo
rem & \[
\begin{gathered}
>q u o\left(2 x^{2}+x-3,3 x+5, x\right) \\
\frac{2}{3} x-\frac{7}{9} \\
>\operatorname{rem}\left(2 x^{2}+x-3,3 x+5, x\right) \\
\frac{8}{9}
\end{gathered}
\] \\
\hline Exponentiation \({ }^{2}\) & \(\wedge\) & \[
>\left(x^{2}+1\right)^{3}
\]
\[
\left(x^{2}+1\right)^{3}
\] \\
\hline
\end{tabular}
\({ }^{1}\) You can specify multiplication explicitly by entering *, which displays in 2-D Math as • . In 2-D Math, you can also implicitly multiply by placing a space character between two expressions. In some cases, the space character is optional. For example, Maple interprets a number followed by a name as an implicit multiplication.
\({ }^{2}\) In 2-D Math, exponents display as superscripts.
To expand a polynomial, use the expand command.
```

$>\operatorname{expand}\left(3 x^{2} \cdot(3 x+5)-\left(x^{2}-2\right)\right)$

```
\[
9 x^{3}+14 x^{2}+2
\]

If you need to determine whether one polynomial divides another, but do not need the quotient, use the divide command. The divide command tests for exact polynomial division.
\[
>\text { divide }\left(x^{4} y^{2}+x^{3} y^{2}-x^{2} y^{2}+13 x^{2}+13 x-13+y \cdot x^{2}+x \cdot y-y, x^{2}+x-1\right)
\]
true

Important: You must insert a space character or a multiplication operator ( \(\cdot\) ) between adjacent variables names. Otherwise, they are interpreted as a single variable.

For example, \(x\) does not divide the single variable \(x y\).
\(>\operatorname{divide}(x y, x)\)
false

But, \(x\) divides the product of \(x\) and \(y\).
\(>\operatorname{divide}(x y, x) ;\) divide \((x \cdot y, x)\)

> true
true
For information on polynomial arithmetic over finite rings and fields, refer to the \(\boldsymbol{? m o d}\) help page.

\section*{Sorting Terms}

To sort the terms of a polynomial, use the sort command.
> \(p l:=x^{2}+x^{3}-x+x^{4}\)
\[
p l:=x^{2}+x^{3}-x+x^{4}
\]
\(>\operatorname{sort}(p 1)\)
\[
x^{4}+x^{3}+x^{2}-x
\]

Note: The sort command returns the sorted polynomial, and updates the order of the terms in the polynomial.

The terms of \(\mathbf{p} \mathbf{1}\) are sorted.
> pl
\[
x^{4}+x^{3}+x^{2}-x
\]

To specify the unknowns of the polynomial and their ordering, include a list of names.
\(>\operatorname{sort}\left(a^{2} x^{3}+x^{2}+x a+a+b,[a]\right)\)
\[
x^{3} a^{2}+x a+a+x^{2}+b
\]
\(>\operatorname{sort}\left(a^{2} x^{3}+x^{2}+x a+a+b,[x, b]\right)\)
\[
a^{2} x^{3}+x^{2}+a x+b+a
\]

By default, the sort command sorts a polynomial by decreasing total degree of the terms.
\(>p 2:=x^{3}+y^{3}+x^{2} y^{2}\) :
\(>\operatorname{sort}(p 2,[x, y])\)
\[
x^{2} y^{2}+x^{3}+y^{3}
\]

The first term has total degree 4. The other two terms have total degree 3. The order of the final two terms is determined by the order of their names in the list.

To sort the terms by pure lexicographic order, that is, first by decreasing order of the first unknown in the list option, and then by decreasing order of the next unknown in the list option, specify the 'plex' option.
\(>\operatorname{sort}(p 2,[x, y], ' p l e x ')\)
\[
x^{3}+x^{2} y^{2}+y^{3}
\]

For information on enclosing keywords in right single quotes ('), see Delaying Evaluation (page 366).

The first term contains \(x\) to the power 3; the second, \(x\) to the power 2 ; and the third, \(x\) to the power 0 .

Using context menus, you can perform operations, such as sorting, for polynomials and many other Maple objects.

\section*{To sort a polynomial:}
1. Right-click (Control-click, for Macintosh) the polynomial.
2. The context menu displays. From the Sorts menu, select:
- Single-variable, and then the unknown
- Two-variable (or Three-variable), Pure Lexical or Total Degree, and then the sort priority of the unknowns.

See Figure 5.1.
\(>x^{3}+y^{3}+x^{2} y^{2}\)


Figure 5.1: Sorting a Polynomial Using a Context Menu
Maple sorts the polynomial.
In Worksheet mode, Maple inserts the calling sequence that performs the sort followed by the sorted polynomial.
\(>x^{3}+y^{3}+x^{2} y^{2}\) :
\(>\operatorname{sort}\left(x^{\wedge} 3+y^{\wedge} 3+x^{\wedge} 2 * y^{\wedge} 2,[y, x]\right.\) plex \()\)
\[
y^{3}+y^{2} x^{2}+x^{3}
\]

You can use context menus to perform operations on 2-D Math content including output. For more information, see Context Menus (page 70) (for Document mode) or Context Menus (page 89) (for Worksheet mode).

\section*{Collecting Terms}

To collect the terms of polynomial, use the collect command.
\[
\begin{aligned}
& >\operatorname{collect}\left(2 a x y+c x^{2} y-z y^{2}+a z-13 b y+\frac{3 y^{2}}{x}, y\right) \\
& \qquad\left(-z+\frac{3}{x}\right) y^{2}+\left(2 a x+c x^{2}-13 b\right) y+a z
\end{aligned}
\]

\section*{Coefficients and Degrees}

Maple has several commands that return coefficient and degree values for a polynomial. See Table 5.2.

Table 5.2: Polynomial Coefficient and Degree Commands
\begin{tabular}{|l|l|l|}
\hline Command & Description & Example \\
\hline coeff & Coefficient of specified degree term & \(>\) coeff \(\left(\frac{1}{2} x^{3}-2 x+5, x^{3}\right)\) \\
\hline lcoeff & Leading coefficient & \(\frac{1}{2}\) \\
& & \(>\) lcoeff \(\left(\frac{1}{2} x^{3}-2 x+5\right)\) \\
\hline tcoeff & Trailing coefficient & \(>\operatorname{tcoeff}\left(\frac{1}{2} x^{3}-2 x+5\right)\) \\
& & 5 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Command & Description & Example \\
\hline coeffs & \begin{tabular}{l} 
Sequence of all coefficients, in one-to-one \\
correspondence with the terms \\
Note: It does not return zero coefficients
\end{tabular} & \(>\) coeffs \(\left(\frac{1}{2} x^{3}-2 x+5\right)\) \\
\hline degree & (Highest) degree & \(5,-2, \frac{1}{2}\)
\end{tabular}

\section*{Factorization}

To express a polynomial in fully factored form, use the factor command.
\(>\operatorname{factor}\left(x^{4}-1\right)\)
\[
(x-1)(x+1)\left(x^{2}+1\right)
\]

The factor command factors the polynomial over the ring implied by the coefficients, for example, integers. You can specify an algebraic number field over which to factor the polynomial. For more information, refer to the ?factor help page. (The ifactor command factors an integer. For more information, see Integer Operations (page 106).)

To solve for the roots of a polynomial, use the solve command. For information on the solve command, see Solving Equations and Inequations (page 112). (The isolve command solves an equation for integer solutions. For more information, see Integer Equations (page 126).)

\section*{Other Commands}

Table 5.3 lists other commands available for polynomial operations.
Table 5.3: Select Other Polynomial Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline content & Content (multivariate polynomial) \\
\hline compoly & Decomposition \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline discrim & Discriminant \\
\hline gcd & Greatest common divisor (of two polynomials) \\
\hline gcdex & Extended Euclidean algorithm (for two polynomials) \\
\hline \begin{tabular}{l} 
CurveFitting[PolynomialInterpolation] \\
See also the CurveFitting Assistant (Tools \\
\(\rightarrow\) Assistants \(\rightarrow\) Curve Fitting)
\end{tabular} & Interpolating polynomial (for list of points) \\
\hline lcm & Least common multiple (of two polynomials) \\
\hline norm & Norm \\
\hline EPROM & Pseudo-remainder (of two multivariate polynomials) \\
\hline primpart & Primitive part (multivariate polynomial) \\
\hline randpoly & Random polynomial \\
\hline PolynomialTools[IsSelfReciprocal] & Determine whether self-reciprocal \\
\hline resultant & Resultant (of two polynomials) \\
\hline roots & Exact roots (over algebraic number field) \\
\hline sqrfree & Square-free factorization (multivariate polynomial) \\
\hline
\end{tabular}

\section*{Additional Information}

Table 5.4: Additional Polynomial Help
\begin{tabular}{|l|l|}
\hline Topic & Resource \\
\hline General polynomial information & ?polynom help page \\
\hline PolynomialTools package & ?PolynomialTools package overview help page \\
\hline \begin{tabular}{l} 
Algebraic manipulation of numeric polynomi- \\
als
\end{tabular} & \begin{tabular}{l} 
?SNAP (Symbolic-Numeric Algorithms for Polyno- \\
mials) package overview help page
\end{tabular} \\
\hline Efficient arithmetic for sparse polynomials & \begin{tabular}{l} 
?SDMPolynom (Sparse Distributed Multivariate \\
Polynomial data structure) help page
\end{tabular} \\
\hline Polynomial information and commands & \begin{tabular}{l} 
Maple Help System Table of Contents: Mathemat- \\
ics \(\rightarrow\) Algebra \(\rightarrow\) Polynomials section
\end{tabular} \\
\hline
\end{tabular}

\subsection*{5.3 Linear Algebra}

Linear algebra operations act on Matrix and Vector data structures.
You can perform many linear algebra operations using task templates. In the Task Browser (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse), expand the Linear Algebra folder.

\section*{Creating Matrices and Vectors}

\section*{Creating Matrices}

You can create a Matrix using
- The Matrix command
- The angle bracket shortcut notation
- The Matrix palette (see Figure 5.2).

When creating a Matrix using the Matrix command, there are several input formats available. For example, enter a list of lists. The dimensions of the matrix are inferred from the number of entries given.
\(>\operatorname{Matrix}\left(\left[[1, \pi, 0],\left[\mathrm{e}^{2}, \sin (t), \frac{87}{2}\right],[0,0,5 \mathrm{e}]\right]\right)\)
\[
\left[\begin{array}{ccc}
1 & \pi & 0 \\
\mathrm{e}^{2} & \sin (t) & \frac{87}{2} \\
0 & 0 & 5 \mathrm{e}
\end{array}\right]
\]

Alternatively, use the angle bracket shortcut, \(<>\). Separate items in a column with commas, and separate columns with vertical bars, |.
\(>\langle 1, \pi, 0| \mathrm{e}^{2}, \sin (t), \frac{87}{2}|0,0,5 \mathrm{e}\rangle\)
\(\left[\begin{array}{ccc}1 & \mathrm{e}^{2} & 0 \\ \pi & \sin (t) & 0 \\ 0 & \frac{87}{2} & 5 \mathrm{e}\end{array}\right]\)

For information on the Matrix command options, see Creating Matrices and Vectors with Specific Properties (page 164).

Use the Matrix palette to interactively create a matrix without commands:


Figure 5.2: Matrix Palette
In the Matrix palette, you can specify the matrix size (see Figure 5.3) and properties. To insert a matrix, click the Insert Matrix button.


Figure 5.3: Matrix Palette: Choosing the Size

\section*{After inserting the matrix:}
1. Enter the values of the entries. To move to the next entry placeholder, press Tab.
2. After specifying all entries, press Enter.
\(>\left[\begin{array}{ccc}1 & \mathrm{e}^{2} & 0 \\ \pi & \sin (t) & 0 \\ 0 & \frac{87}{2} & 5 \mathrm{e}\end{array}\right]:\)

\section*{Creating Vectors}

You can create a Vector using angle brackets ( \(<>\) ).

To create a column vector, specify a comma-delimited sequence, \(<\mathbf{a}, \mathbf{b}, \mathbf{c}>\). The number of elements is inferred from the number of expressions.
\(>\langle 1,2,3\rangle\)


To create a row vector, specify a vertical-bar-delimited (|) sequence, \(<\mathbf{a}|\mathbf{b}| \mathbf{c}>\). The number of elements is inferred from the number of expressions.
\(>\langle 1| 2|3\rangle\)
\[
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\]

For information on the Vector command options, refer to the ?Vector help page.
You can also create vectors using the Matrix palette. If either the number of rows or number of columns specified is 1 , then you have the option of inserting a matrix, or inserting a vector of the appropriate type. See Figure 5.4.


Figure 5.4: Insert Matrix or Insert Vector

\section*{Viewing Large Matrices and Vectors}

Matrices \(10 \times 10\) and smaller, and vectors with 10 or fewer elements, display in the document. Larger objects are displayed as a placeholder.

For example, insert a \(15 \times 15\) matrix.

In the Matrix palette:
1. Specify the dimensions: 15 rows and 15 columns.
2. In the Type drop-down list, select a matrix type, for example, Random.
3. Click Insert Matrix. Maple inserts a placeholder.
\(>\left[\begin{array}{c}15 \times 15 \text { Matrix } \\ \text { Data Type: anything } \\ \text { Storage: rectangular } \\ \text { Order: Fortran_order }\end{array}\right]\)
To edit or view a large matrix or vector, double-click the placeholder. This launches the Matrix Browser. See Figure 5.5.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Browse Matrix} \\
\hline Table & Image & Options & & & & & & \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline 1 & 44 & 90 & 83 & -29 & 20 & -94 & 35 & ^ \\
\hline 2 & 92 & -41 & -45 & 9 & -46 & 27 & -26 & \\
\hline 3 & 73 & -79 & 68 & 81 & 35 & 18 & -86 & \\
\hline 4 & -39 & 9 & 58 & 35 & -54 & 18 & 50 & \\
\hline 5 & 62 & 45 & -43 & 80 & -17 & 63 & -94 & \\
\hline 6 & 11 & -10 & -85 & 20 & -25 & 86 & -97 & \\
\hline 7 & 61 & -5 & -85 & 39 & 78 & -51 & -38 & \\
\hline 8 & 28 & 47 & 19 & -35 & 23 & 51 & -36 & \\
\hline 9 & -48 & -54 & 25 & 26 & -67 & 38 & -69 & \\
\hline 10 & -63 & -72 & 17 & -74 & 28 & -38 & 69 & \\
\hline 11 & 27 & -79 & 81 & 13 & -81 & -19 & -15 & \\
\hline 12 & 58 & 75 & 89 & 32 & -36 & -55 & 2 & \\
\hline 13 & 2 & -85 & 92 & 48 & -88 & 71 & -88 & \\
\hline 14 & 54 & -19 & -2 & -60 & 91 & -50 & 99 & \\
\hline & \(<\) & \multicolumn{2}{|r|}{IIII} & \multirow[t]{2}{*}{} & & & \multicolumn{2}{|c|}{\(>\)} \\
\hline & & & & & Insert & Export & Done & \\
\hline
\end{tabular}

Figure 5.5: Matrix Browser

To modify the entries using the Matrix Browser:
1. Select the Table tab.
2. Double-click an entry, and then edit its value. Press Enter.
3. Repeat for each entry to edit.
4. When you have finished updating entries, click Done.

You can view the matrix or vector as a table or as an image, which can be inserted into the document. For more information, refer to the ?MatrixBrowser help page.

To set the maximum dimension of matrices and vectors displayed inline:
- Use the interface command with the rtablesize option.

For example, interface(rtablesize \(=\mathbf{1 5}\) ).
For more information, refer to the ?interface help page.

\section*{Creating Matrices and Vectors with Specific Properties}

By default, matrices and vectors can store any values. To increase the efficiency of linear algebra computations, create matrices and vectors with properties. You must specify the properties, for example, the matrix shape or data type, when defining the object.

The Matrix palette (Figure 5.2) supports several properties.
To specify the matrix type:
- Use the Shape and Type drop-down lists.

To specify the data type:
- Use the Data type drop-down list.

For example, define a diagonal matrix with small integer coefficients.

\section*{In the Matrix palette:}
1. Specify the size of the matrix, for example, \(3 \times 3\).
2. In the Shapes drop-down list, select Diagonal.
3. In the Data type drop-down list, select integer[1].
4. Click the Insert Matrix button.
5. Enter the values in the diagonal entries.
\(>\left[\begin{array}{ccc}-23 & 0 & 0 \\ 0 & 17 & 0 \\ 0 & 0 & 32\end{array}\right]\)
You cannot specify properties when defining vectors using the angle-bracket notation. You must use the Vector constructor.

To define a column vector using the Vector constructor, specify:
- The number of elements. If you explicitly specify all element values, this argument is not required.
- A list of expressions that define the element values.
- Parameters such as shape, datatype, and fill that set properties of the vector.

The following two calling sequences are equivalent.
\(>\operatorname{Vector}([0,0,0])\)
\[
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]
\(>\operatorname{Vector}(3\), 'shape' \(=\) 'zero' \()\)
\[
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]

To create a row vector using the Vector constructor, include row as an index.
\(>\operatorname{Vector}[\) row \(]\left(3,{ }_{2}^{\prime}\right.\) fll \(\left.=1\right)\)
\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)
\(>\operatorname{Vector}[\) row \(]([127,0,34]\), 'datatype' \(=\) 'integer \([1]\) ')
\[
\left[\begin{array}{lll}
127 & 0 & 34
\end{array}\right]
\]

The Matrix palette does not support some properties. To set all properties, use the Matrix constructor.

To define a matrix using the Matrix constructor, specify:
- The number of rows and columns. If you explicitly specify all element values, these arguments are not required.
- A list of lists that define the element values row-wise.
- Parameters such as shape, datatype, and fill that set properties of the matrix.

For example:
\(>\operatorname{Matrix}([[1,2,3],[4,5,6]])\)
\[
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
\]

The Matrix palette cannot fill the matrix with an arbitrary value. Use the fill parameter.
\[
>\operatorname{Matrix}(3,4,[[1,2,3],[4,5,6]], \text { 'fill }=2+I)
\]
\[
\left[\begin{array}{cccc}
1 & 2 & 3 & 2+\mathrm{I} \\
4 & 5 & 6 & 2+\mathrm{I} \\
2+\mathrm{I} & 2+\mathrm{I} & 2+\mathrm{I} & 2+\mathrm{I}
\end{array}\right]
\]

For more information on the constructors, including other calling sequence syntaxes and parameters, refer to the ?storage, ?Matrix, and ?Vector help pages.

See also Numeric Computations (page 174).

\section*{Accessing Entries in Matrices and Vectors}

\section*{Matrices}

To select an entry in a Matrix, enter the matrix name with a sequence of two non-zero integer indices, row first.
\(>M:=\langle-4.3,-6.7,1.9| 2.9,-1.2,9.6|9.3,-8.0,-9.2\rangle\)
\[
M:=\left[\begin{array}{ccc}
-4.3 & 2.9 & 9.3 \\
-6.7 & -1.2 & -8.0 \\
1.9 & 9.6 & -9.2
\end{array}\right]
\]
\(>M[1,3]\)

\section*{9.3}

To select an entire row, enter a single index; to select an entire column, enter first the entire range of rows, \(1 . .-1\), then the column index.
> \(M[2]\)
\[
\left[\begin{array}{lll}
-6.7 & -1.2 & -8.0
\end{array}\right]
\]
> \(M[1 . .-1,1]\)
\[
\left[\begin{array}{c}
-4.3 \\
-6.7 \\
1.9
\end{array}\right]
\]

Similarly, you can access submatrices. Enter the indices as a list or range.
\(>M[2.3,1 . .2]\)
\[
\left[\begin{array}{cc}
-6.7 & -1.2 \\
1.9 & 9.6
\end{array}\right]
\]

\section*{Vectors}

To select an entry in a vector, enter the vector name with a non-zero integer index.
\(>a:=<85.3,47.1,59.9,38.1>\)
\[
a:=\left[\begin{array}{l}
85.3 \\
47.1 \\
59.9 \\
38.1
\end{array}\right]
\]
\(>a[1]\)

\section*{85.3}

Negative integers select entries from the end of the vector.
\(>a[-1]\)

\section*{38.1}

To create a Vector consisting of multiple entries, specify a list or range of integers in the index. For more information, refer to the ?set and ?range help pages.
\(>a[[1,2]]\)
85.3
47.1
\(>a[2 . .4]\)
47.1
59.9
38.1

\section*{Linear Algebra Computations}

Maple has extensive support for linear algebra. You can perform many matrix and vector computations using context menus. Matrix operations such as multiplication and inverses can be done with the basic matrix arithmetic operators. The LinearAlgebra package provides the full range of Maple commands for linear algebra and vector space computations, queries, and linear system solving.

\section*{Matrix Arithmetic}

The matrix and vector arithmetic operators are the standard Maple arithmetic operators up to the following two differences.
- The scalar multiplication operator is the asterisk (*), which displays in 2-D Math as . . The noncommutative matrix and vector multiplication operator is the period (.).
- There is no division operator (/) for matrix algebra. (You can construct the inverse of a matrix using the exponent -1 .)

Table 5.5 lists the basic matrix operators.
\(>A:=\left[\begin{array}{ll}93 & 43 \\ 19 & 37\end{array}\right]: B:=\left[\begin{array}{ll}48 & 20 \\ 19 & 37\end{array}\right]: C:=\langle 23,6\rangle:\)
Table 5.5: Matrix and Vector Arithmetic Operators
\begin{tabular}{|l|c|ll|}
\hline Operation & Operator & Example & \\
\hline Addition & + & \(>A+B\) & \\
& & & {\(\left[\begin{array}{rr}141 & 63 \\
38 & 74\end{array}\right]\)} \\
\hline Subtraction & - & \(>A-B\) & \\
& & \(>A . C\) & {\(\left[\begin{array}{rr}45 & 23 \\
0 & 0\end{array}\right]\)} \\
\hline Multiplication & \(\cdot\) & {\(\left[\begin{array}{r}2397 \\
659\end{array}\right]\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Operation & Operator & Example \\
\hline Scalar Multiplication \({ }^{1}\) & * & \[
\left.\begin{array}{|l} 
\\
>12 \mathrm{~A} \\
\\
>4 \cdot C \\
\\
\\
\\
\left.\hline \begin{array}{rr}
1116 & 516 \\
228 & 444
\end{array}\right] \\
24
\end{array}\right]
\] \\
\hline Exponentiation \({ }^{2}\) & \(\wedge\) & \[
\begin{aligned}
& >A^{3} \\
& >B^{-1} \\
& \\
& \\
& \\
& \\
& {\left[\begin{array}{ll}
986548 & 613868 \\
271244 & 187092
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\frac{37}{1396} & -\frac{5}{349} \\
-\frac{19}{1396} & \frac{12}{349}
\end{array}\right]}
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\) You can specify scalar multiplication explicitly by entering *, which displays in 2-D Math as
- . In 2-D Math, you can also implicitly multiply a scalar and a matrix or vector by placing a space character between them. In some cases, the space character is optional. For example, Maple interprets a number followed by a name as an implicit multiplication.
\({ }^{2}\) In 2-D Math, exponents display as superscripts.
A few additional matrix and vector operators are listed in Table 5.6.
Define two column vectors.
\[
>d:=<1,2,3>: e:=<4,5,6>:
\]

Table 5.6: Select Matrix and Vector Operators
\begin{tabular}{|c|c|c|}
\hline Operation & Operator & Example \\
\hline Transpose & \(\wedge \% \mathrm{~T}^{1}\) & \[
>d^{\% T}
\]
\[
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\] \\
\hline Hermitian Transpose & ^\% \(\mathbf{H}^{1}\) & \[
\begin{array}{r}
>\left[\begin{array}{cc}
I & -2 I \\
3+4 I & 2-I
\end{array}\right]^{\% H} \\
{\left[\begin{array}{cc}
-\mathrm{I} & 3-4 \mathrm{I} \\
2 \mathrm{I} & 2+\mathrm{I}
\end{array}\right]}
\end{array}
\] \\
\hline \begin{tabular}{l}
Cross Product \\
(3-D vectors only)
\end{tabular} & \(\boldsymbol{*} \mathbf{x}^{2}\) & \[
\begin{aligned}
& >\text { with(LinearAlgebra) : } \\
& >d \& x e \\
& \qquad\left[\begin{array}{r}
-3 \\
6 \\
-3
\end{array}\right]
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Exponential operators display in 2-D Math as superscripts. \\
\({ }^{2}\) After loading the LinearAlgebra package, the cross product operator is available as the infix operator \(\& \mathbf{x}\). Otherwise, it is available as the LinearAlgebra[CrossProduct] command.
\end{tabular}} \\
\hline
\end{tabular}

For information on matrix arithmetic over finite rings and fields, refer to the \(\boldsymbol{? m o d}\) help page.

\section*{Point-and-Click Interaction}

Using context menus, you can perform many matrix and vector operations.
Matrix operations available in the context menu include the following.
- Perform standard operations: determinant, inverse, norm (1, Euclidean, infinity, or Frobenius), transpose, and trace
- Compute eigenvalues, eigenvectors, and singular values
- Compute the dimension or rank
- Convert to the Jordan form, or other forms
- Perform Cholesky decomposition and other decompositions

For example, compute the infinity norm of a matrix. See Figure 5.6.
\(>\left[\begin{array}{cc}18735.6985 & 349723.234987 \\ 9859.459 & 798124.14089\end{array}\right]\)


Figure 5.6: Computing the Infinity Norm of a Matrix
In Document mode, Maple inserts a right arrow and the name of the computation performed, followed by the norm.
\(\left[\begin{array}{cc}18735.6985 & 349723.234987 \\ 9859.459 & 798124.14089\end{array}\right] \xrightarrow{\text { infinity-norm }} 8.079835999010^{5}\)

Vector operations available in the context menu include the following.
- Compute the dimension
- Compute the norm (1, Euclidean, and infinity)
- Compute the transpose
- Select an element

For more information on context menus, see Context Menus (page 70) (for Document mode) or Context Menus (page 89) (for Worksheet mode).

\section*{LinearAlgebra Package Commands}

The LinearAlgebra package contains commands that construct and manipulate matrices and vectors, compute standard operations, perform queries, and solve linear algebra problems.

Table 5.7 lists some LinearAlgebra package commands. For a complete list, refer to the ?LinearAlgebra/Details help page.

Table 5.7: Select LinearAlgebra Package Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline Basis & Return a basis for a vector space \\
\hline CrossProduct & Compute the cross product of two vectors \\
\hline DeleteRow & Delete a row or rows of a matrix \\
\hline Dimension & Determine the dimension of a matrix or a vector \\
\hline Eigenvalues & Compute the eigenvalues of a matrix \\
\hline Eigenvectors & Compute the eigenvectors of a matrix \\
\hline FrobeniusForm & Reduce a matrix to Frobenius form \\
\hline GaussianElimination & Perform Gaussian elimination on a matrix \\
\hline HessenbergForm & Reduce a square matrix to Hessenberg form \\
\hline HilbertMatrix & Construct a generalized Hilbert matrix \\
\hline IsOrthogonal & Test if a matrix is orthogonal \\
\hline LeastSquares & Compute the least-squares approximation to A . x = b \\
\hline LinearSolve & Solve the linear system A \(\mathbf{~} \mathbf{x}=\mathbf{b}\) \\
\hline MatrixInverse & \begin{tabular}{l} 
Compute the inverse of a square matrix or pseudo-inverse of a non-square \\
matrix
\end{tabular} \\
\hline QRDecomposition & Compute the QR factorization of a matrix \\
\hline RandomMatrix & Construct a random matrix \\
\hline SylvesterMatrix & Construct the Sylvester matrix of two polynomials \\
\hline
\end{tabular}

For information on arithmetic operations, see Matrix Arithmetic (page 169).
For information on selecting entries, subvectors, and submatrices, see Accessing Entries in Matrices and Vectors (page 166).

Example: Determine a basis for the space spanned by the set of vectors \(\{(\mathbf{2}, \mathbf{1 3}, \mathbf{- 1 5}),(\mathbf{7},-\) \(\mathbf{2}, \mathbf{1 3}),(5,-4,9)\}\). Express the vector \((25,-4,9)\) with respect to this basis.
\(>\) with(LinearAlgebra):
\(>v 1:=\langle 2,13,-15\rangle: v 2:=\langle 7,-2,13\rangle: v 3:=\langle 5,-4,9>:\)
Find a basis for the vector space spanned by these vectors, and then construct a matrix from the basis vectors.
> basis:= Matrix(Basis([v1, v2, v3]));
\[
\text { basis }:=\left[\begin{array}{rrr}
2 & 7 & 5 \\
13 & -2 & -4 \\
-15 & 13 & 9
\end{array}\right]
\]

To express \(\mathbf{( 2 5}, \mathbf{- 4 , 9}\) ) in this basis, use the LinearSolve command.
\(>\) LinearSolve (basis, \(<25,-4,9>\) )
\[
\left[\begin{array}{c}
\frac{170}{91} \\
-\frac{285}{91} \\
\frac{786}{91}
\end{array}\right]
\]

\section*{Numeric Computations}

You can very efficiently perform computations on large matrices and vectors that contain floating-point data using the built-in library of numeric linear algebra routines. Some of these routines are provided by the Numerical Algorithms Group ( \(\mathrm{NAG}{ }^{\circledR}\) ). Maple also contains portions of the CLAPACK and optimized ATLAS libraries.

For information on performing efficient numeric computations using the LinearAlgebra package, refer to the ?EfficientLinearAlgebra help page.

See also Creating Matrices and Vectors with Specific Properties (page 164) and Reading from Files (page 414).

\section*{Student LinearAlgebra Package}

The Student package contains subpackages that help instructors teach concepts and allow students to visualize and explore ideas. These subpackages also contain computational commands.

In the Student[LinearAlgebra] subpackage, the environment differs from that of the LinearAlgebra package in that floating-point computations are generally performed using
software precision, instead of hardware precision, and symbols are generally assumed to represent real, rather than complex, quantities. These defaults, and others, can be controlled using the SetDefault command. For more information, refer to the ?Student[LinearAlgebra][SetDefault] help page.

For information on using Maple as a teaching and learning tool, see Teaching and Learning with Maple (page 198).

\subsection*{5.4 Calculus}

The Task Browser (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse) contains numerous calculus task templates. For a list of tasks, navigate to one of the related folders, such as Calculus, Differential Equations, Multivariate Calculus, or Vector Calculus.

This section describes the key Maple calculus commands, many of which are used in task templates or available in the context menus.

For a complete list of calculus commands, refer to the Mathematics (including Calculus, Differential Equations, Power Series, and Vector Calculus subfolders) and Student Package sections of the Maple Help System Table of Contents.

\section*{Limits}

To compute the limit of an expression as the independent variable approaches a value:
1. In the Expression palette, click the limit item \(\lim _{x \rightarrow a^{\prime}} f\).
2. Specify the independent variable, limit point, and expression, and then evaluate it. Press Tab to move to the next placeholder.

For example:
\(>\lim _{x \rightarrow 0}\left(\frac{x}{\sin (x)}\right)\)
\[
1
\]

\section*{The limit Command}

By default, Maple searches for the real bidirectional limit (unless the limit point is \(\infty\) or \(-\infty\) ). To specify a direction, include one of the options left, right, real, or complex in a call to the limit command. See Table 5.8.

Table 5.8: Limits
\begin{tabular}{|l|l|c|}
\hline Limit & Command Syntax & Output \\
\hline \(\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)\) & \(>\operatorname{limit}\left(\frac{1}{x}, x=0\right)\) & undefined \\
\hline \(\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)\) & \(>\operatorname{limit}\left(\frac{1}{x}, x=0\right.\), 'right' \(\left.^{\prime}\right)\) & \(\infty\) \\
\hline \(\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right)\) & \(>\operatorname{limit}\left(\frac{1}{x}, x=0,,^{\prime}\right.\) left' \()\) & \(-\infty\) \\
\hline
\end{tabular}

Using the limit command, you can also compute multidimensional limits.
\(>\operatorname{limit}\left(\frac{x^{2}}{y},\{x=1, y=\infty\}\right)\)
\[
0
\]

For more information on multidimensional limits, refer to the \(\boldsymbol{?}\) limit/multi help page.

\section*{Numerically Computing a Limit}

\section*{To numerically compute a limit:}
- Use the evalf(Limit(arguments)) calling sequence.

Important: Use the inert Limit command, not the limit command. For more information, refer to the ?limit help page.

The Limit command accepts the same arguments as the limit command.
For example:
\(>\operatorname{evalf}\left(\operatorname{Limit}\left(\frac{\sin (x)}{\cos (x)+\tan (x)}, x=1.225\right)\right)\)
\[
0.3020605357
\]

For information on the evalf command, see Numerical Approximation (page 361).
The Limit command does not compute the limit. It returns an unevaluated limit.
\[
\begin{aligned}
>\operatorname{Limit}\left(\frac{\sin (x)}{\cos (x)+\tan (x)}, x\right. & =1.225) \\
& \lim _{x \rightarrow 1.225} \frac{\sin (x)}{\cos (x)+\tan (x)}
\end{aligned}
\]

For more information on the Limit command, refer to the ?Limit help page.

\section*{Differentiation}

Maple can perform symbolic and numeric differentiation.

\section*{To differentiate an expression:}
1. In the Expression palette, click the differentiation item \(\frac{d}{d x} f\) or the partial differentiation item \(\frac{\partial}{\partial x} f\).
2. Specify the expression and independent variable, and then evaluate it.

For example, to differentiate \(x \sin (a x)\) with respect to \(x\) :
\[
>\frac{\mathrm{d}}{\mathrm{~d} x}(x \sin (a x))
\]
\[
\sin (a x)+x \cos (a x) a
\]

You can also differentiate using context menus. For more information, see Context Menus (page 39).

To calculate a higher order or partial derivative, edit the derivative symbol inserted. For example, to calculate the second derivative of \(x \sin (a x)+x^{2}\) with respect to \(x\) :
\[
>\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(x \sin (a x)+x^{2}\right)
\]
\[
2 \cos (a x) a-x \sin (a x) a^{2}+2
\]

To calculate the mixed partial derivative of \(x \sin (3 y)+y x^{5}\) :
\[
>\frac{\partial^{2}}{\partial y \partial x}\left(x \sin (3 y)+y x^{5}\right)
\]
\[
3 \cos (3 y)+5 x^{4}
\]

Note: To enter another \(\partial\) symbol, you can copy and paste the existing symbol, or enter d and use symbol completion.

\section*{The diff Command}

Maple computes derivatives using the diff command. To directly use the diff command, specify the expression to differentiate and the variable.
\[
>x \sin (a x)+x^{2}
\]
\[
\begin{equation*}
x \sin (a x)+x^{2} \tag{5.1}
\end{equation*}
\]
\(>\operatorname{diff}((5.1), x)\)
\[
\begin{equation*}
\sin (a x)+x \cos (a x) a+2 x \tag{5.2}
\end{equation*}
\]

For information on equation labels such as (5.1), see Equation Labels (page 97).
You can calculate a higher order derivative by specifying a sequence of differentiation variables. Maple recursively calls the diff command.
```

$>\operatorname{diff}((5.1), x, x)$

```
\[
\begin{equation*}
2 \cos (a x) a-x \sin (a x) a^{2}+2 \tag{5.3}
\end{equation*}
\]

To calculate a partial derivative, use the same syntax. Maple assumes that the derivatives commute.
\(>\operatorname{diff}(x \sin (3 y)+y \sqrt{x}, x, y)\)
\[
3 \cos (3 y)+\frac{1}{2 \sqrt{x}}
\]

To enter higher order derivatives, it is convenient to use the syntax \(\operatorname{diff}(\mathbf{f}, \mathbf{x} \mathbf{\$ n})\). This syntax can also be used to compute the symbolic \(\mathrm{n}^{\text {th }}\) order derivative.

For example:
\(>\operatorname{diff}(\cos (t), t \$ n)\)
\[
\cos \left(t+\frac{1}{2} n \pi\right)
\]

\section*{Differentiating an Operator}

You can also specify a mathematical function as a functional operator (a mapping). For a comparison of operators and other expressions, see Distinction between Functional Operators and Other Expressions (page 344).

To find the derivative of a functional operator:
- Use the \(\mathbf{D}\) operator.

The \(\mathbf{D}\) operator returns a functional operator.
For example, find the derivative of an operator that represents the mathematical function
\[
F: x \rightarrow x \cos (x)
\]

First, define the operator \(F\).
1. In the Expression palette, click the single-variable function definition item \(f:=a \rightarrow y\).
2. Enter placeholder values.
- To move to the next placeholder, press the Tab key. Note: If pressing the Tab key inserts a tab, click the Tab icon \(\overrightarrow{n^{-1}}\) in the toolbar.
\(>F:=x \rightarrow x \cos (x)\) :
Now, define the operator, \(G\), that maps \(x\) to the derivative of \(x \cos (x)\).
\(>G:=\mathrm{D}(F)\)
\[
G:=x \rightarrow \cos (x)-x \sin (x)
\]
\(F\) and \(G\) evaluated at \(\frac{\pi}{2}\) return the expected values.
\(>F\left(\frac{\pi}{2}\right) ; G\left(\frac{\pi}{2}\right)\)
\[
\begin{gathered}
0 \\
-\frac{1}{2} \pi
\end{gathered}
\]

For more information on the \(\mathbf{D}\) operator, refer to the \(\mathbf{?} \mathbf{D}\) help page. For a comparison of the diff command and \(\mathbf{D}\) operator, refer to the ?diffVersusD help page.

\section*{Directional Derivative}

To compute and plot a directional derivative, use the Directional Derivative Tutor. The tutor computes a floating-point value for the directional derivative.

\section*{To launch the tutor:}

From the Tools menu, select Tutors, Calculus - Multi-Variable, and then Directional Derivatives. Maple launches the Directional Derivative Tutor. See Figure 5.7.


Figure 5.7: Directional Derivative Tutor
To compute a symbolic value for the directional derivative, use the Student[Multivariate-
Calculus][DirectionalDerivative] command. The first list of numbers specifies the point at which to compute the derivative. The second list of numbers specifies the direction in which to compute the derivative.

For example, at the point [1,2], the gradient of \(x^{2}+y^{2}\) points in the direction \([2,4]\), which is the direction of greatest increase. The directional derivative in the orthogonal direction \([-2,1]\) is zero.
> with(Student[MultivariateCalculus]):
\[
\begin{aligned}
&>\text { DirectionalDerivative }\left(x^{2}+y^{2},[x, y]=\right. {[1,2],[1,2]) ; } \\
& 2 \sqrt{5} \\
&>\text { DirectionalDerivative }\left(x^{2}+y^{2},[x, y]=[1,2],[-2,1]\right) ;
\end{aligned}
\]

\section*{Series}

To generate the Taylor series expansion of a function about a point, use the taylor command.
```

taylor(\operatorname{sin}(4x)\operatorname{cos}(x),x=0)

```
\[
4 x-\frac{38}{3} x^{3}+\frac{421}{30} x^{5}+\mathrm{O}\left(x^{6}\right)
\]

Note: If a Taylor series does not exist, use the series command to find a general series expansion.

For example, the cosine integral function does not have a taylor series expansion about 0 . For more information, refer to the \(\mathbf{?} \mathbf{C i}\) help page.
```

$>\operatorname{taylor}(\operatorname{Ci}(x), x=0)$
Error, does not have a taylor expansion, try series()

```

To generate a truncated series expansion of a function about a point, use the series command.
\(>\operatorname{series}(\operatorname{Ci}(x), x=0)\)
\[
\gamma+\ln (x)-\frac{1}{4} x^{2}+\frac{1}{96} x^{4}+\mathrm{O}\left(x^{6}\right)
\]

By default, Maple performs series calculations up to order 6 . To use a different order, specify a non-negative integer third argument.
\[
\begin{aligned}
& >\text { expansion }:=\operatorname{series}(C i(t), t=0,4) \\
& \qquad \text { expansion }:=\gamma+\ln (t)-\frac{1}{4} t^{2}+\mathrm{O}\left(t^{4}\right)
\end{aligned}
\]

To set the order for all computations, use the Order environment variable. For information about the Order variable and the \(\mathrm{O}\left(t^{4}\right)\) term, refer to the ?Order help page.

The expansion is of type series. Some commands, for example, plot, do not accept arguments of type series. To use the expansion, you must convert it to a polynomial using the convert/polynom command.
\(>\operatorname{plot}(\{\operatorname{Ci}(t)\), convert(expansion,polynom \(\left.)\}, t=\frac{1}{100} . .2\right)\)


For information on Maple types and type conversions, see Maple Expressions (page 337).
For information on plotting, see Plots and Animations (page 237).

\section*{Integration}

Maple can perform symbolic and numeric integration.
To compute the indefinite integral of an expression:
1. In the Expression palette, click the indefinite integration item \(\int f \mathrm{~d} x\)
2. Specify the integrand and variable of integration, and then evaluate it.

For example, to integrate \(x \sin (a x)\) with respect to \(x\) :
\(>\int x \sin (a x) \mathrm{d} x\)
\[
\frac{\sin (a x)-x \cos (a x) a}{a^{2}}
\]

Recall that you can also enter symbols, including \(\int\) and d , using symbol completion.
- Enter the symbol name (or part of the name), for example, int or d, and then press the completion shortcut key.

For more information, see Symbol Names (page 29).
You can also compute an indefinite integral using context menus. For more information, see Context Menus (page 39).

To compute the definite integral of an expression:
1. In the Expression palette, click the definite integration item \(\int_{a}^{b} f \mathrm{~d} x\)
2. Specify the endpoints of the interval of integration, integrand expression, and variable of integration, and then evaluate it.

For example, to integrate \(\mathrm{e}^{-a t} \ln (t)\) over the interval \((0, \infty)\) :
\(>\int_{0}^{\infty} \mathrm{e}^{-a t} \ln (t) \mathrm{d} t\)
\[
\lim _{t \rightarrow \infty}\left(-\frac{\mathrm{e}^{-a t} \ln (t)+\mathrm{Ei}(1, a t)+\gamma+\ln (a)}{a}\right)
\]

Maple treats the parameter a as a complex number. As described in Assumptions on Variables (page 144), you can compute under the assumption that \(\mathbf{a}\) is a positive, real number using the assuming command.
\[
\begin{aligned}
>\int_{0}^{\infty} \mathrm{e}^{-a t} \ln (t) \mathrm{d} t \text { assuming } a>0 & \\
& -\frac{\gamma+\ln (a)}{a}
\end{aligned}
\]

To compute iterated integrals, line integrals, and surface integrals, use the task templates (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse) in the Multivariate and Vector Calculus folders.

\section*{The int Command}
\(\int f \mathrm{~d} x\) and \(\int_{a}^{b} f \mathrm{~d} x\) use the int command. To use the int command directly, specify the following arguments.
- Expression to integrate
- Variable of integration
\(>x \sin (a x)\)
\[
\begin{equation*}
x \sin (a x) \tag{5.4}
\end{equation*}
\]
\(>\operatorname{int}(5.4), x)\)
\[
\begin{equation*}
\frac{\sin (a x)-x \cos (a x) a}{a^{2}} \tag{5.5}
\end{equation*}
\]

For a definite integration, set the variable of integration equal to the interval of integration.
\(>\operatorname{int}\left(\right.\) (5.4),\(\left.x=0 . . \frac{\pi}{a}\right)\)
\[
\begin{equation*}
\frac{\pi}{a^{2}} \tag{5.6}
\end{equation*}
\]

\section*{Numeric Integration}

\section*{To perform numeric integration:}
- Use the evalf(Int(arguments)) calling sequence.

Important: Use the inert Int command, not the int command. For more information, refer to the ?int help page.

In addition to the arguments accepted by the int command, you can include optional arguments such as method, which specifies the numeric integration method.
\[
\begin{array}{r}
>\operatorname{evalf}\left(\operatorname{Int}\left(\frac{1}{\Gamma(x)}, x=0 . .2, '^{\prime} \text { method }=_{-} \operatorname{Dexp}\right)\right) \\
1.626378399
\end{array}
\]

Note: To enter an underscore character (_) in 2-D Math, enter \(\_{-}\).
For information on the evalf command, see Numerical Approximation (page 361).
For information on numeric integration, including iterated integration and controlling the algorithm, refer to the ?evalf/Int help page.

\section*{Differential Equations}

Maple has a powerful set of solvers for ordinary differential equations (ODEs) and partial differential equations (PDEs), and systems of ODEs and PDEs.

For information on solving ODEs and PDEs, see Other Specialized Solvers (page 121).

\section*{Calculus Packages}

In addition to top-level calculus commands, Maple contains calculus packages.

\section*{VectorCalculus Package}

The VectorCalculus package contains commands that perform multivariate and vector calculus operations on VectorCalculus vectors (vectors with an additional coordinate system attribute) and vector fields (vectors with additional coordinate system and vectorfield attributes), for example, Curl, Flux, and Torsion.
> with(VectorCalculus):
> BasisFormat(false):
\(>\operatorname{SetCoordinates}(\) 'cartesian \([x, y, z]\) '):
\(>\) VectorField1 \(:=\) VectorField \((\langle-y, x, z\rangle)\)
\[
\text { VectorFieldl }:=\left[\begin{array}{c}
-y \\
x \\
z
\end{array}\right]
\]

Note: For information on changing the display format in the VectorCalculus package, see the ?VectorCalculus[BasisFormat] help page.

Find the curl of VectorField1.
> Curl(VectorFieldl);
\[
\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]
\]

Find the flux of VectorField1 through a sphere of radius \(\mathbf{r}\) at the origin.
\(>\operatorname{Flux}(\) VectorField1, Sphere \((\langle 0,0,0\rangle, r))\)
\[
\frac{4}{3} r^{3} \pi
\]

Compute the torsion of a space curve. The curve must be a vector with parametric function components.
\(>\operatorname{simplify}\left(\operatorname{Torsion}\left(\left\langle t, t^{2}, t^{3}\right\rangle, t\right)\right)\) assuming t:real
\[
\frac{3}{9 t^{4}+9 t^{2}+1}
\]

For information on the assuming command, see The assuming Command (page 146).
For more information on the VectorCalculus package, including a complete list of commands, refer to the ?VectorCalculus help page.

To find other calculus packages, such as VariationalCalculus, refer to the ?index/package help page.

\section*{Student Calculus Packages}

The Student package contains subpackages that help instructors teach concepts and allow students to visualize and explore ideas. These subpackages also contain computational commands. The Student calculus subpackages include Calculus1, MultivariateCalculus, and VectorCalculus. The Student[VectorCalculus] package provides a simple interface to a limited subset of the functionality available in the VectorCalculus package.

For information on using Maple as a teaching and learning tool, and some computational examples, see Teaching and Learning with Maple (page 198).

\subsection*{5.5 Optimization}

Using the Optimization package, you can numerically solve optimization problems. The package uses fast Numerical Algorithms Group (NAG) algorithms to minimize or maximize an objective function.

The Optimization package solves constrained and unconstrained problems.
- Linear programs
- Quadratic programs
- Nonlinear programs
- Linear and nonlinear least-squares problems

The Optimization package contains local solvers. In addition, for univariate finitely-bounded nonlinear programs with no other constraints, you can compute global solutions using the NLPSolve command. To find global solutions generally, purchase the Global Optimization Toolbox. For more information, visit http://www.maplesoft.com/products/toolboxes.

\section*{Point-and-Click Interface}

The primary method for solving optimization problems is the Optimization Assistant.
To launch the Optimization Assistant:
- From the Tools menu, select Assistants, and then Optimization.

Maple launches the Optimization Assistant. See Figure 5.8.


Figure 5.8: Optimization Assistant
To solve a problem:
1. Enter the objective function, constraints, and bounds.
2. Select the Minimize or Maximize radio button.
3. Click the Solve button. The solution is displayed in the Solution text box.

You can also enter the problem (objective function, constraints, and bounds) in the calling sequence of the Optimization[Interactive] command.

For example, find the maximum value of \(x^{3} y-y^{2}\) subject to the constraints \(x+y \leq 6, x \in[0,5], y \in[0,5]\).
\(>\) Optimization[Interactive] \(\left(x^{3} y-y^{2},\{x+y \leq 6, x=0 . .5, y=0 . .5\}\right)\)
\[
[134.491161539748162,[x=4.53559292539129189, y=1.46440707460870746]]
\]
- When the Optimization Assistant opens, select Maximize, then Solve.

After finding a solution, you can plot it. To plot a solution:
- In the Optimization Assistant window, click the Plot button. The Optimization Plotter window is displayed. See Figure 5.9.

Note: When you close the Optimization Assistant, you can choose to return the solution, problem, command used, plot, or nothing, using the drop-down in the bottom right corner of the assistant window.


Figure 5.9: Optimization Assistant Plotter Window
For information on the algorithms used to solve optimization problems, refer to the \(\mathbf{~ O p p}\) timization/Methods help page.

\section*{Large Optimization Problems}

The Optimization Assistant accepts input in an algebraic form. You can specify input in other forms, described in the ?Optimization/InputForms help page, in command calling sequences.

The Matrix form, described in the ?Optimization/MatrixForm help page, is more complex but offers greater flexibility and efficiency.

For example, solve the linear program:
Maximize \(c^{T} x\) subject to \(A x \leqslant b\), where \(x\) is the vector of problem variables.
1. Define the column vector, \(\mathbf{c}\), of the linear objective function.
> with(LinearAlgebra) :
\(>c:=\) RandomVector \([\) column \(](20\), outputoptions \(=[\) 'datatype' \(=\) 'float'] \()\) :
2. Define the matrix \(\mathbf{A}\), the coefficient matrix for the linear inequality constraints.
\(>A:=\) RandomMatrix( 19,20 , outputoptions \(=[\) 'datatype' \(=\) 'float' \(]\) ):
3. Define the column vector \(\mathbf{b}\), the linear inequality constraints.
\(>b:=\) RandomVector \([\) column \(](19\), outputoptions \(=[\) 'datatype' \(=\) 'float' \(])\) :
4. The QPSolve command solves quadratic programs.
\(>\) Optimization \([\) LPSolve \(](c,[A, b]\), maximize, assume \(=\) nonnegative \()\)
\(\left[43.2673034492019,\left[\begin{array}{c}1 \text {.. } 20 \text { Vector }_{\text {column }} \\ \text { Data Type: float } \\ 8 \\ \text { Storage: rectangular } \\ \text { Order: Fortran_order }\end{array}\right]\right]\)
This example uses a random data set to demonstrate the problem. You could also read data from an external file as Matrices, and use that data. For details and an example, see Reading from Files (page 414).

Note: For information on creating matrices and vectors (including how to use the Matrix palette to easily create matrices), see Linear Algebra (page 159).

For additional information on performing efficient computations, refer to the ?Optimization/Computation help page.

\section*{MPS(X) File Support}

To import linear programs from a standard MPS(X) data file, use the ImportMPS command.

\section*{Optimization Package Commands}

Each Optimization package command solves the problem using a different optimization method. These are described in Table 5.9, along with the general input form for each command.

Table 5.9: Optimization Package Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline LPSolve & \begin{tabular}{l} 
Solve a linear program (LP), which involves computing the minimum (or \\
maximum) of a linear objective function subject to linear constraints; input \\
is in equation or Matrix form
\end{tabular} \\
\hline LSSolve & \begin{tabular}{l} 
Solve a least-squares (LS) problem, which involves computing the minim- \\
um of a real-valued objective function having the form \\
\(\frac{1}{2}\left(f_{1}(x)^{2}+f_{2}(x)^{2}+\ldots+f_{q}(x)^{2}\right)\), where \(x\) is a vector of problem \\
variables, possibly subject to constraints; input is in equation or Matrix \\
form
\end{tabular} \\
\hline Maximize & \begin{tabular}{l} 
Compute a local maximum of an objective function, possibly subject to \\
constraints
\end{tabular} \\
\hline Minimize & \begin{tabular}{l} 
Compute a local minimum of an objective function, possibly subject to \\
constraints
\end{tabular} \\
\hline NLPSolve & \begin{tabular}{l} 
Solve a non-linear program (NLP), which involves computing the minim- \\
um (or maximum) of a real-valued objective function, possibly subject to \\
constraints; input is in equation or Matrix form
\end{tabular} \\
\hline QPSolve & \begin{tabular}{l} 
Solve a quadratic program (QP), which involves computing the minimum \\
(or maximum) or a quadratic objective function, possibly subject to linear \\
constraints; input is in equation or Matrix form
\end{tabular} \\
\hline
\end{tabular}

For a complete list of commands and other Optimization package information, refer to the ?Optimization help page.

\subsection*{5.6 Statistics}

The Statistics package provides tools for mathematical statistics and data analysis. The package supports a wide range of common statistical tasks including quantitative and graphical data analysis, simulation, and curve fitting.

In addition to standard data analysis tools, the Statistics package provides a wide range of symbolic and numeric tools for computing with random variables. The package supports over 35 major probability distributions and can be extended to include new distributions.

\section*{Probability Distributions and Random Variables}

The Statistics package supports:
- Continuous distributions, which are defined along the real line by probability density functions. Maple supports many continuous distributions, including the normal, Studentt , Laplace, and logistic distributions.
- Discrete distributions, which have nonzero probability only at discrete points. A discrete distribution is defined by a probability function. Maple supports many discrete distributions, including the Bernoulli, geometric, and Poisson distributions.

For a complete list of distributions, refer to the ?Statistics/Distributions help page.
You can define random variables by specifying a distribution in a call to the RandomVariable command.
```

> with(Statistics):

```
\(>X:=\) RandomVariable \((\operatorname{Poisson}(\lambda))\) :
Find the probability distribution function for \(\mathbf{X}\). (For information on statistics computations, see Statistical Computations (page 194).)
\[
>\operatorname{PDF}(X, t)
\]
\[
\sum_{k=0}^{\infty} \frac{\lambda^{k} \mathrm{e}^{-\lambda} \operatorname{Dirac}(t-k)}{k!}
\]

\section*{Adding Custom Distributions}

To add a new distribution, specify a probability distribution in a call to the Distribution command.
\(>U:=\) Distribution \(\left(P D F=\left(t \rightarrow\left\{\begin{array}{cc}0 & t<0 \\ \frac{1}{3} & t<3 \\ 0 & \text { otherwise }\end{array}\right)\right):\right.\)
To construct a piecewise-continuous function in 1-D Math, use the piecewise command, for example, \(t->\) piecewise ( \(t<0,0, t<3,1 / 3,0\) ).

Define a new random variable with this distribution.
\(>Z:=\) RandomVariable \((U): \operatorname{PDF}(Z, t)\)
\[
\begin{array}{cc}
0 & t<0 \\
\frac{1}{3} & t<3 \\
0 & \text { otherwise }
\end{array}
\]

Calculate the mean value of the random variable.
\(>\operatorname{Mean}(Z)\)
\[
\frac{3}{2}
\]

\section*{Statistical Computations}

In addition to basic functions, like mean, median, standard deviation, and percentile, the Statistics package contains commands that compute, for example, the interquartile range and hazard rate.

\section*{Example 1 - Interquartile Range}

Compute the average absolute range from the interquartile of the Rayleigh distribution with scale parameter 3 .
> InterquartileRange(Rayleigh(3))
\[
\sqrt{36} \sqrt{\ln (2)}-\sqrt{-18 \ln \left(\frac{3}{4}\right)}
\]

To compute the result numerically:
- Specify the 'numeric' option.
> InterquartileRange(Rayleigh(3),'numeric')
2.719744818

\section*{Example 2 - Hazard Rate}

Compute the hazard rate of the Cauchy distribution with location and scale parameters a and \(\mathbf{b}\) at an arbitrary point \(\mathbf{t}\).
> HazardRate(Cauchy \((a, b), t)\)
\[
\frac{1}{\pi b\left(1+\frac{(t-a)^{2}}{b^{2}}\right)\left(\frac{1}{2}-\frac{\arctan \left(\frac{t-a}{b}\right)}{\pi}\right)}
\]

You can specify a value for the point \(\mathbf{t}\).
\(>\operatorname{HazardRate}\left(\operatorname{Cauchy}(a, b), \frac{1}{2}\right)\)
\[
\left.\pi b\left(1+\frac{1}{b^{2}}\right)\left(\frac{1}{2}-a\right)^{2}\right)\left(\frac{\arctan \left(\frac{\frac{1}{2}-a}{b}\right)}{\pi}\right)
\]

You can also specify that Maple compute the result numerically.
\(>\operatorname{HazardRate}\left(\right.\) Cauchy \((10,1), \frac{1}{2}\),'numeric' \()\)
\[
0.003608801460
\]

For more information, refer to the ?Statistics/DescriptiveStatistics help page.

\section*{Plotting}

You can generate statistical plots using the visualization commands in the Statistics package. Available plots include:
- Bar chart
- Frequency plot
- Histogram
- Pie chart
- Scatter plot

For example, create a scatter plot for a distribution of points that vary from \(\sin \left(\frac{2 \pi x}{200}\right)\) by a small value determined by a normally distributed sample.
\(>N:=200\) :
\(>U:=\operatorname{Sample}(\operatorname{Normal}(0,1), N)\) :
\(>X:=<\operatorname{seq}(x, x=1 . . N)>:\)
\(>Y:=<\operatorname{seq}\left(\sin \left(\frac{2 \pi x}{N}\right)+\frac{U[x]}{5}, x=1 . . N\right)>:\)
> ScatterPlot(X, Y,'title'= "Scatter Plot");


To fit a curve to the data points, include the optional fit equation parameter.
Using the plots[display] command, create a plot that contains:
- a scatter plot of the data points
- a quartic polynomial fitted to the data points: \(f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e\)
- the function \(\sin \left(\frac{2 \pi x}{N}\right)\)
\(>P:=\operatorname{ScatterPlot}\left(X, Y\right.\), fit \(=\left[a x^{4}+b x^{3}+c x^{2}+d x+e, x\right]\), thickness \(\left.=2\right)\) :
\(>Q:=\operatorname{plot}\left(\sin \left(\frac{2 \pi x}{N}\right), x=1\right.\)..N, thickness \(=2\), color \(=\) red \():\)
> plots[display] \((P, Q\), 'title' \(=\) "Scatter Plot with Fitted Quartic Polynomial")


For more information on statistical plots, refer to the ?Statistics/Visualization help page.
For an overview of plotting, see Plots and Animations (page 237).

\section*{Additional Information}

For more information on the Statistics package, including regression analysis, estimation, data manipulation, and data smoothing, refer to the ?Statistics help page.

The Data Analysis Assistant provides an interactive way to perform data analysis. For more information, refer to the ?Statistics[InteractiveDataAnalysis] help page.

\subsection*{5.7 Teaching and Learning with Maple}

Table 5.10 lists the available resources for instructors and students. For additional resources, see Available Resources (page 58).

Table 5.10: Student and Instructor Resources
\begin{tabular}{|l|l|}
\hline Resource & Description \\
\hline Student Packages and Tutors & \begin{tabular}{l} 
The Student package contains computational and visualization \\
(plotting and animation) functionality, and point-and-click inter- \\
faces for explaining and exploring concepts (Tools \(\rightarrow\) Tutors). \\
For more information, refer to the ?Student help page.
\end{tabular} \\
\hline Maple Portal & \begin{tabular}{l} 
The Maple Portal includes material designed for all Maple users \\
as well as specific portals for students and educators. The Maple \\
Portal includes: \\
- How Do I... topics that give quick answers to essential ques- \\
tions \\
- Tutorials that provide an overview of topics from getting \\
started to plotting and working with matrices \\
-
\end{tabular} \\
& \begin{tabular}{l} 
Navigation to portals with specialized information for stu- \\
dents, math educators, and engineers
\end{tabular} \\
Access the portal from the Help menu (Help \(\rightarrow\) Manuals, Re- \\
sources, and More \(\rightarrow\) Maple Portal).
\end{tabular}\(|\)
\begin{tabular}{|l|l|}
\hline Resource & Description \\
\hline Student Help Center & \begin{tabular}{l} 
The Maple Student Help Center contains tutorials and applica- \\
tions that help students learn how to use Maple, explore math- \\
ematical concepts, and solve problems. Available resources in- \\
clude: \\
- \begin{tabular}{l} 
Study guides - Complete lessons with examples for academic \\
courses, including precalculus and calculus. For example, the \\
Interactive Precalculus Study Guide contains worked prob- \\
lems, each solved as in a standard textbook, using Maple \\
commands and custom Maplet graphical interfaces.
\end{tabular} \\
\\
\\
\\
\\
\\
\\
\\
\\
- Free course lessons for many subjects including precalculus \\
to vector calculus; high school, abstract, and linear algebra; \\
engineering; physics; differential equations; cryptography; \\
and classical mechanics.
\end{tabular} \\
\hline - Applications for students, written by students, providing ex- \\
amples in many subject areas. \\
- Student FAQs with answers from experts. \\
(http://www.maplesoft.com/academic/students)
\end{tabular}

\section*{Student Packages and Tutors}

The Student package is a collection of subpackages for teaching and learning mathematics and related subjects. The Student package contains packages for a variety of subjects, including precalculus, calculus, and linear algebra.

\section*{Instructors can:}
- Teach concepts without being distracted by the mechanics of the computations.
- Create examples and quickly update them during a lesson to demonstrate different cases or show the effect of the variation of a parameter.
- Create plots and animations to visually explain concepts, for example, the geometric relationship between a mathematical function and its derivatives (Tools \(\rightarrow\) Tutors \(\rightarrow\) Calculus - Single Variable \(\rightarrow\) Derivatives). See Figure 5.10.


Figure 5.10: Student[Calculus1] Derivatives Tutor
Students can:
- Perform step-by-step computations, for example, compute a derivative by applying differentiation rules using commands or a tutor (Tools \(\rightarrow\) Tutors \(\rightarrow\) Calculus - Single Variable \(\rightarrow\) Differentiation Methods). See Figure 5.11.
- Perform computations.
- Visually explore concepts.


Figure 5.11: Student[Calculus1] Differentiation Methods Tutor
Tutors provide point-and-click interfaces to the Student package functionality.

\section*{To launch a tutor:}
1. From the Tools menu, select Tutors.
2. Select a subject, for example, Calculus - Multi-Variable.
3. Select a tutor, for example, Gradients.

Maple inserts the Student[MultivariateCalculus][GradientTutor]() calling sequence (in Worksheet mode), and launches the Multivariate Calculus Gradient Tutor.

By rotating the three-dimensional plot, you can show that the gradient points in the direction of greatest increase of the surface (see Figure 5.12) and show the direction of the gradient vector in the x -y plane by rotating the plot (see Figure 5.13).


Figure 5.12: Multivariate Calculus Gradient Tutor


Figure 5.13: Multivariate Calculus Gradient Tutor Showing x-y Plane
When you close the tutor, Maple inserts the 3-D plot.
\(>\) Student[ MultivariateCalculus][GradientTutor]( );


Many Student package commands can return a value, mathematical expression, plot, or animation. This allows you to compute the final answer, see the general formula applied to a specific problem, or visualize the underlying concepts.

For example, the Student[VectorCalculus][LineInt] (line integral) command can return the following.
- Plot that visually indicates the vector field, path of integration, and tangent vectors to the path
- Unevaluated line integral
- Numeric value of the line integral
> with(Student[VectorCalculus]):
\(\rangle \operatorname{LineInt}(\) VectorField \((\langle y,-x\rangle)\), Circle \((\langle 0,0\rangle, 1)\),'output' \(=\) 'plot' \()\)

\(>\operatorname{LineInt}(\) VectorField \((\langle y,-x\rangle)\), Circle \((\langle 0,0\rangle, 1)\),'output' \(=\) 'integral \()\)
\[
\begin{equation*}
\int_{0}^{2 \pi}\left(-\sin (t)^{2}-\cos (t)^{2}\right) \mathrm{d} t \tag{5.7}
\end{equation*}
\]

To evaluate the integral returned by the output = integral calling sequence, use the value command.
\(>\) value (5.7))
\[
\begin{equation*}
-2 \pi \tag{5.8}
\end{equation*}
\]

By default, the LineInt command returns the value of the integral.
\(>\operatorname{LineInt}(\) VectorField \((\langle y-x,-x-y\rangle)\), Circle \((\langle 0,0\rangle, r))\)
\[
-2 \pi r^{2}
\]

For more information on the Student package, refer to the ?Student help page.

\section*{Calculus Problem Solving Examples}

Maple is a powerful application with many resources to guide you. The following examples provide you with scenarios to learn about using Maple resources and the Maple program.

When using Maple to solve a problem, consider the following process.
1. Formulate your problem.
2. Obtain Maple resources that allow you to solve it.

\section*{Problem}

\section*{Scenario A:}

Your company is designing a bottle for its new spring water product. The bottle must contain 18 ounces of water and the height is fixed. The design includes an undulating curved surface. You know the amplitude and equation of the curve, but you must find the radius. You require the Volume of Revolution.

\section*{Scenario B:}

You want to teach your students the concept of a Volume of Revolution. Specifically, you want to plot and compute the volume of a solid generated by rotating \(f(x), a \leq x \leq b\), about an axis or a line parallel to an axis.



Figure 5.14: Flowchart of solving a problem

\section*{Check for Existing Tools: Tutor}

Begin by examining the Tools menu for a Tutor to a Volume of Revolution problem.
To access a Tutor for the Volume of Revolution:
1. From the Tools menu, select Tutors, and then Calculus-Single Variable. Notice that a Volume of Revolution tutor exists.
2. Click the Volume of Revolution menu item. The following Maple command is entered in your document.
\(>\) Student \([\) Calculus 1\(][\) VolumeOfRevolutionTutor \(](\) );


The Volume of Revolution Tutor is displayed. See Figure 5.15. Use this tutor to enter a function and an interval, view and manipulate the corresponding plot, and view the full Maple command associated with your entries and selections.


Figure 5.15: Volume of Revolution Tutor
After you Close the tutor, the plot is inserted into your worksheet.

\section*{Check for Existing Tools: Task Template}
1. From the Tools menu, select Tasks, and then Browse. The Browse Tasks dialog opens, displaying a list of tasks in the left pane. The tasks are sorted by subject to help you quickly find the desired task.
2. Expand the Calculus - Integral \(\rightarrow\) Applications \(\rightarrow\) Solids of Revolution folder.
3. From the displayed list, select Volume. The Volume of Revolution task is displayed in the right pane of the Browse Tasks dialog.
4. Select the Insert into New Worksheet check box.
5. Click Insert Default Content. Before inserting a task, Maple checks whether the task variables have assigned values in your worksheet. If any task variable is assigned, the Task Variables dialog opens allowing you to modify the names. Maple uses the edited variable names for all variable instances in the inserted task. The content is inserted into your document. See Figure 5.16.

\section*{Volume of Revolution}
```

Calculate the volume of revolution for a solid of revolution when a function is rotated about the horizontal or vertical axis.
Enter the function as an expression and specify the range:
> sin(x)\operatorname{cos}(x)+1,0..\frac{\pi}{2}
sin}(x)\operatorname{cos}(x)+1,0.\frac{1}{2}\textrm{Pi
Calculate the volume of revolution:
[> Student[Calculus $]$ [VolumeOfRevolution] $](\mathbf{1})$)

$$
\begin{equation*}
\mathrm{Pi}+\frac{9}{16} \mathrm{Pi}^{2} \tag{2}
\end{equation*}
$$

Display the floating-point value using the evalf command:
$\lceil>\operatorname{evalf}(\mathbf{(2)})$
8.693245131
(3)

```

Figure 5.16: Inserted Task Template
6. When a Task Template is inserted, parameters are marked as placeholders, denoted by purple font. To navigate between placeholders, press the Tab key. After updating any parameters, execute the command by pressing Enter.

\section*{Check for Instructions: Help Page and Example Worksheet}

The help system provides command syntax information.

\section*{To access a help page:}
1. From the Help menu, select Maple Help.
2. In the search field, enter volume of revolution and click Search. The search results include the command help page, the dictionary definition, and the associated tutor help page.
3. Review the calling sequence, parameters, and description in the Student[Calculus1][VolumeOfRevolution] help page.
4. Copy the examples into your worksheet: from the help system Edit menu, select Copy Examples.

\section*{5. Close the Help Navigator.}
6. In your document, from the Edit menu, select Paste. The examples are pasted into your document.
7. Execute the examples and examine the results.

\section*{To access an example worksheet:}
1. In the worksheet, enter ?index/examples. The Example Worksheet Index opens.
2. Expand the Calculus topic.
3. Click the examples/Calculus1IntApps link. The Calculus1: Applications of Integration worksheet opens. See Figure 5.17.
4. Expand the Volume of Revolution topic.
5. Examine and execute the examples.

\section*{Calculus 1: Applications of Integration}

The Student[Calculus1] package contains four routines that can be used to both work with and visualize the concepts of function averages, arc lengths, and volumes and surfaces of revolution. This worksheet demonstrates this functionality.

For further information about any command in the Calculusl package, see the corresponding help page. For a general overview, see Calculus 1.

\section*{Getting Started}
[While any command in the package can be referred to using the long form, for example, Student[Calculusl][DerivativePlot], it is easier, and often clearer, to load the package, and then use the short form command names.
\(>\) restart
\(>\) with(Student[Calculus1])
The following sections show how the routines work. In some cases, examples show to use these visualization routines in conjunction with the single-stepping Calculusl routines.

\section*{\(>\) Function Average}

Volume of Revolution
- Arc Length

\section*{Surface of Revolution}

Main: Visualization
Previous: Integration
Figure 5.17: Example Worksheet

\section*{Check for Other Ready-To-Use Resources: Application Center}

The Maple Application Center contains free user-contributed applications related to mathematics, education, science, engineering, computer science, statistics and data analysis, finance, communications, graphics, and more.

To access a free application for volume of revolution:
1. Go to the Maplesoft web site, http://www.maplesoft.com.
2. In the menu of the main web page, click Community, and then Application Center.
3. In the Application Search section, enter Calculus 2 in the Keyword or phrase field.

\section*{Application Search}

\section*{Calculus 2}

Any Application Type \(\checkmark\)
Search
Advanced Search
4. Click Search.
5. From the search results page, under Displaying applications, click the Click here link.
6. From the list of archived applications, select Calculus II: Complete Set of Lessons.
7. Click on the Download Maple Document link.
```

Toolkit

```

E Download Maple
Document
ES View HTML version
图 Tell a Colleaque about
this Application
- Contact the Author

图 Contribute Your Work
Q Evaluate Maple
8. Log in as a guest or Maplesoft Member.
9. Download the .zip file.
10. Extract the L2-volumeRevolution.mws file.
11. Execute the worksheet and examine the results.

\subsection*{5.8 Clickable Math Examples}

Maple has incorporated several features that eliminate the learning curve for new users. With drag-and-drop functionality, context menus, built-in tutors, command completion, and over 20 palettes, using Maple has never been so easy. This chapter is designed to show several ways to solve the same problem in Maple. Throughout these examples, you will need to insert new document block regions. This is done through the Format menu, by selecting Create Document Block. Also, these examples only use the keyboard keys needed for a Windows operating system. Refer to Shortcut Keys by Platform (page xiv) for the keys needed for your operating system.

\section*{Example 1-Graph a Function and its Derivatives}

On the interval \([-\pi, \pi]\), graph \(f, f^{\prime}\), and \(f^{\prime \prime}\) for \(f(x)=x \cos (x)\).
We solve this problem using the following methods:
- Solution by Context Menus (page 213)
- Solution by Tutor (page 215)
- Access the Tutor from a Task Template (page 217)

\section*{Solution by Context Menus}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline 1. Enter the expression \(x \cos (x)\). & \(x \cos (x)\) \\
\hline \begin{tabular}{l} 
Make a copy of the expression and calculate the \\
derivative: \\
2. Insert a new document block region by select- \\
ing from the Format menu Create Document \\
Block.
\end{tabular} & \begin{tabular}{ll}
\(x \cos (x)\) & differentiate w.r.t. x \\
\(\cos (x)-x \sin (x)\)
\end{tabular} \\
\begin{tabular}{l} 
3. Highlight the original expression. Ctrl + drag \\
the expression to the new document block.
\end{tabular} & \\
\begin{tabular}{l} 
4. Right-click the expression and select Differ- \\
entiate \(\rightarrow \mathbf{x}\).
\end{tabular} & \\
\hline \begin{tabular}{l} 
Make a copy of the derivative and calculate \\
the second derivative:
\end{tabular} & \(\cos (x)-x \sin (x) \xrightarrow{\text { differentiate w.r.t. } \mathrm{x}} \mathrm{\longrightarrow}\) \\
\begin{tabular}{l} 
5. Insert a new document block, and Ctrl + drag \\
the derivative to the document block.
\end{tabular} & \(-2 \sin (x)-x \cos (x)\) \\
\begin{tabular}{l} 
6. Right-click the derivative and select Differen- \\
tiate \(\rightarrow \mathbf{x}\).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Action \\
\hline Plot the original expression: \\
7. Insert a new document block, and Ctrl + drag \\
the original expression to the new block. \\
8. Right-click the expression and select Plots \(\rightarrow\) \\
Plot Builder. \\
9. In the Interactive Plot Builder: Select Plot \\
Type dialog, change the \(\mathbf{x}\) Axis range to -Pi to \\
Pi. \\
Add the first and second derivatives to the plot: \\
11. Select and then Ctrl + drag the derivative of \\
the expression onto the plot region. Do the same \\
for the second derivative.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l}
Enhance the plot by adding a legend using context menus: \\
12. Right-click in the plot region and select Legend \(\rightarrow\) Show Legend. \\
13. In the legend, double-click Curve 1. Notice that the Text icon is selected in the toolbar, \\
Text . Delete the text and select the Math icon in the toolbar, Math. This allows you to enter 2-D Math in a text region. Enter the original expression, \(x \cos (x)\). \\
14. Repeat for Curve 2 and Curve 3.
\end{tabular} & \(\square-x \cos (x) \quad\) Curve 2 Curve 3 \\
\hline \begin{tabular}{l}
Add a title: \\
15. To enter a title, click the Drawing icon in the toolbar, Drawing . If the Drawing icon is not accessible, click in the plot region. \\
16. Click \(\mathbf{T}\) in the Drawing toolbar, \(\mathbf{T}\). \\
17. Click the plot region and a text region appear. Notice that the toolbar has changed once again with the Text icon selected. Enter "Plot the expression ". Click the Math icon, and enter the expression \(\boldsymbol{x} \boldsymbol{\operatorname { c o s }}(\boldsymbol{x})\). Click the Text icon once again and enter " and its derivatives". \\
18. Click the text region and the border becomes highlighted. You can now reshape the text region and move it around the plot region using the mouse.
\end{tabular} &  \\
\hline
\end{tabular}

\section*{Solution by Tutor}

The Student Calculus 1 package contains a tutor called Derivatives, which displays a plot of the expression along with its derivatives. In this example, we solve the same problem as previously, using this tutor


\section*{Access the Tutor from a Task Template}

Maple also comes with a Task Template to solve this problem without using any commands.
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l}
1. Launch the Task Template Browser by selecting Tools \(\rightarrow\) Tasks \(\rightarrow\) Browse. \\
2. In the table of contents of the Task Browser dialog, select Calculus -Differential \(\rightarrow\) Derivatives \(\rightarrow\) Graph \(f(x)\) and its Derivatives.
\end{tabular} &  \\
\hline 3. Click Insert Minimal Content at the top of the dialog to insert the task template into the current document. & \begin{tabular}{l}
Graph of \(f, f^{\prime}\), and \(f^{\prime \prime}\) in a Specified Interval \\
Enter the function \(f(x)\) to be evaluated and the interval on which to plot it.
\[
f(x)=
\]
\(\square\)
\end{tabular} \\
\hline \begin{tabular}{l}
4. Enter the new expression \(x^{*} \cos (x)\) in the \(\mathbf{f}(\mathbf{x})\) region. \\
5. Enter the interval \([-\pi, \pi]\). To insert the symbol for pi, you can use command completion or select \(\pi\) from the Common Symbols palette.
\end{tabular} & Enter the finction \(f(x)\) to be evalated and de ine iteva on which to polotit \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\begin{tabular}{l} 
6. Click Launch Differentiation Tutor to launch \\
the same tutor as in the previous solution. \\
7. When complete, click Close. A plot of the ex- \\
pression and its derivatives displays in the plot \\
region of the inserted task template.
\end{tabular}
\end{tabular}

\section*{Example 2 - Solve for \(\mathbf{x}\) in a Quadratic Equation}

Solve for \(x\) in the equation \((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\).
We solve this problem using the following methods:
- Solution through Equation Manipulator (page 218)
- Instant Solution (page 220)
- Step-by-step Interactive Solution (page 220)
- Graphical Solution (page 221)

\section*{Solution through Equation Manipulator}

Maple provides a dialog that allows you to single-step through the process of manipulating an expression. This manipulator is available from the context menu.
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. Enter the equation \\
\((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) in a \\
new document block region.
\end{tabular} & \((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline 6. Click Return Steps to close the dialog and return all of the steps to the Maple document. & \[
\begin{aligned}
& \xrightarrow{(x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)} \\
& (x-7)^{2}+(x-1)^{2}=4(x-1)^{2}+4(x-4)^{2} \\
& (x-7)^{2}-3(x-1)^{2}-4(x-4)^{2}=0 \\
& -6 x^{2}+24 x-18=0 \\
& -6(x-1)(x-3)=0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
7. Ctrl + drag the factored form of the original equation to a new document block region. \\
8. Right-click and select Solve \(\rightarrow\) Obtain Solutions for \(\rightarrow \mathbf{x}\).
\end{tabular} & \(-6(x-1)(x-3)=0 \xrightarrow{\text { solutions for } \mathrm{x}} 1,3\) \\
\hline
\end{tabular}

\section*{Instant Solution}

To apply an instant solution to this problem, use context menus.
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. \(\mathbf{C t r l}+\) drag the equation \\
\((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
new document block region. a
\end{tabular} & \((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
\hline \begin{tabular}{l} 
2. Right-click the expression and select Solve \(\rightarrow\) \\
Obtain Solutions for \(\rightarrow \mathbf{x}\).
\end{tabular} & \begin{tabular}{l}
\((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
solutions for x
\end{tabular} \\
\hline
\end{tabular}

\section*{Step-by-step Interactive Solution}

This equation can also be solved interactively in the document, by applying context-menu operations or commands one step at a time.
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline 1. \(\mathbf{C t r l}+\) drag the equation & \((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
\((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) to a & \\
blank document block region. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Group all terms on the right: \\
2. Right-click this equation and from the context menu select Move to Right.
\end{tabular} & \begin{tabular}{l}
\[
(x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)
\] \\
\(\xrightarrow{\text { move to right }}\)
\[
0=3(x-1)^{2}+4(x-4)^{2}-(x-7)^{2}
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Expand the expression on the right-hand side: \\
3.Right-click on the result and from the context menu select Expand.
\end{tabular} & \[
\begin{aligned}
& 0=3(x-1)^{2}+4(x-4)^{2}-(x-7)^{2} \\
& \text { expand } \quad 0=6 x^{2}-24 x+18
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Use Maple's factor command on the resulting right-hand side: \\
4. Right-click on the result and select Right-hand Side. \\
5. Right-click on the result and select Factor.
\end{tabular} & \[
\begin{aligned}
0 & =6 x^{2}-24 x+18 \\
6 x^{2}-24 x+18 & \xrightarrow{\text { right hand side }} \\
\text { factor } & 6(x-1)(x-3)
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Solve for x : \\
6. Right-click on the result and select Solve \(\rightarrow\) Obtain Solutions for \(\rightarrow \mathbf{x}\).
\end{tabular} & \(6(x-1)(x-3) \xrightarrow{\text { solutions for } \mathrm{x}} 1,3\) \\
\hline
\end{tabular}

\section*{Graphical Solution}

Now that we have seen several methods to solve this problem, we can check the answer by plotting the expression.
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. Ctrl + drag the equation \\
\((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) to a \\
new document block region and press Enter.
\end{tabular} & \((x-7)^{2}+(x-1)^{2}=4\left((x-1)^{2}+(x-4)^{2}\right)\) \\
\((x-7)^{2}+(x-1)^{2}=4(x-1)^{2}+4(x-4)^{2}\) \\
\hline \begin{tabular}{l} 
First, manipulate the equation to become an ex- \\
pression:
\end{tabular} & \begin{tabular}{l}
\((x-7)^{2}+(x-1)^{2}=4(x-1)^{2}+4(x-4)^{2}\) \\
move to left
\end{tabular} \\
2. Right-click the output and select Move to Left. \\
\begin{tabular}{l} 
Note the difference in the alignment when using \\
context menus on output rather than input. The \\
result is centered in the document with the self- \\
documenting arrow positioned at the left.
\end{tabular} & \((x-7)^{2}-3(x-1)^{2}-4(x-4)^{2}=0\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3. Right-click the output and select Left-hand Side. & \[
\begin{aligned}
& \xrightarrow{(x-7)^{2}-3(x-1)^{2}-4(x-4)^{2}=0} \\
& (x-7)^{2}-3(x-1)^{2}-4(x-4)^{2}
\end{aligned}
\] \\
\hline 4. Right-click the output and select Expand. & \begin{tabular}{l}
\[
(x-7)^{2}-3(x-1)^{2}-4(x-4)^{2}
\] \\
expand
\[
-6 x^{2}+24 x-18
\]
\end{tabular} \\
\hline \begin{tabular}{l}
Now that the equation is in its simplest form, plot the result: \\
5. Ctrl + drag the output to a new document block. \\
6. Right-click the expression and select Plots \(\rightarrow\) 2-D Plot.
\end{tabular} &  \\
\hline
\end{tabular}

Change the \(\boldsymbol{x}\) and \(\boldsymbol{y}\) axis ranges using context menus:
7. By default, plots generated using the context menus have an \(x\)-axis range of -10 to 10 . To change the range, right-click the plot and select Axes \(\rightarrow\) Properties. In the Horizontal tab of the Axes Properties dialog, de-select Use data extents and change the Range min and `Range max to \(\mathbf{0}\) and 5, respectively.

Click the Vertical tab and de-select Use data extents. Change the Range min and Range max to -5 and 10 , respectively.
8. Click OK to apply the changes and return to the plot.

The interception points of this graph with the \(x\)-axis are 1 and 3 , the same solutions that we found previously.


\section*{Example 3 - Solve a Quadratic Trig Equation}

Find all of the solutions to the equation \(6 \cos ^{2}(x)-\cos (x)-2=0\) in the interval \([0,2 \pi]\).
We solve this problem using the following methods:
- Graphical Solution (page 223)
- Solution by Task Template (page 225)
- Analytic Solution (page 225)

\section*{Graphical Solution}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. Ctrl + drag the equation \\
\(6 \cos ^{2}(x)-\cos (x)-2=0\) to a blank docu- \\
ment block and press Enter.
\end{tabular} & \(6 \cos ^{2}(x)-\cos (x)-2=0\) \\
\(6 \cos (x)^{2}-\cos (x)-2=0\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline 3. Right-click the output and select Plots \(\rightarrow\) Plot Builder. & \begin{tabular}{l}
Select Plot Type and Functions \\
Select Plot \\
2-D plot \\
2-D polar plot \\
3-D conformal plot of a complex-valued function \\
2-D conformal plot of a complex-valued function \\
2-D complex plot \\
3-D complex plot \\
Select Variable Purposes, Ranges, and Plot Options
\(\square\) \\
Axis x \(\square\) \(-10\) to 10 \(\square\) Options
\(\square\)
\end{tabular} \\
\hline 4. Modify the plot range to \(x=0\) to \(2 * \mathrm{Pi}\). & \begin{tabular}{l}
Select Variable Purposes, Ranges, and Plot Options
\(\square\) \\
Axis x \(\square\) 0 to \(\square\) \(2^{*} \mathrm{Pi}\) Options \\
On 'Plot' return plot command 
\end{tabular} \\
\hline \begin{tabular}{l}
5. Click Plot to display the plot in the document. \\
6. From the graph, we can see all of the solutions within the interval \([0,2 \pi]\). To approximate the values, click on the plot, then use the Point Probe tool to view the coordinates of the cursor in the toolbar.
\end{tabular} &  \\
\hline
\end{tabular}

\section*{Solution by Task Template}
\begin{tabular}{|c|c|c|}
\hline Action & \multicolumn{2}{|l|}{Result in Document} \\
\hline 1. From the Format menu, select Tasks \(\rightarrow\) Browse. Expand the Algebra folder and select Solve Analytically in a Specified Interval. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Algebra \\
(T) Complete the Square \\
© Complex Arithmetic
\(\square\) Conic - Analysis and Graph \\
T Solve a Set of Equations Symbolically \\
T Solve an Equation Numerically \\
T Solve an Equation Symbolically \\
(T) Solve an Inequality
Solve Analytically in Specified Interval
\end{tabular}} \\
\hline \multirow[t]{4}{*}{2. Click Insert Minimal Content.} & \multicolumn{2}{|r|}{Solve Analytically in a Specified Interval} \\
\hline & Enter an expression: & \[
\begin{array}{r}
>12 \sin ^{2}(x)-5 \sin (x)-3 \\
12 \sin (x)^{2}-5 \sin (x)-3 \tag{15}
\end{array}
\] \\
\hline & Find the roots in a specified interval: & \[
\begin{align*}
& >\text { Student }[\text { Calculus }]][\text { Roots }]((15), 0 \ldots 2 \pi) \\
& {\left[\begin{array}{l}
\arcsin \left(\frac{3}{4}\right),-\arcsin \left(\frac{3}{4}\right)+\pi, \arcsin \left(\frac{1}{3}\right) \\
\left.\quad+\pi,-\arcsin \left(\frac{1}{3}\right)+2 \pi\right]
\end{array}\right.} \tag{16}
\end{align*}
\] \\
\hline & Express the roots in floating-point form: & \[
\begin{aligned}
& >\text { evalf }((16)) \\
& {[0.8480620790,2.293530575,3.481429564,} \\
& \quad 5.943348398]
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{3. Replace the current equation with the one from this example, \(6 \cos ^{2}(x)-\cos (x)-2=0\), and then execute the commands. Notice that equation labels are used to reference the results.} & \multicolumn{2}{|r|}{Solve Analytically in a Specified Interval} \\
\hline & Enter an expression: & \[
\begin{gather*}
>6 \cos ^{2}(x)-\cos (x)-2=0 \\
6 \cos (x)^{2}-\cos (x)-2=0 \tag{15}
\end{gather*}
\] \\
\hline & Find the roots in a specified interval: & \[
\begin{align*}
& >\text { Student }[\text { Calculus } I][\text { Roots }]((15), 0 \ldots 2 \pi) \\
& {\left[\begin{array}{c}
\arccos \left(\frac{2}{3}\right), \frac{2}{3} \pi, \frac{4}{3} \pi,-\arccos \left(\frac{2}{3}\right) \\
\quad+2 \pi
\end{array}\right]} \tag{16}
\end{align*}
\] \\
\hline & Express the roots in floating-point form: & \[
\begin{aligned}
& >\operatorname{evalf}((16)) \\
& {[0.8410686706,2.094395103,4.188790204, \quad \text { (17) }} \\
& 5.442116637]
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Analytic Solution}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. Ctrl + drag the equation \\
\(6 \cos ^{2}(x)-\cos (x)-2=0\) to a blank docu- \\
ment block region.
\end{tabular} & \(6 \cos ^{2}(x)-\cos (x)-2=0\) \\
\hline \begin{tabular}{l} 
2. Right-click the expression and select Left-hand \\
Side.
\end{tabular} & \begin{tabular}{l}
\(6 \cos ^{2}(x)-\cos (x)-2=0 \quad \xrightarrow{\text { left hand side }}\) \\
\(6 \cos (x)^{2}-\cos (x)-2\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline Action & Result in Document \\
\hline 3. Right-click the output and select Factor. & \begin{tabular}{l}
\(6 \cos (x)^{2}-\cos (x)-2\) \\
\((2 \cos (x)+1)(3 \cos (x)-2)\)
\end{tabular} \\
\hline \begin{tabular}{l} 
factor
\end{tabular} \\
\hline \begin{tabular}{l} 
4. Ctrl + drag the first factor to a blank document \\
block region.
\end{tabular} & \((2 \cos (x)+1) \xrightarrow{\text { solve }} \quad\left\{x=\frac{2}{3} \pi\right\}\) \\
\begin{tabular}{l} 
5. Right-click and select Solve \(\rightarrow\) Solve.
\end{tabular} & \((3 \cos (x)-2) \xrightarrow{\text { solve }} \quad\left\{x=\arccos \left(\frac{2}{3}\right)\right\}\) \\
\begin{tabular}{l} 
6. Ctrl + drag the second factor to a blank docu- \\
ment block region.
\end{tabular} & \\
\begin{tabular}{l} 
7. Right-click and select Solve \(\rightarrow\) Solve.
\end{tabular} & \\
\begin{tabular}{l} 
Notice that you have not found all of the solutions, \\
as with the above methods. These are all of the
\end{tabular} & \\
solutions in the interval \([0, \pi]\).
\end{tabular}

\section*{Example 4 - Find the Inverse Function}

If \(f(x)=x^{2}+1, x \geq 0\), find and graph the rule for \(f^{-1}(x)\), its functional inverse.
We solve this problem using the following methods:
- Implement the Definition Graphically (page 226)
- Solution by Tutor (page 229)

\section*{Implement the Definition Graphically}

The graph of the inverse function is the set of ordered pairs formed by interchanging the ordinates and abscissas.
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline 1. In a blank document block, enter & {\(\left[x^{2}+1, x\right]\)} \\
{\(\left[\begin{array}{ll}\left.x^{2}+1, x\right] \text { and press Enter. } & \\
& \\
& {\left[x^{2}+1, x\right]} \\
\hline\end{array}\right.\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline 2. Right-click the output and select Plots \(\rightarrow\) Plot Builder. & \begin{tabular}{l}
Interactive Plot Builder: Select Plot Type \\
Select Plot Type and Functions \\
Plot \\
Edit Functions \\
Select Plot \\
2-D parametric plot \\
2-D plot \\
2-D polar plot \\
3-D conformal plot of a complex-valued function \\
2-D conformal plot of a complex-valued function \\
2-D complex plot \\
3-D complex plot \\
Select Variable Purposes, Ranges, and Plot Options \\
Parameter \(\square\) \(-3\) to 3 \\
Options \\
On 'Plot' return plot command
\end{tabular} \\
\hline \begin{tabular}{l}
3. In the Plot Builder : Select Plot Type dia\(\log\), ensure that 2-D parametric plot is selected in the Select Plot region. \\
4. Adjust the domain for \(x\) to the interval [0, 1]. \\
5. Click Plot to return the plot to the document.
\end{tabular} &  \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
6. Ctrl + drag the expression \(x^{2}+1\) onto \\
this graph. \\
Notice that the axis ranges alter.
\end{tabular} \\
\hline 7. Ctrl + drag the expression onto this graph. \\
The resulting graph shows \(f(x), f^{-1}(x)\), and \\
the line \(y=x\).
\end{tabular}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline Adjust the \(x\) and \(y\) axis ranges: & \\
8. Right-click the plot and select Axes \(\rightarrow\) & \(\rightarrow\) \\
Properties. \\
9. In the Axis Properties dialog, de-select Use \\
data extents and change the range to \(\mathbf{0}\) to 2.
\end{tabular}

\section*{Solution by Tutor}
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline 1. Load the Student Calculus 1 package. From the Tools menu, select Load Package \(\rightarrow\) Student Calculus 1. & Loading Student:-Calculus1 \\
\hline 2. Enter the expression \(x^{2}+1\) in a blank document block. & \(x^{2}+1\) \\
\hline \begin{tabular}{l}
3. Right-click and select Tutors \(\rightarrow\) Calculus \\
- Single Variable \(\rightarrow\) Function Inverse. The Function Inverse Tutor displays. \\
4. Adjust the domain to \([0,2]\).
\end{tabular} &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline 5. When you are finished, click Close. The plot of the function, its inverse, and the line \(y=x\) is returned to the document. &  \\
\hline
\end{tabular}

\section*{Example 5-Methods of Integration - Trig Substitution}

Evaluate the integral \(\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x\) by making the substitution \(x=2 \sin (u)\).
We solve this problem using the following methods:
- Immediate Evaluation of the Integral (page 230)
- Solution by Integration Methods Tutor (page 231)
- Solution by First Principles (page 232)

\section*{Immediate Evaluation of the Integral}
\begin{tabular}{|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
1. Enter the integral \(\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x\) in a blank \\
document block region.
\end{tabular} & \(\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x\) \\
\begin{tabular}{l} 
2. Right-click the expression and select Evaluate \\
and Display Inline.
\end{tabular} & \(\int \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{1}{2} x\right)\) \\
\hline
\end{tabular}

\section*{Solution by Integration Methods Tutor}



\section*{Solution by First Principles}
\begin{tabular}{|c|c|c|}
\hline Action & Result in Document & \\
\hline 1. \(\mathbf{C t r l}+\) drag the integrand \(\frac{1}{\sqrt{4-x^{2}}}\) to a blank document block region and press Enter. & \[
\frac{1}{\sqrt{4-x^{2}}}
\]
\[
\frac{1}{\sqrt{4-x^{2}}}
\] & \\
\hline \begin{tabular}{l}
Perform trig substitution: \\
2. Right-click the output and select Evaluate at a point. In the dialog that displays, enter 2*sin(u).
\end{tabular} & \(\xrightarrow{\text { evaluate at point }}\)
\[
\frac{1}{\sqrt{4-4 \sin (u)^{2}}}
\] & \\
\hline 3. Right-click the output and select Simplify \(\rightarrow\) Symbolic. & simplify symbolic
\[
\frac{1}{2 \cos (u)}
\] & (5.9) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Action & Result in Document & \\
\hline \begin{tabular}{l}
\[
\text { Calculate } \frac{\mathrm{d} u}{\mathrm{~d} x} \text { : }
\] \\
4. In a blank document block, enter the substitution equation: \(x=2 \sin (u)\) and press Enter. \\
5. Right-click the output and select Differentiate Implicitly. In the dialog that displays, change the Independent Variable to u.
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
x=2 \sin (u) \\
\qquad x=2 \sin (u) \\
\text { implicit differentiation }
\end{array}
\end{aligned}
\] & (5.10) \\
\hline \begin{tabular}{l}
Calculate the integral in terms of \(\boldsymbol{u}\) : \\
6. Referencing the results by their equation labels, multiply the original simplified expression by this derivative.
\end{tabular} & \[
(5.9) \cdot(5.10)
\] & (5.11) \\
\hline 7. Integrate the resulting expression. & \begin{tabular}{l}
\[
\int(5.11) \mathrm{d} u
\] \\
u
\end{tabular} & (5.12) \\
\hline \begin{tabular}{l}
Revert the substitution: \\
8. Place the equation \(x=2 \sin (u)\) in a blank document block. Delete \(u\) and insert the equation label for the previous result, the value of the integral in terms of u. Press Enter. \\
9. Right-click the output and select Solve \(\rightarrow\) Solve for Variable \(\rightarrow \mathbf{u}\). \\
The solution is \(\arcsin \left(\frac{1}{2} x\right)\).
\end{tabular} & \[
\begin{aligned}
& x=2 \sin ((5.12)) \\
& \qquad \begin{array}{l}
x=2 \sin (u)
\end{array} \\
& \qquad\left[\left[u=\arcsin \left(\frac{1}{2} x\right)\right]\right]
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Example 6 - Initial Value Problem}

Solve and plot the solution of the initial value problem
\[
\begin{gathered}
y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t)=\cos (2 t) \\
y(0)=2 \\
y^{\prime}(0)=-1
\end{gathered}
\]

\section*{Solution by ODE Analyzer Assistant}

The ODE Analyzer Assistant lets you solve ODEs numerically or symbolically and displays a plot of the solution.

\begin{tabular}{|c|c|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l}
5. To enter the initial condition for \(y^{\prime}\), select \(\mathbf{y}^{\prime}\) from the drop-down menu. In the text fields, enter \(\mathbf{0}\) and \(\mathbf{- 1}\). Click Add. \\
Click Done to close this dialog and return to the main dialog. Notice that the initial conditions are in the Conditions section.
\end{tabular} & \[
\begin{array}{l|l|}
\hline \text { Differential Equations } & \begin{array}{l}
\text { Conditions } \\
\hline y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t)=\cos (2 t)
\end{array} \begin{array}{l}
y(0)=2 \\
y^{\prime}(0)=-1
\end{array}
\end{array}
\] \\
\hline 6. Click Solve Numerically. A new dialog appears. &  \\
\hline \begin{tabular}{l}
7. Click Solve to solve the initial value problem. \\
8. Click Plot to plot the solution of the DE.
\end{tabular} &  \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Action & Result in Document \\
\hline \begin{tabular}{l} 
9. Click the Plot Options button to \\
modify the default graph, if desired. \\
10. Click Quit to close the ODE Analyzer \\
and return a plot of the solution to the \\
document.
\end{tabular} & \begin{tabular}{c}
\(y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t)=\cos (2 t)\) \\
solve DE interactively
\end{tabular} \\
\hline
\end{tabular}

\section*{6 Plots and Animations}

Maple can generate many forms of plots, allowing you to visualize a problem and further understand concepts.
- Maple accepts explicit, implicit, and parametric forms to display 2-D and 3-D plots and animations.
- Maple recognizes many coordinate systems.
- All plot regions in Maple are active; therefore, you can drag expressions to and from a plot region.
- Maple offers numerous plot options, such as axis styles, title, colors, shading options, surface styles, and axis ranges, which give you complete control to customize your plots.

For a reference to the types of plots available in Maple, see the ?Plotting Guide.

\subsection*{6.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Creating Plots (page 238) - Interactive and commanddriven methods to display 2-D and 3-D plots & \begin{tabular}{l}
- Interactive Plot Builder \\
- Context Menu \\
- Dragging to a Plot Region \\
- The plot and plot3d Commands \\
- The plots Package \\
- Multiple Plots in the Same Plot Region
\end{tabular} \\
\hline Customizing Plots (page 264) - Methods for applying plot options before and after a plot displays & \begin{tabular}{l}
- Interactive Plot Builder Options \\
- Context Menu Options \\
- The plot and plot3d Command Options
\end{tabular} \\
\hline Analyzing Plots (page 269) - Plot analyzing tools & \begin{tabular}{l}
- Point Probe \\
- Rotate \\
- Pan \\
- Zoom
\end{tabular} \\
\hline Creating Animations (page 270) - Interactive and command-driven methods to display animations & \begin{tabular}{l}
- Interactive Plot Builder \\
- The plots[animate] Command \\
- The plot3d[viewpoint] Command
\end{tabular} \\
\hline Playing Animations (page 275) - Tools to run animations & - Animation Context Bar \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Section & Topics \\
\hline \begin{tabular}{l} 
Customizing Animations (page 276) - Methods for \\
applying plot options before and after an animation \\
displays
\end{tabular} & \begin{tabular}{l} 
Interactive Plot Builder Animation Op- \\
tions \\
Context Menu Options \\
- The animate Command Options
\end{tabular} \\
\hline Exporting (page 279) - Methods for exporting plots & - Saving Plots to File Formats \\
\hline \begin{tabular}{l} 
Code for Color Plates (page 279) - Information on \\
color plates
\end{tabular} & - Accessing Code for the Color Plates \\
\hline
\end{tabular}

\subsection*{6.2 Creating Plots}

Maple offers several methods to easily plot an expression. These methods include:
- The Interactive Plot Builder
- Context menus
- Dragging to a plot region
- Commands

Each method offers a unique set of advantages. The method you use depends on the type of plot to display, as well as your personal preferences.

\section*{Interactive Plot Builder}

The Interactive Plot Builder is a point-and-click interface to the Maple plotting functionality. The interface displays plot types based on the expression you specify. The available plot types include plots, interactive plots, animations, or interactive animations. Depending on the plot type you select, you can create a:
- 2-D / 3-D plot
- 2-D polar plot
- 2-D / 3-D conformal plot of a complex-valued function
- 2-D / 3-D complex plot
- 2-D density plot
- 2-D gradient vector-field plot
- 2-D implicit plot

Using the Interactive Plot Builder, you can:
1. Specify the plotting domain before you display the graph
2. Specify the endpoints of the graph as symbolic, such as Pi or sqrt(2)
3. Select different kinds of graphs, such as animations or interactive plots with slider control of a parameter; that is, customize and display a plot by selecting from the numerous plot types and applying plot options without any knowledge of plotting command syntax
4. Apply the discont=true option for a discontinuous graph

The output from the Interactive Plot Builder is a plot of the expression or the command used to generate the plot in the document.

To launch the Interactive Plot Builder:
- From the Tools menu, select Assistants, and then Plot Builder. Note: The Tools menu also offers tutors to easily generate plots in several academic subjects. For more information, see Teaching and Learning with Maple (page 198).

Table 6.1: Windows of the Interactive Plot Builder

1. Specify Expressions window - Add, edit, or remove expressions and variables. Once finished, you can advance to the Select Plot Type window.
2. Select Plot Type window - Select the plot type and corresponding plot, and edit the ranges. Once finished, you can display the plot or advance to the Plot Options window.

3. Plot Options window - Apply plot options. Once finished, you can display the plot or return the command that generates the plot to the document.

\section*{Example 1 - Display a plot of a single variable expression}

Maple can display two-dimensional graphs and offers numerous plot options such as color, title, and axis styles to customize the plot.

\section*{Launch the Interactive Plot Builder:}
1. Make sure that the cursor is in a Maple input region.
2. From the Tools menu, select Assistants, and then Plot Builder.

Notes: 1. In worksheet mode, Maple inserts plots[interactive](); in the Maple document.
Entering this command at the Maple prompt also opens the Plot Builder.
2. Interaction with the document is disabled while the Plot Builder is running.

\section*{Enter an expression:}
3. In the Specify Expressions window:
a. Add the expression, \(\boldsymbol{\operatorname { s i n }}(\mathbf{x}) / \mathbf{x}\).
b. Click OK to proceed to the Select Plot Type window.

\section*{Plot the expression:}
4. In the Select Plot Type window, notice the default setting of a 2-D plot type and an \(\mathbf{x}\) axis range, \(\mathbf{- 1 0}\).. 10. Notice also the various plot types available for this expression.

\section*{5. Click Plot.}

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 250)

\section*{Example 2 - Display a plot of multiple expressions in 1 variable}

Maple can display multiple expressions in the same plot region to compare and contrast. The Interactive Plot Builder accepts multiple expressions.
Launch the Interactive Plot Builder and enter the expressions:
1. Launch the Interactive Plot Builder. The Plot Builder accepts expressions in 1-D

Math and performs basic calculations on expressions. For example, entering
diff( \(\left.\sin \left(\mathbf{x}^{\wedge} \mathbf{2}\right), \mathbf{x}\right)\) in the Specify Expression window performs the calculation and
displays the expression as \(\mathbf{2 *} \boldsymbol{\operatorname { c o s }}\left(\mathbf{x}^{\wedge} \mathbf{2}\right) * \mathbf{x}\) in the Expression group box.
2. In the Specify Expressions window:
a. In three separate steps, add the expressions \(\boldsymbol{\operatorname { s i n }}\left(\mathbf{x}^{\wedge} \mathbf{2}\right), \boldsymbol{\operatorname { d i f f }}\left(\boldsymbol{\operatorname { s i n }}\left(\mathbf{x}^{\wedge} \mathbf{2}\right), \mathbf{x}\right)\), and \(\operatorname{int}\left(\sin \left(x^{\wedge} 2\right), x\right)\).

\section*{Change the x -axis range:}
3. In the Select Plot Type window:
a. Change the \(\mathbf{x}\) Axis range to - \(\mathbf{- 3}\).. \(\mathbf{3}\).
b. Click Options to proceed to the Plot Options window.

Launch the Plot Options window and return the plot command syntax to the document:

\section*{4. Click Command.}

Display the actual plot:
5. Execute the inserted command to display the plot by using the context menu item Evaluate.
> plots[interactive]( );
By default, Maple displays each plot in a plot region using a different color. You can also apply a line style such as solid, dashed, or dotted for each expression in the graph. For more information, refer to the ?plot/options help page. To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 250)

\section*{Example 3 - Display a plot of a multi-variate expression}

Maple can display three-dimensional plots and offers numerous plot options such as light models, surface styles, and shadings to allow you to customize the plot.

Launch the Interactive Plot Builder and enter an expression:
1. Add the expression \(\left(\mathbf{1}+\boldsymbol{\operatorname { s i n }}\left(\mathbf{x}^{*} \mathbf{y}\right)\right) /\left(\mathbf{x}^{\wedge} \mathbf{2}+\mathbf{y}^{\wedge} \mathbf{2}\right)\).

\section*{In the Select Plot Type window:}
2. Notice the available plot types for an expression with 2 variables, as well as the plot objects for each type.

\section*{3. Click Options.}

\section*{In the Plot Options window:}
4. From the Variables column at the top of the dialog, change the Range from field to 0 .. 0.05 .
5. From the Label column, enter \(\mathbf{z}\).
6. From the Style group box, select surface.
7. From the Color group box, in the Light Model drop-down menu, select green-red.
8. From the Color group box, in the Shading, drop-down menu, select \(\mathbf{z}\) (grayscale).
9. From the Miscellaneous group box, in the Grid Size drop-down menu, select 40, 40.

\section*{Plot the expression:}

\section*{10. Click Plot.}

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 250)

\section*{Example 4 - Display a conformal plot}

Maple can display a conformal plot of a complex expression mapped onto a two-dimensional grid or plotted on the Riemann sphere in 3-D.
Launch the Interactive Plot Builder and enter an expression:
1. Add the expression \(\mathbf{z}^{\wedge} \mathbf{3}\).

In the Select Plot Type window:
2. From the Select Plot group box, select 2-D conformal plot of a complex-valued function.
3. Change the range of the \(\mathbf{z}\) parameter to \(\mathbf{0} . . \mathbf{2 + 2 * I}\).

In the Plot Options window:
4. From the Axes group box, select normal.
5. From the Miscellaneous group box, select the Grid Size drop-down menu option 30, 30.

\section*{Plot the expression:}
6. Click Plot.

\section*{Example 5 - Display a plot in polar coordinates}

Cartesian (ordinary) coordinates is the Maple default. Maple also supports numerous other coordinate systems, including hyperbolic, inverse elliptic, logarithmic, parabolic, polar, and rose in two-dimensions, and bipolar cylindrical, bispherical, cylindrical, inverse elliptical cylindrical, logarithmic cosh cylindrical, Maxwell cylindrical, tangent sphere, and toroidal in three-dimensional plots. For a complete list of supported coordinate systems, refer to the ?coords help page.
Launch the Interactive Plot Builder and enter an expression:
1. Add the expression \(\mathbf{1 + 4 *} \cos (4 *\) theta \()\).

\section*{Change the x -axis range:}
2. In the Select Plot Type window:
a. With 2-D polar plot selected, change the Angle of theta to \(\mathbf{0}\).. \(\mathbf{8} * \mathbf{P i}\).

In the Plot Options window:
3. From the Color group box, select Magenta.

\section*{Plot the expression:}

\section*{4. Click Plot.}

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 250)

\section*{Example 6 - Interactive Plotting}

Using the Interactive Plot Builder, you can plot an expression with several of its variables set to numeric values. The Interactive Parameter window allows you to interactively adjust these numeric values within specified ranges to observe their effect. To access this window, enter an expression with two or more variables and select Interactive Plot with x parameter from the Select Plot Type and Functions drop-down menu.


Figure 6.1: Interactive Parameter Window
Launch the Interactive Plot Builder and enter an expression:
1. Add the expression \(\mathbf{x}+\mathbf{3} * \sin (\mathbf{x} * \mathbf{t})\).

In the Select Plot Type window:
2. From the Select Plot group box, select Interactive Plot with 1 parameter.
3. Change the range of the \(\mathbf{x}\)-axis to \(\mathbf{0}\).. 5 .
4. Change the \(\mathbf{t}\) range to \(\mathbf{0}\).. \(\mathbf{1 0}\).
5. Click Plot to open the Interactive Parameter window.

Note: To apply plot options before interactively adjusting the plot, click Options to open
the Plot Options window. After setting the plot options, click Plot to display the
Interactive Parameter window.
6. To adjust the numeric values, use the slider.
7. Click Done to place the plot in the Maple document.

To see the Maple syntax used to generate this plot, see Maple commands from Creating Plots: Interactive Plot Builder (page 250)

For information on customizing plots using the Interactive Plot Builder, refer to Customizing Plots: Interactive Plot Builder Options (page 264).

\section*{Context Menu}

A context menu in Maple displays a list of commands to manipulate, display, or calculate using a Maple expression. The commands in the menu depend on the type of the expression. To display the context menu for a Maple expression, right-click (Control-click for Macintosh) the expression.

For expressions, the context menu lists:
- 2-D or 3-D plot
- 2-D or 3-D implicit plot
- Interactive Plot Builder
based on the expression selected.
When you invoke the Interactive Plot Builder through the context menu, the expression automatically passes to the builder, and Maple does not display the Specify Expression window.

One advantage of using the context menu is the simplicity of creating an expression using menus. By using this method, you do not need any knowledge of plot command syntax.
1. Enter and evaluate an expression, for example, \(\frac{x y}{x^{2}+y^{2}}\).
2. Right-click (Control-click for Macintosh) the expression.
3. From the context menu, select Plots \(\rightarrow\) 3-D Plot \(\rightarrow \mathbf{x , y}\).
\[
>\frac{x y}{x^{2}+y^{2}}
\]
\[
\begin{equation*}
\frac{x y}{x^{2}+y^{2}} \tag{6.1}
\end{equation*}
\]


For information on customizing plots using the context menu, see Context Menu Options (page 264).

\section*{Dragging to a Plot Region}

To use the drag-and-drop method, use the plot region created by one of the other methods or insert an empty plot region into the document. Empty plot regions can be two-dimensional or three-dimensional.

Advantages of the drag-and-drop method include the ease of adding and removing plots and the independence from plotting command syntax.

Example:
1. From the Insert menu, select Plot \(\rightarrow\) 2-D.
2. Enter the expression \(\sin (x)\) in an input region.
3. When dragging an expression to a plot region, you can either make a copy of the expression from the input region or you can cut the expression, thereby removing it from the input region. To make a copy of the expression, select the full expression in the input region and press Ctrl (Command, Macintosh) while you drag the expression to the plot region. To cut the expression and paste it in the plot region, highlight the expression and drag it to the plot region.
4. Repeat steps 2 and 3 using the following expressions: \(\sin (2 x), \sin (x+2)\), and \(\sin (x)^{2}\).
5. To remove an expression from the plot region, drag-and-drop the expression plot from the plot region to a Maple input region.


\section*{The plot and plot3d Commands}

The final method for creating plots is entering plotting commands.
The main advantages of using plotting commands are the availability of all Maple plot structures and the greater control over the plot output. Plot options are discussed in Customizing Plots (page 264).

Table 6.2: The plot and plot3d Commands
\(\operatorname{plot}(\) plotexpression, \(\mathrm{x}=\mathrm{a} . . \mathrm{b}, . .\).
plot3d(plotexpression, \(\mathrm{x}=\mathrm{a} . . \mathrm{b}, \mathrm{y}=\mathrm{a} . \mathrm{b}, . .\).
- plotexpression - expression to be plotted
- \(\mathbf{x}=\mathbf{a} . . \mathrm{b}\) - name and horizontal range
- \(\mathbf{y}=\mathbf{a} . . \mathrm{b}\) - name and vertical range

\section*{Maple commands from Creating Plots: Interactive Plot Builder}

The following examples show the plotting commands returned by the examples in Interactive Plot Builder (page 238).

\section*{Example 1 - Display a plot of a single variable expression}
\(>\operatorname{plot}\left(\frac{\sin (x)}{x}, x=-10 . .10\right)\)


\section*{Example 2 - Display a plot of multiple expressions in 1 variable}

To display multiple expressions in a plot, include the expressions in a list. To enter \(\frac{\mathrm{d}}{\mathrm{d} x} \sin \left(x^{2}\right)\) and \(\int \sin \left(x^{2}\right) \mathrm{d} x\), use the Expression palette. For more information, see Palettes (page 22).
\(>\operatorname{plot}\left(\left[\sin \left(x^{2}\right), \frac{\mathrm{d}}{\mathrm{d} x} \sin \left(x^{2}\right), \int \sin \left(x^{2}\right) \mathrm{d} x\right], x=-3 . .3\right)\)


\section*{Example 3 - Display a plot of a multi-variable expression}
\(>\) plot \(3 d\left(\frac{1+\sin (x y)}{x^{2}+y^{2}}, x=-5 . .5, y=-5 . .5\right.\), view \(=0 . .0 .5\), lightmodel \(=\) lightl, shading \(=\) zgrayscale, style \(=\) patchnogrid, grid \(=[40,40])\)


\section*{Example 4 - Display a conformal plot}

A collection of specialized plotting routines is available in the plots package. For access to a single command in a package, use the long form of the command.
\(>\operatorname{plots}[\) conformal \(]\left(z^{3}, z=0 . .2+2 I\right.\), axes \(=\) normal, grid \(\left.=[20,20]\right)\)


\section*{Example 5 - Display a plot in polar coordinates}
\(>\) plots \([\) polarplot \(](1+4 \cos (4 \theta), \theta=0 . .8 \pi\), color \(=\) magenta \()\)


\section*{Example 6 - Interactive Plotting}
\(>\operatorname{plots}[\) animate \(](\) plot, \([x+3 \sin (x t), x=0 . .5], t=0 . .10)\)
\(t=0\).


For more information on the plot options used in this section, refer to the ?plot/options and ?plot3d/options help pages.

\section*{Display a Parametric Plot}

Some graphs cannot be specified explicitly. In other words, you cannot write the dependent variable as a function of the independent variable, \(y=f(x)\). One solution is to make both the x -coordinate and the y -coordinate depend upon a parameter.
\(>\operatorname{plot}([\cos (3 t), \sin (5 t), t=0 . .2 \pi])\)


\section*{Display a 3-D Plot}

Maple can plot an expression of two variables as a surface in three-dimensional space. To customize the plot, include plot3d options in the calling sequence. For a list of plot options, see The plot and plot3d Options (page 267).
\(>\operatorname{plot} 3 d\left(\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, x=-2 \ldots, y=-2 . .2\right.\), glossiness \(=0.5\), style=patchnogrid, light \(=[100,345,0.4\),
\(0.9,0.7]\), ambientlight \(=[0.5,0,1])\)


\section*{The plots Package}

The plots package contains numerous plot commands for specialized plotting. This package includes: animate, contourplot, densityplot, fieldplot, odeplot, matrixplot, spacecurve, textplot, tubeplot, and more. For details about this package, refer to the ?plots help page.
\(>\) with(plots) :

\section*{The pointplot Command}

To plot numeric data, use the pointplot command in the plots package with the data organized in a list of lists structure of the form \(\left[\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right], \ldots,\left[x_{n}, y_{n}\right]\right]\). By default, Maple does not connect the points. To draw a line through the points, use the style = line option. For further analysis of data points, use the Curve Fitting Assistant (Tools \(\rightarrow\) Assistants \(\rightarrow\) CurveFitting), which fits and plots a curve through the points. For more information, refer to the ?CurveFitting[Interactive] help page.
\(>\) pointplot \(([[0,1],[1,-1],[3,0],[4,-3],[2,0],[4,1],[3,-2],[4,1]]\), axes \(=\) BOXED, symbolsize \(=25\), symbol=circle)


\section*{The matrixplot Command}

The matrixplot command plots the values of a plot object of type Matrix. The matrixplot command accepts options such as heights and gap to control the appearance of the plot. For more information on Matrices, see Linear Algebra (page 159).
> with(LinearAlgebra):
\(>A:=\) HilbertMatrix(6)
\[
A:=\left[\begin{array}{cccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} \\
\frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11}
\end{array}\right]
\]
\(>B:=\) ToeplitzMatrix \(([1,2,3,4,5,6]\), symmetric \()\)
\[
B:=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 & 2 & 3 \\
5 & 4 & 3 & 2 & 1 & 2 \\
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right]
\]
\(>\) matrixplot \((A+B\), heights \(=\) histogram, axes \(=\) normal, gap \(=0.25\), style \(=\) patch \()\)


\section*{The contourplot Command}

The contourplot command generates a topographical map for an expression or function. To create a smoother and more precise plot, increase the number of points using the numpoints option.
\(>\) contourplot \((\cos (x y), x=-4 . .4, y=-4 . .4\), filled \(=\) true, numpoints \(=750)\)


\section*{Multiple Plots in the Same Plot Region}

\section*{List of Expressions}

To display multiple expressions in the same plot region, enter the expressions in a list data structure. To distinguish the surfaces, apply different shading options, styles, or colors to each surface.
\(>\operatorname{plot} 3 d\left(\left[\cos (5 x)+\cos (5 y), x^{2}+3 y^{2}-4\right], x=-2 . .2, y=-1 . .1\right.\), shading \(=[z g r a y s c a l e\), none \(]\), color \(=[\) default,grey \(]\), style \(=[\) patchnogrid, patch \(]\), lightmodel=light3, , ransparency \(=0.1)\)


\section*{The display Command}

To display different types of plots in the same plot region, use the display command in the plots package.

This example plots a curve over a hill with the shadow of the curve projected onto the hill.
\(>z:=10\left(x^{2}+y^{5}+\frac{x}{5}\right) \mathrm{e}^{\left(-x^{2}-y^{2}\right)}:\)
\(>\) hill \(:=\operatorname{plot} 3 d(z, x=-2 . .2, y=-2.5 . .2 .5\), shading \(=\) zhue, style \(=\) patchnogrid, lightmodel
\(=\) light 3 , orientation \(=[-125,60])\) :
\(>x t:=\cos (t):\)
\(>y t:=2 \sin (t):\)
Maple can draw curves in three-dimensional space.
\(>\) curve \(:=\) spacecurve \(([x t, y t, 10], t=0 . .10\), color \(=\) red, thickness \(=2):\)
\(>z t:=\operatorname{subs}(\{x=x t, y=y t\}, z):\)
\(>\) shadow \(:=\operatorname{spacecurve}([x t, y t, z t], t=-\pi . \pi\), color \(=\) black, thickness \(=2)\) :
> display(hill, curve, shadow)

\subsection*{6.3 Customizing Plots}

Maple provides many plot options to display the most aesthetically pleasing, illustrative results. Plot options include line styles, colors, shadings, axis styles, and titles where applicable. Plot options are applied using the Interactive Plot Builder, the context menus, or as options in the command syntax.

\section*{Interactive Plot Builder Options}

The Interactive Plot Builder offers most of the plot options available in Maple in an easy-to-use interface.

Example:
Launch the Interactive Plot Builder and enter the expression:
1. Add the expression \(\mathbf{2 *} \mathbf{x}^{\wedge} \mathbf{5 - 1 0} * \mathbf{x}^{\wedge} \mathbf{3}+\mathbf{6} \boldsymbol{x} \mathbf{x} \mathbf{1}\). For information on interacting with the Interactive Plot Builder, see Example 1 - Display a plot of a single variable expression (page 240).

\section*{Set the \(\mathbf{x}\)-axis range:}
2. In the Select Plot Type window, change the x -axis range to \(\mathbf{- 2}\).. 2.

\section*{In the Plot Options window:}
3. From the Line group box, select dot from the left drop-down menu.
4. From the Color group box, select Blue.
5. From the Axes group box, select frame.
6. From the Title group box, enter My Plot in the text field.

Plot the expression:

\section*{7. Click Plot.}

\section*{Context Menu Options}

Using the context menu, you can alter a plot by right-clicking (Control-click for Macintosh) the plot output. You can also access a large subset of plot options using the Plot toolbar and Plot menu options. These menus display when a plot region is selected. Regardless of the method used to insert a plot into Maple, you can use the context menu to apply different plot options. For a list of options available when plotting in two and three dimensions, see The plot and plot3d Options (page 267).

\section*{2-D Plot Options}

Some plots do not display as you would expect using default option values. A expression with a singularity is one such example.
\(>\operatorname{plot}\left(\frac{1}{(x-1)^{2}}, x=-5 . .5\right)\)


In the previous plot, all interesting details of the plot are lost because there is a singularity at \(x=1\). The solution is to view a narrower range, for example, from \(y=0\) to 7 .

Alter the y -axis range:
1. Right-click the plot region. Select Axes, and then Properties.
2. In the Axes Properties dialog, click the Vertical tab.
3. De-select the Use data extents check box and enter \(\mathbf{0}\) and \(\mathbf{7}\) in the

Range min and Range max text regions, respectively.
4. Click Apply to view the changes, or OK to return to the document.

\section*{Change the color:}
5. Place the mouse pointer on the curve and right-click (Control-click,

Macintosh). Note: The curve is selected when it becomes highlighted.

\section*{Select Color, and then Green.}

\section*{Change the line style:}
6. Select Style, and then Point.

\section*{3-D Plot Options}

By default, Maple displays the graph as a shaded surface with a wireframe and scales the plot to fit the window. To change these options, use the context menu.
\(>\operatorname{plot} 3 d\left(\frac{x y}{x^{2}+y^{2}}, x=-10 . .10, y=-5 . .5\right)\)


Maple has many preselected light source configurations.

\section*{Change the style:}
1. Right-click the plot region. Select Style \(\rightarrow\) Surface.

Apply a light scheme:
2. Select Lighting \(\rightarrow\) Light 1 .

Change the color:
3. Select Color \(\rightarrow \mathbf{Z}\) (Grayscale).

\section*{Change the axes style:}

\section*{4. Select Axes \(\rightarrow\) Boxed.}

\section*{Alter the glossiness:}
5. Select Glossiness and then select Set.... Using the slider, adjust the level of glossiness.

\section*{The plot and plot3d Options}

If you are using commands to insert a plot, you can specify plot options as arguments at the end of the calling sequence. You can specify the options in any order. Applying plot options in the command syntax offers a few more options and greater control than what is available in the Interactive Plot Builder and context menus.

Table 6.3: Common Plot Options
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline axes & Defines the type of axes, one of: boxed, frame, none, or normal \\
\hline caption & Defines the caption for the plot \\
\hline color & Defines a color for the curves to be plotted \\
\hline font & Defines the font for text objects in the plot \\
\hline glossiness (3-D) & Controls the amount of light reflected from the surface \\
\hline gridlines (2-D) & Defines gridlines in the plot \\
\hline lightmodel (3-D) & \begin{tabular}{l} 
Controls the light model to illuminate the plot, one of: none, light1, light2, \\
light3, or light4
\end{tabular} \\
\hline linestyle & \begin{tabular}{l} 
Defines the dash pattern used to render lines in the plot, one of: dot, dash, \\
dashdot, longdash, solid, spacedash, and spacedot
\end{tabular} \\
\hline legend (2-D) & Defines a legend for the plot \\
\hline numpoints & Controls the minimum total number of points generated \\
\hline scaling & Controls the scaling of the graph, one of: constrained or unconstrained \\
\hline shading (3-D) & \begin{tabular}{l} 
Defines how the surface is colored, one of: xyz, xy, z, zgrayscale, zhue, or \\
none
\end{tabular} \\
\hline style & \begin{tabular}{l} 
Defines how the surface is to be drawn, one of: line, point, polygon, or \\
polygonoutline for 2-D plots; contour, point, surface, surfacecontour, \\
surfacewireframe, wireframe, or wireframeopaque for 3-D plots
\end{tabular} \\
\hline symbol & \begin{tabular}{l} 
Defines the symbol for points in the plot, one of: asterisk, box, circle, cross, \\
diagonalcross, diamond, point, solidbox, solidcircle, or soliddiamond for \\
2-D plots; asterisk, box, circle, cross, diagonalcross, diamond, point, \\
solidsphere, or sphere for 3-D plots
\end{tabular} \\
\hline title & Defines a title for the plot \\
\hline thickness & Defines the thickness of lines in the plot \\
\hline transparency (3-D) & Controls the transparency of the plot surface \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline view & \begin{tabular}{l} 
Defines the minimum and maximum coordinate values of the axes displayed \\
on the screen
\end{tabular} \\
\hline
\end{tabular}

For a complete list of plot options, refer to the ?plot/options and ?plot3d/options help pages.
\(>\operatorname{plot}(\operatorname{Si}(x), x=-20 . .20\), title \(=\) "Plot of the Sine Integral", titlefont \(=[\) HELVETICA, 12], color \(=\) blue, style \(=\) point )


To create a smoother or more precise plot, calculate more points using the numpoints option. \(>\) plot \(3 d\left(\frac{x y^{2}}{x^{2}+y^{4}}, x=-10 . .10, y=-10 . .10\right.\), axes=boxed, , numpoints \(=1500\), lightmodel \(=\) light 3 , shading \(=\) zgrayscale, orientation \(=[160,20]\), style \(=\) patchnogrid \()\)


\subsection*{6.4 Analyzing Plots}

\section*{Point Probe, Rotate, Pan, and Zoom Tools}

To gain further insight into a plot, Maple offers various tools to analyze plot regions. These tools are available in the Plot menu menu, Context Bar, and in the context menu under Transform when the plot region is selected.

Table 6.4: Plot Analysis Options
\begin{tabular}{|l|c|l|}
\hline Name & Icon & Description \\
\hline \begin{tabular}{l} 
Point probe \\
(2-D)
\end{tabular} & \begin{tabular}{l} 
Display the coordinates corresponding to the cursor position on a two-di- \\
mensional plot in the context bar (upper left-hand corner).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline Name & Icon & Description \\
\hline \begin{tabular}{l} 
Rotate \\
(3-D)
\end{tabular} & & Rotate a three-dimensional plot to see it from a different point of view. \\
\hline Pan & Zoom & \begin{tabular}{l} 
Pan the plot by changing the view ranges for 2-D plots; smartplots re- \\
sample to reflect the new view. Change the position of the plot in the plot \\
region for 3-D plots.
\end{tabular} \\
\hline \begin{tabular}{l} 
Zoom into or out of the plot by changing the view ranges for 2-D plots; \\
smartplots re-sample to reflect the new view. Make the plot larger or \\
smaller in the plot window for 3-D plots.
\end{tabular} \\
\hline Selection Tool & \(\underbrace{+}\) & \begin{tabular}{l} 
Use the Selection Tool to select the information displayed in the point \\
probe tool tooltip. You can choose to display coordinates derivated from \\
converted pixel coordinates or data points derived from the original data \\
points.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{6.5 Creating Animations}

Animations allow you to emphasize certain graphical behavior, such as the deformation of a bouncing ball, more clearly than in a static plot. A Maple animation is a number of plot frames displayed in sequence, similar to the action of movie frames. To create an animation, use the Interactive Plot Builder or commands.

\section*{Interactive Plot Builder}

Creating Animations Using the Interactive Plot Builder:
Launch the Interactive Plot Builder and enter the expression:
1. Add the expression \(\boldsymbol{\operatorname { s i n }}\left(\mathbf{i}^{*} \mathbf{s q r t}\left(\mathbf{x}^{\wedge} \mathbf{2}+\mathbf{y}^{\wedge} \mathbf{2}\right) / \mathbf{1 0}\right)\).

For information on interacting with the Interactive Plot Builder, see Example 1 - Display a plot of a single variable expression (page 240).
In the Select Plot Type window:
2. From the Select Plot Type drop-down menu, select Animation.
3. Change the \(\mathbf{x}\) Axis range to -6 .. 6 .
4. Change the \(\mathbf{y}\) Axis range to -6 .. 6 .
5. Change the Animation Parameter (i) range to \(\mathbf{1}\).. \(\mathbf{3 0}\).

In the Plot Options window:
6. From the Style group box, select surface.
7. From the Color group box, in the Light Model drop-down menu, select red-turquoise.
8. From the Color group box, in the Shading drop-down menu, select \(\mathbf{z}\) (grayscale).
9. In the View group box, select the Constrained Scaling check box.

Plot the expression:
10. Click Plot.
> plots[interactive]( );
For information on playing the animation, see Playing Animations (page 275). To see the Maple syntax used to generate this plot, see Maple Syntax for Creating Animations: Interactive Plot Builder Example (page 271).

\section*{The plots[animate] Command}

You can also use the animate command, in the plots package, to generate animations.
Table 6.5: The animate Command
```

animate(plotcommand, plotarguments, t=a..b, ...)
animate(plotcommand, plotarguments, t=L, ...)

- plotcommand - Maple procedure that generates a 2-D or 3-D plot
- plotarguments - arguments to the plot command
- t=a..b - name and range of the animation parameter
- t=L - name and list of real or complex constants

```

To access the command, use the short form name after invoking the with(plots) command.
> with(plots):

\section*{Maple Syntax for Creating Animations: Interactive Plot Builder Example}

The following example shows the plotting command returned by the example in Interactive Plot Builder (page 270).
\(>\) animate \(\left(\right.\) plot \(3 d,\left[\sin \left(\frac{i \sqrt{x^{2}+y^{2}}}{10}\right), x=-6 . .6, y=-6 . .6\right.\), style \(=\) patchnogrid, lightmodel
\(=\) light 3 , shading \(=\) zgrayscale, scaling \(=\) constrained \(], i=1\).. 30\()\)
\(i=1\).

\section*{Animate a 2-D plot}
\(>\) animate \(\left(\right.\) plot, \([5 \cos (2 \theta), \theta=0 . . t\), coords \(=\) polar \(], t=\frac{\pi}{4} . .2 \pi\), frames \(\left.=50\right)\)


For more information on the animate command, refer to the ?plots[animate] help page.

\section*{The plot3d[viewpoint] Command}

You can use the viewpoint command to create an animation in which the position from which you view a 3-D plot moves in all directions and in various angles around the plot surface based on coordinates and parameters you specify. This type of animation creates the effect of flying through, around, beside, towards, and away from a plot surface in threedimensional space.

The moveable position from which you view the surface is called the camera. You can specify the orientation of the camera to view different sides of a surface, the path along which the camera moves throughout and around a surface, and the location of the camera in 3-D space in each animation frame. For example, you can specify coordinates to move the camera to specific points beside a surface; a pre-defined camera path to move the camera in a circle around the surface; and the range of view to move the camera close to or away from the surface. Refer to the ?viewpoint help page for information on the available options.

To animate the following examples, click the plot object and then click the play button ( \(\downarrow\) ) in the Animation context bar.

\section*{Example 1: Moving the Camera Around a 3-D Plot}

In the following example, a pre-defined path circleleft moves the camera in a counterclockwise circle around the plot surface.
\[
\begin{aligned}
>\operatorname{plot} 3 d & \left(1.3^{x} \sin (y), x=-1 . .2 \pi, y=0 . . \pi, \text { coords }=\text { spherical, style }=\right.\text { patch, viewpoint } \\
= & {[\text { "circleleft" }]) }
\end{aligned}
\]


Example 2: Specifying a Path to Move the Camera Towards and Around a 3-D Plot
In the following example, a camera path is specified to zoom into and view different sides of the plot surface.
```

$>\operatorname{plot} 3 d(\sin (x+y), x=-1 . .1, y=-1 . .1$, shading $=x y z$, viewpoint $=[$ path $=[[50 * x, 90$
$* \cos (x), 100 * \sin (x)], x=-2 * \pi . . \pi]])$

```


\subsection*{6.6 Playing Animations}

\section*{Animation Context Bar}

To run the animation, click the plot to display the Animate context bar.
Table 5.6: Animation Options
\begin{tabular}{|c|c|c|c|}
\hline Name & \multicolumn{2}{|r|}{Icon} & Description \\
\hline Previous Frame & \multicolumn{2}{|r|}{-} & View the previous frame in the animation. \\
\hline Stop & \multicolumn{2}{|r|}{\(\square\)} & Stop the animation. \\
\hline Play & \multicolumn{2}{|r|}{D} & Play the selected animation. \\
\hline Next Frame & \multicolumn{2}{|r|}{D]} & View the next frame in the animation. \\
\hline \begin{tabular}{l}
Current \\
Frame
\end{tabular} & Current Frame & & Slider control for viewing individual frames of an animated plot. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Icon & Description \\
\hline Forward Oscillate Backward &  & \begin{tabular}{l}
Forward - Play the animation forward. Oscillate - Play the animation forward and backward. \\
Backward - Play the animation backward.
\end{tabular} \\
\hline \begin{tabular}{l}
Single \\
Continuous
\end{tabular} &  & \begin{tabular}{l}
Single - Run the animation in single cycle mode. The animation is displayed only once. \\
Continuous - Run the animation in continuous mode. The animation repeats until you stop it.
\end{tabular} \\
\hline Frames per second & FPS: 10 \% & Set the animation to play at a faster or slower speed. \\
\hline Point probe & Q & Determine the coordinates of a 2-D plot at the position of the cursor. \\
\hline Zoom & 8 & Zoom into or out of the plot by changing the view ranges. \\
\hline Pan & (11) & Pan the plot by changing the view ranges. \\
\hline Rotate (3-D) & \(\cdots\) & Rotate a three-dimensional plot to see it from a different point of view. \\
\hline
\end{tabular}

You can also run the animation using the context menu or the Plot menu.

\subsection*{6.7 Customizing Animations}

The display options that are available for static plots are also available for Maple animations.

\section*{Interactive Plot Builder Animation Options}

Using the Interactive Plot Builder, you can apply various plot options within the Plot
Options window. See Interactive Plot Builder (page 270).

\section*{Context Menu Options}

As with static plots, you can apply plot options to the animation by right-clicking (Con-trol-click for Macintosh) the animation output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
t=5 \text {. }
\]
} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
t=10 .
\]
}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
t=15 \text {. }
\]
}} \\
\hline & & & & & \\
\hline
\end{tabular}

Customize the animation using the context menu:
1. To change the line style, right-click the plot region. Select Style \(\rightarrow\) Point.
2. To remove the axes, select Axes \(\rightarrow\) None.

\section*{The animate Command Options}

The animate command offers a few options that are not available for static plots. Refer to the ?animate help page for information on these additional options. By default, a two-dimensional animation consists of sixteen plots (frames) and a three-dimensional animation consists of eight plots (frames). To create a smoother animation, increase the number of frames using the frames option.

Note: Computing more frames increases time and memory requirements.
\(>\) sinewave \(:=\operatorname{plot}\left(\sin (x) \mathrm{e}^{-\frac{x}{5}}, x=0 . .20\right)\) :
\(>\) ball \(:=\boldsymbol{p r o c}(x, y)\) plots \([\) pointplot \(]([[x, y]]\), symbol \(=\) circle, symbolsize \(=20)\) end proc:
\(>\operatorname{plots}[\) animate \(]\left(\right.\) ball, \(\left[t, \sin (t) \mathrm{e}^{-\frac{t}{5}}\right], t=0 . .20\), frames \(=60\), background \(=\) sinewave \()\) \(t=0\).





\subsection*{6.8 Exporting}

You can export a generated plot or animation to an image in various file formats, including DXF and X3D (for 3-D plots), EPS, GIF, JPEG/JPG, POV, Windows BMP, and WMF. Exporting an animation to GIF produces an animated image file. The exported images can be included in presentations, web pages, Microsoft Word, or other software.

\section*{To export an image:}
1. Right-click the plot region (Control-click for Macintosh).
2. Select Export and the file format.

\section*{Alternatively:}
1. Click the plot.
2. From the Plot menu, select Export, and then the file format.

Maple has various plot drivers. By setting the plotdevice, a file can be automatically created without returning the image to the document. For more information, refer to the ?plot,device help page.

\subsection*{6.9 Code for Color Plates}

Generating impressive graphics in Maple can require only a few lines of code, as shown by the examples in this chapter. However, other graphics require many lines of code. Code for the color plates is available at the Maple Application Center.

From the Help menu, select On the Web, User Resources, and then Application Center.
To access the color plate code:
1. Go to the Maple Application Center.
2. In the Keyword or phrase region, enter Color Plate.

\section*{7 Creating Mathematical Documents}

Maple allows you to create powerful documents as business and education tools, technical reports, presentations, assignments, and handouts.

You can:
- Copy, cut, and paste information
- Format text for reports or course material
- Add headers and footers
- Insert images, tables, and symbols
- Generate two- and three-dimensional plots and animations
- Sketch in the document or on a plot
- Insert hyperlinks to other Maple files, web sites, or email addresses
- Place instructions and equations side by side
- Bookmark specific areas
- Easily update, revise, and distribute your documents

In this chapter, we will create a document that demonstrates many of Maple's documentation features. For further examples, note that this guide was written using Maple.

\subsection*{7.1 In This Chapter}
\begin{tabular}{|l|l|}
\hline Section & Topics \\
\hline \begin{tabular}{l} 
Document Formatting (page 283) - Add \\
various text formatting elements
\end{tabular} & - Copy and Paste (page 283) \\
& - Quick Character Formatting (page 284) \\
& - Quick Paragraph Formatting (page 286) \\
& - Sharacter and Paragraph Styles (page 288) \\
& - Headers and Footers (page 297) \\
& - Show or Hide Worksheet Content (page 298) \\
& - Indentation and the Tab Key (page 299) \\
\hline \begin{tabular}{l} 
Commands in Documents (page 300) \\
Format and display or hide commands \\
in a document
\end{tabular} & - Document Blocks (page 300) \\
& - Typesetting (page 303) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Tables (page 306) - Create tables and modify their attributes & \begin{tabular}{l}
- Creating a table \\
- Cell contents \\
- Navigating table cells \\
- Modifying Structural Layout \\
- Modifying Physical Dimensions \\
- Modifying Appearance \\
- Printing Options \\
- Execution Order \\
- Tables in the Classic Worksheet
\end{tabular} \\
\hline Canvas (page 318) - Sketch an idea in the document by inserting a canvas & \begin{tabular}{l}
- Insert a Canvas \\
- Drawing \\
- Canvas Style \\
- Inserting Images
\end{tabular} \\
\hline Hyperlinks (page 323) and Bookmarks Add hyperlinks to various sources & \begin{tabular}{l}
- Inserting a Hyperlink in the Document \\
- Linking to an Email Address, Dictionary Topic, Help Page, Maplet Application, Web Page, or Document \\
- Bookmarks
\end{tabular} \\
\hline Embedded Components (page 329) - Insert buttons, sliders, and more in your document & \begin{tabular}{l}
- Overview of available components \\
- Example using a task template
\end{tabular} \\
\hline Spell Checking (page 332) - Verify text with the Maple spell checking utility & \begin{tabular}{l}
- How to Use the Spellcheck Utility \\
- Selecting a Suggestion \\
- User Dictionary
\end{tabular} \\
\hline Creating Graded Assignments (page 334) - Create documents for automated testing and assessment & \begin{tabular}{l}
- Creating a Question \\
- Viewing Questions in Maple \\
- Saving Test Content
\end{tabular} \\
\hline Worksheet Compatibility (page 335) Compatibility Issues & - Classic Worksheet interface does not support all Standard Worksheet interface features \\
\hline
\end{tabular}

\subsection*{7.2 Document Formatting}

To begin, create a new Maple document. From the File menu, select New \(\rightarrow\) Document Mode. For this example, you can copy and paste text from any file. The example text below is from a Maple help page, ?plot, but the formatting has been removed for demonstration purposes.

\section*{Copy and Paste}

You can cut, copy, and paste content within Maple documents, and from other sources.
To copy an expression, or part of an expression, to another location on the document:
1. Select the expression, or part of the expression, to copy.
2. From the Edit menu, select Copy.
3. Place the cursor at the insertion point.
4. From the Edit menu, select Paste.

Result:
```

plot - create a two-dimensional plot
Calling Sequence
plot(f, x)
plot(f, x=x0..x1)
plot(v1, v2)
Parameters
f - expression in independent variable x
x - independent variable
x0, x1 - left and right endpoints of horizontal range
v1, v2 - x-coordinates and y-coordinates

```

If you paste into a math input region, Maple interprets all the pasted content as input. If you paste into a text region, Maple interprets all the pasted content as text. However, note that 2-D Math retains its format in both input and text regions.

When you copy and paste to another application, in general, Maple retains the original structure.

\section*{Quick Character Formatting}

The Format \(\rightarrow\) Character menu provides access to the following quick formatting features:
Bold, Italic, Underline, Superscript, Subscript, font Color, and Highlight Color.

\section*{To modify text:}
1. In the document, select the text to modify.
2. From the Format menu, select Character, and then the appropriate feature.

For example, in the pasted text, select "Calling Sequences" and apply Bold character formatting.

Alternatively, use the context bar icons. For example, to apply a color to the parameters "f, x=x0..x1":
- Font Color Context Bar Icon 男
- Highlight Color Context Icon

For font and highlight colors, you can select from Swatches, a color wheel, RGB values, or choose a color using the eye dropper tool. See Figure 7.1.


Figure 7.1: Select Color Dialog
In this example, choose a dark purple color, as in the help pages.

To format this text as bold, click the Bold toolbar icon, B. Also, select the text "Calling Sequence" and format as bold.
Result:
plot - create a two-dimensional plot
Calling Sequence
\(\operatorname{plot}(\mathrm{f}, \mathrm{x})\)
\(\mathrm{plot}(\mathrm{f}, \mathrm{x}=\mathrm{x} 0 . . \mathrm{xl})\)
plot(v1, v2)
Parameters
f - expression in independent variable x
x - independent variable
\(\mathrm{x} 0, \mathrm{x} 1-\mathrm{left}\) and right endpoints of horizontal range
\(\mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

\section*{Attributes Submenu: Setting Fonts, Character Size, and Attributes}

You can also change various character attributes such as font, character size, style, and color in one dialog.

\section*{To modify text:}
1. In the document, select text to modify.
2. From the Format menu, select Character, and then Attributes. The Character Style dialog opens. See Figure 7.2.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{翟 \({ }^{\text {a }}\) Character Style \(\quad X\)} \\
\hline Times New Roman & 12 & \(\square\) Bold \\
\hline \begin{tabular}{l}
Agency FB \\
Aharoni \\
Algerian \\
Andalus \\
Angsana New \\
AngsanaUPC \\
Arabic Transparent \\
Arial \\
Arial Black \\
Arial Narrow \\
Arial Rounded MT Bold \\
Arial Unicode MS \\
Baskerville old Face \\
Batang \\
BatangChe \\
Bauhaus 93 \\
Bell MT \\
Berlin Sans FB \\
Berlin Sans FB Demi \\
Bernard MT Condensed
\end{tabular} &  & \begin{tabular}{l}
italic
Underlined
Superscript
Subscript \\
Color
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Maplesoft} \\
\hline & OK & Cancel \\
\hline
\end{tabular}

Figure 7.2: Character Style Dialog

\section*{Quick Paragraph Formatting}

The Format \(\rightarrow\) Paragraph menu provides access to the following quick alignment features: Align Left, Center, Align Right, and Justify.

\section*{To modify a paragraph:}
1. In the document, select the paragraph to modify.
2. From the Format menu, select Paragraph, and then the appropriate feature.

\section*{Attributes Submenu: Spacing, Indent, Alignment, Bullets, Line Break, and Page Break}

You can change various paragraph attributes in one dialog.
- From the Format menu, select Paragraph, and then Attributes. The Paragraph Style dialog opens. See Figure 7.3.
- When changing spacing, you must indicate units (inches, centimeters, or points) in the Units drop-down list.


Figure 7.3: Paragraph Style Dialog
For example, in the pasted text, select all of the items under "Parameters", then open the Paragraph Style dialog. Notice that the spacing has already been set.

In the Indent section, change the Left Margin indent to 10.0 pt .

In the Bullets and Numbering section, click the Style drop-down and select Dash. Click OK to close the dialog and apply the styles.
Result:
```

plot - create a two-dimensional plot
Calling Sequence
plot(f, x)
plot(f, x=x0..xl)
plot(v1, v2)
Parameters
- f - expression in independent variable x
- x - independent variable
- x0, x1 - left and right endpoints of horizontal range
- v1,v2 - x-coordinates and y-coordinates

```

For more information, refer to the ?paragraphmenu help page.

\section*{Character and Paragraph Styles}

Maple has predefined styles for characters and paragraphs. A style is a set of formatting characteristics that you can apply to text in your document to change the appearance of that text. When you apply a style, you apply a group of formats in one action.
- A character style controls text font, size, color, and attributes such as bold and italic. To override the character style within a paragraph style, you must apply a character style or character formatting.
- A paragraph style controls all aspects of a paragraph's appearance, such as text alignment, line spacing, and indentation. In Maple, each paragraph style includes a character style.


Figure 7.4: Style Management Dialog

\section*{Applying Character Styles}

By using the drop-down list in the document context bar, you can apply:
- Existing Maple character styles.
- New styles that you have created through the Style Management (Figure 7.4) and Character Style (Figure 7.5) dialogs.

\section*{To apply a character style to text in your document:}
1. Select the text to modify.
2. In the styles drop-down list in the context bar of your document, select an appropriate character style. All character styles are preceded by the letter \(\mathbf{C}\). The selected text now reflects the attributes of the character style you have chosen.

3. (Optional) If necessary, you can remove this style. From the Edit menu, select Undo.

\section*{Creating and Modifying Character Styles}

You can create custom character styles to apply to text, or change existing character styles. New styles are automatically added to the styles drop-down list in the context bar of your document.
1. From the Format menu, select Styles. The Style Management dialog opens. See Figure 7.4 .

To create a character style:
- Click Create Character Style. The Character Style dialog opens. See Figure 7.5.
- In the first row of the dialog, enter a style name in the blank text region.

To modify a character style:
- From the style list, select the character style to modify. Recall that all character styles are preceded by the letter \(\mathbf{C}\), while paragraph styles are preceded by the letter \(\mathbf{P}\).
- Click Modify. The Character Style dialog opens with the current attributes displayed. See Figure 7.5.

For either action, continue:
2. Select the properties for the new character style, such as font, size, attributes, and color. In the font attributes, the Superscript and Subscript check boxes are mutually exclusive. When you select one of the two check boxes, the other is disabled. You must clear one before selecting the other.

Note: A preview of the style is displayed in the last row of the Character Style dialog.
3. To save the style, click OK or to abandon, click Cancel. If you have modified a style, all text in your document that uses the altered style is updated to reflect the changes.


Figure 7.5: Character Style Dialog
For example, in the pasted text, suppose we want to create a character style for the bold, purple parameter.
- From the Format menu, select Styles, then click Create Character Style.
- Enter the style name, "Placeholder", and then select the character attributes. In this case, click the Bold check box. Then click the Color button and choose a dark purple. Click OK to create the character style.

Now you can apply the style to any text. Under Calling Sequences, select each list of parameters inside the command. To apply the style, from the Styles drop-down menu in the toolbar, select Parameter.
\begin{tabular}{|l|l|}
\hline C Text \\
\hline C Equation Label \\
C Header and Footer \\
C Hyperlink \\
C Maple Input \\
C Maple Input Placehs \\
C Page Number \\
\hline C Parameter & C Text \\
\hline
\end{tabular}

Result:
```

plot - create a two-dimensional plot
Calling Sequence
plot(f, x)
plot(f, x=x0..xl)
plot(vl, v2)
Parameters
- f - expression in independent variable x
- x - independent variable
- x0, x1-left and right endpoints of horizontal range
- v1,v2 - x-coordinates and y-coordinates

```

\section*{Applying Paragraph Styles}

By using the drop-down list in the document context bar, you can apply:
- Existing Maple paragraph styles.
- New styles that you have created through the Style Management (Figure 7.4) and Paragraph Style (Figure 7.6) dialogs.

\section*{To apply a Maple paragraph style to text in your document:}
1. Select the text to modify.
2. In the styles drop-down list in the context bar of your document, select an appropriate paragraph style. All Maple paragraph styles are preceded by the letter \(\mathbf{P}\). The selected text now reflects the attributes of the paragraph style you have chosen.


For example, to format the title of the pasted text as a title, first select the line: "plot - create a two-dimensional plot". In the Styles drop-down, select Title.
Result:

\title{
plot - create a two-dimensional plot
}
```

Calling Sequence
plot(f, x)
plot(f, x=x0...xl)
plot(v1, v2)
Parameters
- f - expression in independent variable x
- x - independent variable
- x0, x1-left and right endpoints of horizontal range
- v1,v2 - x-coordinates and y-coordinates

```
3. (Optional) If necessary, you can remove this style. From the Edit menu, select Undo.

\section*{Creating and Modifying Paragraph Styles}

You can create custom paragraph styles to apply to text, or change existing paragraph styles. New styles are automatically added to the styles drop-down list in the context bar of your document.
1. From the Format menu, select Styles. The Style Management dialog opens. See Figure 7.4 .

\section*{To create a paragraph style:}
- Click Create Paragraph Style. The Paragraph Style dialog opens. See Figure 7.6.
- In the first row of the dialog, enter a style name in the blank text field.

To modify a paragraph style:
- Select a paragraph style to modify. Recall that all paragraph styles are preceded by the letter \(\mathbf{P}\).
- Click Modify. The Paragraph Style dialog opens with the current attributes displayed.

For either action, continue:
4. In the Units drop-down menu, select the units used to determine spacing and indentation. Select from inches (in), centimeters (cm), or points ( \(\mathbf{p t )}\).
5. Select the properties to use for this paragraph style, such as Spacing, Indent, Alignment, Bullets and Numbering, Page Break Before, and Linebreak.
6. To add or modify a font style, click Font. The Character Style dialog opens. For detailed instructions, see Creating and Modifying Character Styles (page 290).
7. To save the style, click OK, or to abandon, click Cancel. If you are modifying an existing style, all text in your document that uses the altered style is updated to reflect the changes.


Figure 7.6: Paragraph Style Dialog

\section*{Style Set Management: Saving Styles for Future Use}

You can use the style set of a particular document as the default style for all documents.


Figure 7.7: Style Set Management Dialog
For information on creating and managing style sets, see the ?worksheet/documenting/styles help page.

\section*{Sections}

You can organize your document into sections, either before or after the text has been entered.

\section*{First Section \\ [The introductory sentence. \\ \(\left[>\int \cos (x) \mathrm{d} x\right.\) \\ Subsection \\ \(\left[>\int \sin (x) \mathrm{d} x\right.\)}

\section*{Using the Insert Menu to Add Sections}
1. Place the cursor in the paragraph or execution group above the location at which you want to insert a new section.
- If the cursor is inside a section, Maple inserts the new section after the current section.
- If the cursor is in an execution group, Maple inserts the new section after the execution group.
2. From the Insert menu, select Section. An arrow marks the start of the section.
3. Enter the section heading.
4. Press the Enter key.
5. Enter the body of the section.

\section*{Tips for Adding Subsections}

The insert location of subsections is the same as for sections, with a few exceptions.
- Subsections are inserted at the current cursor location when in a subsection.
- To insert a subsection immediately after the current subsection, collapse the subsection and place the cursor in the subsection title.

\section*{Using the Indent and Outdent Toolbar Icons}

You can shift sections to create or remove subsections.
\begin{tabular}{|l|l|}
\hline\(\overline{\overline{\Sigma!=}}\) & Enclose the selection in a section or subsection \\
\hline\(\overline{\overline{\vdots \equiv}}\) & Outdent the selection to the next section level, if possible. \\
\hline
\end{tabular}

For example, to create two sections containing the two categories of information in the pasted text:
1. Select "Parameters" and all of the items under it.
2. Click the Indent toolbar item.
3. Cut and paste "Parameters" from inside the section to its title.
4. Similarly, create a section with the title "Calling Sequence", containing the items under that heading.
Result:

\section*{plot - create a two-dimensional plot}

\section*{Calling Sequence}
plot( \((\mathrm{f}, \mathrm{x})\)
plot(f, \(\mathbf{x}=\mathbf{x 0} 0 . . \mathrm{xl})\)
plot(v1, v2)

\section*{Parameters}
- f - expression in independent variable x
- x - independent variable
- \(\quad \mathrm{x} 0, \mathrm{x1}-\) left and right endpoints of horizontal range
- \(\quad \mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

Note: the section titles are automatically formatted as section titles, but you can change the formatting through the Paragraph Style dialog.

\section*{Headers and Footers}

You can add headers and footers to your document that will appear at the top and bottom of each page when you print the document.

To add or edit headers and footers:
From the View menu, select Header Footer. The Header Footer dialog appears. See Figure 7.8.


Figure 7.8: Header and Footer Dialog - Custom Header
The available elements include the current date, page number, number of pages, an image, the filename, or any plain text. These elements can be placed in the left or right corner or the center of the page.

You can choose one of the predefined header or footer styles in the Predefined Header and Footer tab, or create your own by clicking the Custom Header or Custom Footer tab.

For more information on header and footer options, refer to the \(\mathbf{?}\) headerfooter help page.

\section*{Show or Hide Worksheet Content}

You can hide document elements of a specific type so that they are not visible. This does not delete them, but hides them from view. Hidden elements are not printed or exported, but they can be copied and pasted.

In a document, use the Show Contents dialog to hide all spreadsheets, input, output, or graphics, plus markers for section boundaries, execution group boundaries, hidden table borders on mouse pointer roll over, and annotations. The dialog is accessed from the View \(\rightarrow\) Show/Hide Contents menu.

\section*{Using the Show Contents Dialog}

A check mark beside the item indicates that all document elements of that type are displayed for the current document. See Figure 7.9.
\begin{tabular}{l} 
Show Contents \\
\hline Components \\
\(\square\) Captions \\
\(\square\) spreadsheets \\
\(\square\) Input \\
\(\square\) Output \\
\(\square\) Graphics \\
Markers \\
\(\square\) Section Boundaries \\
\(\square\) Execution Group Boundaries \\
\(\square\) Hidden Table Borders \\
\(\square\) Annotation Markers \\
OK \(\quad\) Cancel \\
\hline
\end{tabular}

Figure 7.9: Show Contents Dialog
1. From the View menu, select Show/Hide Contents. The Show Contents dialog opens with all items selected for display.
2. Clear the check box associated with the document components or markers to hide them.

Note: By clearing the Input check box, only Maple Input and 2-D Math input, that is, 2-D Math content that has been evaluated, are hidden. Clearing the Graphics check box ensures that a plot, an image, or the Canvas inserted in the document by using the Insert menu option is also hidden.

\section*{Command Output Versus Inserted Content}

Output is considered an element that results from executing a command. Inserted components are not considered output.

Consider the following examples.
The plot resulting from executing the plot(sin) command is considered output.
- To show a plot from the plot( \(\mathbf{s i n}\) ) command, select both the Output and Graphics check boxes in the Show Contents dialog.

If you insert a plot by using the Insert menu option, that plot is not considered output. Therefore, if you clear the Output check box in the Show Contents dialog, that plot will be visible in the document.
- To hide an inserted plot, clear the Graphics check box in the Show Contents dialog.

Inserted images and the Canvas are not considered output. As such, they are not hidden if you clear the Output check box.
- To hide an inserted image or canvas, clear the Graphics check box in the Show Contents dialog.

\section*{Indentation and the Tab Key}

The Tab icon allows you to set the Tab key either to move between placeholders or to indent. For example, with the Tab icon off, click the exponent button in the Expression palette. The expression is inserted with the first placeholder highlighted. To move to the next placeholder, use the Tab key.
\begin{tabular}{|c|c|}
\hline \(\vec{H}\) & Tab icon off. Allows you to move between placeholders using the Tab key. \\
\hline Text Math & The Tab icon is disabled when using 2-D Math (Math mode), and as such, the Tab key allows you to move between placeholders. \\
\hline " \({ }^{+2}\) & Tab icon on. Allows you to indent in the document using the Tab key. \\
\hline
\end{tabular}

\subsection*{7.3 Commands in Documents}

\section*{Document Blocks}

With document blocks, you can create documents that present text and math in formats similar to those found in business and education documents.

In a document block, an input prompt or execution group is not displayed.
By hiding Maple input such that only text and results are visible, you create a document with better presentation flow. Before using document blocks, it is recommended that you display Markers. A vertical bar is displayed along the left pane of the document. Icons representing document blocks are displayed in this vertical bar next to associated content.

\section*{To activate Markers:}
- From the View menu, select Markers.

For further details on document blocks, see Document Blocks (page 51) in Chapter 1.

\section*{Working with Document Blocks}

In document mode, each time you press Enter, a new document block appears. Documents consist of a series of document blocks.
1. Create a new document block after the last section of the pasted example, either by pressing Enter, or by selecting, from the Format menu, Create Document Block.
2. Enter text and an expression to evaluate. For example, enter "Plot the expression \(\sin (x)\) and its derivative, \(\frac{\mathrm{d}}{\mathrm{d} x} \sin (x)\) ". For detailed instructions on entering this phrase, see Example 6 - Enter Text and 2-D Math in the Same Line (page 31) in Chapter 1.
3. Select the expression Control-click, for Macintosh) to display the context menu.
4. Click the Evaluate and Display Inline menu item. The expression is evaluated.
5. Check that the input mode is Text, then enter the rest of the sentence: ", in the same plot." See Figure 7.10.
Before

After
Plot the expression \(\sin (x)\) and its derivative, \(\frac{d}{d x} \sin (x)=\cos (x)\), in the same plot.
Figure 7.10: Working with Document Blocks

Result:

\title{
plot - create a two-dimensional plot
}

\section*{Calling Sequence \\ plot( \(\mathbf{f}, \mathbf{x}\) ) \\ plot(f, \(\mathbf{x}=\mathbf{x 0} 0 . . \mathrm{xl}\) ) \\ \(\operatorname{plot}(\mathrm{v} 1, \mathrm{v} 2)\)}

\section*{Parameters}
- f - expression in independent variable \(x\)
- \(\mathrm{x} \quad\) - independent variable
- \(\quad \mathrm{x} 0, \mathrm{x} 1-\) left and right endpoints of horizontal range
- \(\quad \mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

Plot the expression \(\sin (x)\) and its derivative, \(\frac{d}{d x} \sin (x)=\cos (x)\), in the same plot.

\section*{Inline Document Output}

Document blocks can display content inline, that is, text, input, and output in one line as presented in business and education documents. In document mode, content is displayed inline by default.

To display content inline:
1. Place the cursor in the document block.
2. From the View menu, select Inline Document Output.

\section*{View Document Code}

To view the contents, that is, all code and expanded execution groups within a document block, you must expand the document block.
1. Place the cursor in the document block region.
2. From the View menu, select Expand Document Block.[Plot the expression \(\sin (x)\) and its integral,
\(\left[>\int \sin (x) \mathrm{d} x\right.\)
output redirected.
[=
\(>\) print((1)); \# input placeholder
\[
-\cos (x)
\]
, in the same plot.
3. To hide code again, select View and then Collapse Document Block.

\section*{Expand an Execution Group within a Document Block}

An execution group is a grouping of Maple input with its corresponding Maple output. It is distinguished by a large square bracket at the left called a group boundary.

As document blocks can contain many execution groups, you can select to expand an execution group within a document block.
1. Place the cursor near the end of the document block region.
2. From the View menu, select Expand Execution Group.
\(\nabla\) Plot the expression \(\sin (x)\) and its integral, \(\int \sin (x) \mathrm{d} x=-\cos (x)\)
\(\Delta[\), in the same plot.
3. To hide the group, select View and then Collapse Execution Group.

\section*{Switch between Input and Output}
1. Place the cursor in the document block region.
2. From the View menu, select Toggle Input-Output Display.

Input from any executable math or commands is displayed in one instance, or only output is displayed.

\section*{Typesetting}

You can control typesetting and 2-D Math equation parsing options in the Standard Worksheet interface. Extended typesetting uses a customizable set of rules for displaying expressions.

The rule-based typesetting functionality is available when the Typesetting level is set to Extended (Tools \(\rightarrow\) Options \(\rightarrow\) Display tab). This parsing functionality applies to 2-D Math editing (Math mode) only.

For example, you can change the display of derivatives to suit the content and audience of your document.
\[
>\frac{\mathrm{d}}{\mathrm{~d} x} f(x)
\]
\[
\frac{\mathrm{d}}{\mathrm{~d} x} f(x)
\]

Tools \(\rightarrow\) Options \(\rightarrow\) Display tab: Typesetting level \(=\) Maple Standard.

Tools \(\rightarrow\) Options \(\rightarrow\) Display tab: Typesetting level \(=\) Extended.

To specify rules, use the Typesetting Rule Assistant.
- From the View menu, select Typesetting Rules. The Typesetting Rule Assistant dialog opens.

For more information, see the ?Typesetting, ?TypesettingRuleAssist, and ?OptionsDialogDisplay help pages.

\section*{Auto-Execute}

The Autoexecute feature allows you to designate regions of a document for automatic execution. These regions are executed when the document opens or when the command is executed. This is useful when sharing documents. Important commands can be executed as soon as the user opens your document. The user is not required to execute all commands.

\section*{Setting the Auto-Execute Feature}
1. Select the region to be automatically executed when the document opens.
2. From the Format menu, select Autoexecute, and then Set.

Regions set to Autoexecute are denoted by exclamation mark symbols in the Markers region
(View \(\rightarrow\) Markers), \(\stackrel{\perp}{\triangle}\).
For example, to display a plot in your document without saving the plot, making your document use less memory, you can set a plot command to autoexecute.
1. After the plot instruction, enter a Maple prompt (Insert \(\rightarrow\) Execution Group \(\rightarrow\) After Cursor).
2. Enter the plot command: \(\operatorname{plot}\left(\left[\sin (x), \int \sin (x) \mathrm{d} x\right]\right)\) and press Enter to execute.
3. Select the plot, then select Edit \(\rightarrow\) Remove Output \(\rightarrow\) From Selection.
4. Place the cursor in the plot command, the select Format \(\rightarrow\) Autoexecute \(\rightarrow\) Set.
5. Save and close the document; on reopening, the command is re-executed.

Result:

> plot - create a two-dimensional plot

\section*{Calling Sequence}
```

plot(f, x)
plot(f, x=x0..xl)
plot(vl, v2)

```

\section*{7 Parameters}
- f - expression in independent variable x
- x - independent variable
- \(\quad \mathrm{x} 0, \mathrm{x} 1-\) left and right endpoints of horizontal range
- \(\mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

Plot the expression \(\sin (x)\) and its derivative, \(\frac{d}{d x} \sin (x)=\cos (x)\), in the same plot. \(\stackrel{\overbrace{}}{\Delta}\left[>\operatorname{plot}\left(\left[\sin (x), \frac{\mathrm{d}}{\mathrm{d} x} \sin (x)\right]\right)\right.\)

\section*{Removing the Auto-Execute Setting}

To remove the setting in a region:
1. Select the region.
2. From the Format menu, select Autoexecute, and then Clear.

To remove all autoexecuted regions from a document:
- From the Format menu, select Autoexecute, and then Clear All.

\section*{Repeating Auto-Execution}

To execute all marked groups:
- From the Edit menu, select Execute, and then Repeat Autoexecution.

\section*{Security Levels}

By default, Maple prompts the user before automatically executing the document.
To set security levels for the autoexecute feature, use the Security tab in the Options dialog. For details, refer to the ?OptionsDialogSecurity help page.

\subsection*{7.4 Tables}

Tables allow you to organize content in a document.

\section*{Creating a Table}

To create a table:
1. From the Insert menu, select Table.
2. Specify the number of rows and columns in the table creation dialog.

\section*{3. Click OK.}

The default properties for the table include visible borders and auto-adjustment to \(100 \%\) of the document width. These options, as well as the table dimensions, can be modified after table creation.

Create a table with 4 rows and 2 columns at the end of your document. In document mode, the input mode is set to Math by default; in worksheet mode, the default is Text mode.
\begin{tabular}{|l|l|}
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Cell Contents}

Any content that can be placed into a document can also be placed into a table cell, including other sections and tables. Table cells can contain a mix of:
- Input commands
- 2-D Math
- Embedded components: buttons, sliders, check boxes, and more
- Plots
- Images

Enter a heading in both columns of the first row, in 2-D Math. You can use any text formatting features within each cell; for example, bold and center the headings.
\begin{tabular}{|l|l|}
\hline\(f(x)\) & \(\frac{\mathrm{d}}{\mathrm{d} x} f(x)\) \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Navigating Table Cells}

Use the Tab key to move to the next cell. Ensure that the Tab toolbar icon is off.
\begin{tabular}{|c|c|}
\hline \(\vec{\sim}\) & Tab icon off. Allows you to move between cells using the Tab key. \\
\hline (2) & Tab icon on. Allows you to indent in the table using the Tab key. \\
\hline
\end{tabular}

Tab between the cells of the table and enter the following expressions in the first column.
For each function, from the context menu, select Differentiate \(\rightarrow \mathbf{x}\). Cut and paste the resulting expression into the second column.
\begin{tabular}{|ll|}
\hline & \(f(x)\) \\
\hline\(\frac{1}{1+\frac{1}{1+\frac{1}{x}}}\) & \(-\frac{\mathbf{d}}{\mathbf{d x}} \boldsymbol{f}(\boldsymbol{x})\) \\
\(\left(1+\frac{1}{1+\frac{1}{x}}\right)^{2}\left(1+\frac{1}{x}\right)^{2} x^{2}\) \\
\(\sin (\omega x) \mathrm{e}^{(-5 x)}\) & \(\cos (\omega x) \omega \mathrm{e}^{-5 x}-5 \sin (\omega x) \mathrm{e}^{-5 x}\) \\
\(\frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \sin ^{2}(x)\) & \(-8 \sin (x) \cos (x)\) \\
\hline
\end{tabular}

\section*{Modifying the Structural Layout of a Table}

The number of rows and columns in a table are modified using the Insert and Delete submenus in the Table menu or by using the Cut and Copy/Paste tools.

\section*{Inserting Rows and Columns}

Row and column insertion is relative to the table cell that currently contains the cursor. If the document has an active selection, insertion is relative to the selection boundaries.
- Column insertion can be to the left or right of the document position marker or selection.
- Row insertion can be above or below the marker or selection.

In your table, add a third column on the right to display the plots of these expressions. Add the heading, and insert a blank plot region in each cell below it, by selecting Insert \(\rightarrow\) Plot \(\rightarrow\) 2-D (or 3-D for the second expression). Then Ctrl-drag (Control-drag for Macintosh) each expression in the row into its plot region to display it. For details on this procedure, see Plots and Animations (page 237).

Resize the plots and table as desired.
\begin{tabular}{|c|c|c|}
\hline \(f(x)\) & \[
\frac{\mathrm{d}}{\mathrm{~d} x} f(x)
\] & Plot of \(f(x)\) and \(\frac{\mathrm{d}}{\mathrm{d} x} f(x)\) \\
\hline 1 & - 1 & 20 \\
\hline \[
1+\frac{1}{1+\frac{1}{x}}
\] & \[
\left(1+\frac{1}{1+\frac{1}{x}}\right)^{2}\left(1+\frac{1}{x}\right)^{2} x^{2}
\] &  \\
\hline \(\sin (\omega x) \mathrm{e}^{(-5 x)}\) & \(\cos (\omega x) \omega \mathrm{e}^{-5 x}-5 \sin (\omega x) \mathrm{e}^{-5 x}\) &  \\
\hline \multirow[t]{2}{*}{\[
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \sin ^{2}(x)
\]} & \multirow[t]{2}{*}{\(-8 \sin (x) \cos (x)\)} &  \\
\hline & & \[
-10 \int_{4}^{5}-2+\sqrt{5} b^{10}
\] \\
\hline
\end{tabular}

\section*{Deleting Rows and Columns}

With deleting operations using the Delete key, the Delete Table Contents dialog opens allowing you to specify the desired behavior. For example, you can delete the selected rows, or delete the contents of the selected cells. See Figure 7.11.


Figure 7.11: Delete Table Contents Verification Dialog

\section*{Pasting}

Pasting a table subselection into a table may result in the creation of additional rows or columns, overwriting existing cell content, or the insertion of a subtable within the active table cell. When there is a choice, the Table Paste Mode dialog opens, allowing you to choose. See Figure 7.12.


Figure 7.12: Table Paste Mode Selection Dialog

\section*{Merging Cells}

To merge adjacent cells in a table, select the cells you would like to merge. From the Table menu, select Merge Cells. You can merge cells across row or column borders. See Figure 7.13. The resulting cell must be rectangular. The contents of the individual cells in the merge operation are concatenated in execution order. See Figure 7.14. For details on cell execution order, see Execution Order Dependency (page 315).
\begin{tabular}{|c|c|}
\hline\(>a+b\) & \(>c+d\) \\
\(a+b\) & \(c+d\) \\
\hline
\end{tabular}
\[
\begin{array}{|lc}
\hline>a+b & \\
& a+b \\
& \\
& \\
& c+d \\
& \\
& \\
& \\
& \\
& \\
\hline
\end{array}
\]

Figure 7.13: Two cells
Figure 7.14: Merged Cells

\section*{Modifying the Physical Dimensions of a Table}

The overall width of the table can be controlled in several ways.
The most direct way is to press the left mouse button (press mouse button, for Macintosh) while hovering over the left or right table boundary and dragging the mouse left or right. Upon release of the mouse button, the table boundary is updated. This approach can also be used to resize the relative width of table columns.

Alternatively, the size of the table can be controlled from the Table Properties dialog. Select the Table menu and then Properties. Two sizing modes are supported.
(1) Fixed percentage of page width. Using this option, the table width adjusts whenever the width of the document changes. This option is useful for ensuring that the entire content of the table fits in the screen or printed page.
(2) Scale with zoom factor. This option is used to preserve the size and layout of the table regardless of the size of the document window or the zoom factor. If the table exceeds the width of the document window, the horizontal scroll bar can be used to view the rightmost columns. Note: Using this option, tables may be incomplete when printed.

\section*{Modifying the Appearance of a Table}

\section*{Table Borders}

The style of exterior and interior borders is set using the Table Properties dialog. From the Table menu, select Properties.
- You can set all, none, or only some of the borders to be visible in a table. Exterior borders are controlled separately.
- You can control the visibility of interior borders by using the Group submenu of the Table menu; grouping rows or columns suppresses interior borders, provided that the interior border style is set by row and column group.

For example, group the columns together, and group rows 2 to 4 together. Then in the Table Properties dialog, select Exterior Borders: Top and bottom, and Interior Borders: By row and column group.
\begin{tabular}{|c|c|c|}
\hline \(f(x)\) & \(\frac{\mathrm{d}}{\mathrm{d} x} f(x)\) & Plot of \(f(x)\) and \(\frac{\mathrm{d}}{\mathrm{d} x} f(x)\) \\
\hline 1 & 1 & \({ }^{20} 10\) \\
\hline \(1+\frac{1}{1+\frac{1}{x}}\) & \(\left(1+\frac{1}{1+\frac{1}{x}}\right)^{2}\left(1+\frac{1}{x}\right)^{2} x^{2}\) &  \\
\hline \(\sin (\cos ) \mathrm{e}^{(-5 x)}\) & \(\cos (\cos x) \operatorname{co} \mathrm{e}^{-5 x}-5 \sin (\cos x) \mathrm{e}^{-5 x}\) &  \\
\hline \[
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} \sin ^{2}(x)
\] & \(-8 \sin (x) \cos (x)\) &  \\
\hline
\end{tabular}
- Hidden borders are visible when the mouse hovers over a table. Note: You can hide the visibility of lines on mouse pointer roll over by using the View \(\rightarrow\) Show/Hide Contents dialog, and clearing the Hidden Table Borders check box.

\section*{Alignment Options}

The table alignment tools control the horizontal alignment of columns and vertical alignment of rows.

For column alignment, the current selection is expanded to encompass all rows in the selected columns. The alignment choice applies to all cells within the expanded selection. If the document does not contain a selection, the cursor position is used to identify the column.

Similarly, the selection is expanded to include all columns in the selected rows for vertical alignment options. The following table illustrates the vertical alignment options. The baseline option is useful for aligning equations across multiple cells within a row of a table.
\begin{tabular}{|l|c|c|}
\hline Top & \(x^{\left(\frac{1}{v}\right)}\) & \(x^{\left(\frac{1}{v}\right)}\) \\
\hline Center & \(x^{\left(\frac{1}{v}\right)}\) & \(x^{\frac{1}{\left(\frac{1}{v}\right)}}\) \\
\hline Bottom & \(x^{\left(\frac{1}{v}\right)}\) & \(x^{\frac{1}{\left(\frac{1}{v}\right)}}\) \\
\hline Baseline & \(x^{\left(\frac{1}{v}\right)}\) & \(x^{\frac{1}{v}}\) \\
\hline
\end{tabular}

For example, set the Row alignment to Baseline for all rows, and set the Column alignment to Center for all columns.


\section*{Cell Color}

You can set the background color of any cell or collection of cells to be any color. This coloring is independent of any highlighting or text color that may also be applied.

To change the color of a cell, place the cursor in the cell, then from the Table menu, select Cell Color.... In the Select A Color dialog, choose a color from the swatches, the color wheel, or RGB. See the ?DrawingTools help page for details on color selection.

For example, select the first row of the table and apply a light blue color. This sets the header off from the content below.


\section*{Controlling the Visibility of Cell Content}

The Table Properties dialog includes two options to control the visibility of cell content. These options allow control over the visibility of Maple input and execution group boundaries. Thus, these elements can be hidden in a table even if they are set to visible for the document in the View \(\rightarrow\) Show/Hide Contents dialog.

\section*{Printing Options}

The Table Properties dialog contains options to control the placement of page breaks when printing. You can fit a table on a single page, allow page breaks between rows, or allow page breaks within a row.

\section*{Execution Order Dependency}

The order in which cells are executed is set in the Table Properties dialog. The following tables illustrate the effect of execution order.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Row-wise execution order} \\
\hline \multirow[t]{2}{*}{>x: \(=1\);} & & >x:=x+1; & \\
\hline & (7.1) & \(x:=2\) & (7.2) \\
\hline \multirow[t]{2}{*}{>x: \(=\mathrm{x}+1\);} & & > \(\mathrm{x}:=\mathrm{x}+1 ;\) & \\
\hline & (7.3) & \(x:=4\) & (7.4) \\
\hline
\end{tabular}

\section*{Column-wise execution order}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{>x: \(=1\);} & & > \(\mathrm{x}:=\mathrm{x}+1\); & \\
\hline & (7.5) & \(x:=3\) & (7.6) \\
\hline \multirow[t]{2}{*}{> \(\mathrm{x}:=\mathrm{x}+1\);} & & > \(\mathrm{x}:=\mathrm{x}+1\); & \\
\hline & (7.7) & \(x:=4\) & (7.8) \\
\hline
\end{tabular}

\section*{Tables and the Classic Worksheet}

Tables are flattened on export to the Classic Worksheet interface. For example, the following table in the Standard Worksheet appears as one column in the Classic Worksheet interface.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Table in Standard Worksheet } & Table in Classic Worksheet \\
\hline \begin{tabular}{|l|l|}
\hline aaa & ddd \\
\hline bbb & eee \\
\hline ccc & fff \\
& aaa \\
& bbb \\
& ccc \\
& ddd \\
& eee \\
& fff \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Additional Examples}

For more practice creating and manipulating tables, try creating the following tables at the end of your document.

\section*{Table of Values}

This example illustrates how to set the visibility options for cell contents to display a table of values.
\(>y:=t \rightarrow \frac{1}{2} t^{2}:\)
Create a table with 2 rows and 7 columns. Enter the values as below, and then select all table cells. In the Table \(\rightarrow\) Alignment menu, select Columns, and then Center.
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline\(t \llbracket s \rrbracket\) & \multicolumn{1}{|c|}{0} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(y(t) \llbracket m \rrbracket\) & \(>y(0)\) & \(>y(1)\) & \(>y(2)\) & \(>y(3)\) & \(>y(4)\) & \(>y(5)\) & \(>y(6)\) \\
& 0 & \(\frac{1}{2}\) & 2 & \(\frac{9}{2}\) & 8 & \(\frac{25}{2}\) & 18 \\
\hline
\end{tabular}

\section*{Table settings:}

In the Properties dialog (Table \(\rightarrow\) Properties menu):
1. Set Table Size Mode to Scale with zoom factor.
2. Hide Maple input and execution group boundaries: Clear the Show input and Show execution group boundaries check boxes.
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline\(t \llbracket s \rrbracket\) & \multicolumn{1}{|c|}{0} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\(y(t) \llbracket m \rrbracket\) & 0 & \(\frac{1}{2}\) & 2 & \(\frac{9}{2}\) & 8 & \(\frac{25}{2}\) & 18 \\
\hline
\end{tabular}

\section*{Formatting Table Headers}

The following table uses cell merging for formatting row and column headers, and row and column grouping to control the visibility of cell boundaries.

By default, invisible cell boundaries are visible on mouse pointer roll over. You can hide the visibility of lines on mouse pointer roll over by using the View \(\rightarrow\) Show/Hide Contents dialog, and clearing the Hidden Table Borders check box.
\begin{tabular}{ll|cc} 
& & \multicolumn{2}{|c}{ Parameter 2 } \\
& & Low & High \\
\hline Parameter 1 & Low & 13 & 24 \\
& High & 18 & 29
\end{tabular}

\section*{Table settings:}
1. Insert a table with 4 rows and 4 columns and enter the information shown above.

Using the Table menu:
2. Merge the following sets of (Row,Column) cells: (R1,C1) to (R2,C2), (R1,C3) to (R1,C4), and (R3,C1) to (R4,C1).
3. Group columns 1 and 2, and columns 3 and 4 .
4. Group rows 1 and 2 , and rows 3 and 4.

In the Properties dialog (Table \(\rightarrow\) Properties menu):
5. Set Exterior Borders to None.
6. (Optional) Change Table Size Mode size option to Scale with zoom factor.

Using the Table menu:
7. Set Alignment of columns 3 and 4 to Center.

\section*{2-D Math and Plots}

The following example illustrates the use of tables to display 2-D Math and plots side by side.
Approximating \(\exp (-\mathrm{x})\) as a rational polynomial
using a \(3^{r d}\) order Padé approximation.
\(\mathrm{e}^{-x} \approx \frac{1-\frac{1}{2} x+\frac{1}{10} x^{2}-\frac{1}{120} x^{3}}{1+\frac{1}{2} x+\frac{1}{10} x^{2}+\frac{1}{120} x^{3}}\)

Insert a table with 1 row and 2 columns. Enter the information in text and executable 2-D Math to create the calculation and plot, as shown.

\section*{Table Settings:}

In the Properties dialog (Table \(\rightarrow\) Properties menu):
1. Set Exterior and Interior Borders to None.
2. Hide Maple input and execution group boundaries: Clear the Show input and Show execution group boundaries check boxes.

Using the Table menu:
3. Change row Alignment to Center.

\subsection*{7.5 Canvas}

Using the drawing tools, you can sketch an idea in a canvas, draw on plots, and draw on images. See Figure 7.15. For details about the drawing feature, refer to the ?DrawingTools help page.


Figure 7.15: Drawing Tools and Canvas

\section*{Insert a Canvas}

\section*{To insert a canvas:}
1. Place the cursor where the canvas is to be inserted.
2. From the Insert menu, select Canvas. A canvas with grid lines appears in the document at the insertion point. The Drawing icon is available and associated context bar icons are displayed.

The tools include the following: selection tool, pencil (free style drawing), eraser, text insert, straight line, rectangle, rounded rectangle, oval, diamond, alignment, drawing outline, drawing fill, drawing linestyle, and drawing canvas properties.

\section*{Drawing}

To draw with the pencil tool in the canvas:
1. From the Drawing icons, select the pencil icon.
2. Click and drag your mouse in the canvas to draw lines. Release the mouse to complete the drawing.

\section*{To adjust the color of drawing tools:}
1. From the Drawing icons, select the Drawing Outline icon. See Figure 7.16.
2. Select one of the color swatches available or select the color wheel, RGB ranges, or eye dropper icon at the bottom of the dialog and customize the color to your preference.
3. After selecting a new color, draw on the canvas using the pencil icon and notice the new color.


Figure 7.16: Drawing Outline Color Icon
In your document, there are three plots, two of which are 2-D plots that can be drawn on. All of the information in the table you made in the previous section could be drawn onto the plot, putting the information in a more concise layout.

Consider one of the plots from the table:


Click on the plot, and notice that the Plot toolbar is open. However, the Drawing toolbar is also available. Click on Drawing to see the toolbar.

Select the Text icon, \(\mathbf{T}\), and click on the plot. Enter the expression \(f(x)\) in one text area, and its derivative in another, as shown. You can move the text areas around on the plot so that they indicate the correct lines.

For details on the rest of the drawing features, refer to the ?DrawingTools help page.

\section*{Canvas Style}

You can alter the Canvas in the following ways:
- Add a grid of horizontal and/or vertical lines. By default, the canvas opens with a grid of horizontal and vertical lines.
- Change the grid line color.
- Change the spacing between grid lines.
- Change the background color.

These options can be changed in the Drawing Properties Canvas Icon. See Figure 7.17.


Figure 7.17: Drawing Properties Canvas Icon - Change the Gridline Color

\section*{Inserting Images}


To insert an image into the document at the cursor location:
1. From the Insert menu, select Image. The Load Image dialog opens.
2. Specify a path or folder name.
3. Select a filename.
4. Click Open. The image is displayed in the document.

If the source file is altered, the embedded image does not change because the original object is pasted into the document.

\section*{To resize an inserted image:}
1. Click the image. Resizing anchors appear at the sides and corners of the image.
2. Move the mouse over the resize anchor. Resizing arrows appear.
3. Click and drag the image to the desired size.

Note: To constrain the proportions of the image as it is resized, press and hold the Shift key as you drag.

You can also draw on images in the same way as the drawing canvas For more information, refer to the ?worksheet/documenting/drawingtools help page..

\section*{ImageTools Package}

You can manipulate image data using the ImageTools package. This package is a collection of utilities for reading and writing common image file formats, and for performing basic image processing operations within Maple.

Within Maple, images are represented as dense, rectangular Arrays of 64-bit hardware floating-point numbers. Grayscale images are 2-D, whereas color images are 3-D (the third dimension representing the color channels).

In addition to the commands in the ImageTools package, many ordinary Array and Matrix operations are useful for image processing.

For details about this feature, refer to the ?ImageTools help page.

\subsection*{7.6 Hyperlinks}

Use a hyperlink in your document to access any of the following.
- Web Page (URL)
- Email
- Worksheet
- Help Topic
- Task
- Dictionary Topic
- Maplet


Figure 7.18: Hyperlink Properties Dialog

\section*{Inserting a Hyperlink in a Document}

To create a hyperlink from existing text in the document:
1. Highlight the text that you want to make a hyperlink.
2. From the Format menu, select Convert To and then Hyperlink.
3. In the Hyperlink Properties dialog box, the Link Text field is grayed out since the text region you highlighted is used as the link text. This is demonstrated in Figure 7.18. The highlighted text region, Diff is grayed out.
4. Specify the hyperlink Type and Target as described in the appropriate following section.

To insert a text or image hyperlink into the document:
1. From the Insert menu, select Hyperlink.
2. In the Hyperlink Properties dialog box, enter the Link Text.

Optionally, use an image as the link. Select the Image check box and click Choose Image for the file. In .mw files, the image appears as the link. You can resize the image as necessary. Click and drag from the corners of the image to resize.
3. Specify the hyperlink Type and Target as described in the appropriate following section.

\section*{Linking to a Web Page}

To link to a Web page:
1. In the Type drop-down list, select URL.
2. In the Target field, enter the full URL, for example, http://www.maplesoft.com.

\section*{3. Click OK.}

\section*{Linking to an Email Address}

\section*{To link to an email address:}
1. In the Type drop-down list, select Email.
2. In the Target field, enter the email address.

\section*{3. Click OK.}

Note: For information about email hyperlinks in the Classic Worksheet interface, see Worksheet Compatibility (page 335).

\section*{Linking to a Worksheet}

To link to a Maple worksheet or document:
1. In the Type drop-down list, select Worksheet.
2. In the Target field, enter the path and filename of the document or click Browse to locate the file. (Optional) In the Bookmark drop-down list, enter or select a bookmark.

Note: To link within a single Maple document, leave the Target field blank and choose the bookmark from the Bookmark drop-down list.

Note: When linking to a custom document, the path is absolute. When sharing documents that contain hyperlinks, ensure that target documents are in the same directory.

\section*{3. Click OK.}

\section*{Linking to a Help Page}

To link to a help page:
1. In the Type drop-down list, select Help Topic.
2. In the Target field, enter the topic of the help page. (Optional) In the Bookmark dropdown list, enter or select a bookmark.

\section*{3. Click OK.}

\section*{Linking to a Task}

To link to a task:
1. In the Type drop-down list, select Task.
2. In the Target field, enter the topic name of the task template (see the status bar at the bottom of the Task Browser window).
3. Click OK.

\section*{Linking to a Dictionary Topic}

To link to a Dictionary topic:
1. In the Type drop-down list, select Dictionary Topic.
2. In the Target field, enter a topic name. Dictionary topics begin with the prefix Definition/, for example, Definition/dimension.

\section*{3. Click OK.}

\section*{Linking to a Maplet Application}

To link to a Maplet application:
1. In the Type drop-down list, select Maplet.
2. In the Target field, enter the local path to a file with the .maplet extension. Optionally, click Browse to locate the file.

If the Maplet application exists, clicking the link launches the Maplet application. If the Maplet application contains syntax errors, then error messages are displayed in a pop-up window.

When linking to a custom Maplet application, the path is absolute. When sharing documents that contain links to Maplet applications, ensure that target Maplet applications are in the same directory.

\section*{3. Click OK.}

Note: To link to a Maplet application available on a MapleNet Web page, use the URL hyperlink type to link to the Web page. For information on MapleNet, see Embedded Components and Maplets (page 389).

\section*{Example}

For this example, link the text "horizontal range" to the dictionary page for domain. As indicated in the section for Linking to a Dictionary Topic, select Dictionary Topic in the Type drop-down list, and then enter Definition/domain in the Target field.

Links to dictionary topics appear underlined and in red.
Result:

\title{
plot - create a two-dimensional plot
}

\section*{Calling Sequence \\ plot(f, \(\mathbf{x}\) ) \\ plot(f, \(\mathbf{x}=\mathbf{x 0} 0 . . \mathrm{xl})\) \\ plot(v1, v2)}

\section*{Parameters}
- f - expression in independent variable x
- x - independent variable
- \(\quad \mathrm{x} 0, \mathrm{x} 1-\) left and right endpoints of horizontal range
- \(\quad \mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

\section*{Bookmarks}

Use a bookmark to designate a location in an active document. This bookmark can then be accessed from other regions in your document or by using hyperlinks in other documents.

To display bookmark formatting icons, activate the Marker feature.
- From the View menu, select Markers.


Figure 7.19: Bookmark Indicator

Note: You can display bookmark properties by holding the pointer over a bookmark indicator. See Figure 7.19.

\section*{Inserting, Renaming, and Deleting a Bookmark}

\section*{To insert a bookmark:}
1. Place the cursor at the location at which to place the bookmark. For example, place the cursor in the Parameters section title.
2. From the Format menu, select Bookmarks. The Bookmark dialog opens, listing existing bookmarks in the document.
3. Click New. The Create Bookmark dialog opens. See Figure 7.20. Enter a bookmark name, "parameters", and click Create.


Figure 7.20: Create Bookmark Dialog
4. The new bookmark appears in the Bookmark dialog list. Click OK.

Note: You can also rename and delete bookmarks using the Bookmark dialog.
Result:

\section*{plot - create a two-dimensional plot}

\section*{Calling Sequence}
```

plot(f, x)
plot(f, x=x0..xl)
plot(v1, v2)

```

\section*{৭ Parameters}

Bookmark: parameters zpression in independent variable x
- x - independent variable
- \(\quad \mathrm{x} 0, \mathrm{x} 1-\) left and right endpoints of horizontal range
- \(\quad \mathrm{v} 1, \mathrm{v} 2-\mathrm{x}\)-coordinates and y -coordinates

\section*{Go to a Bookmark}

You can automatically move the cursor to the location of the bookmark in the active document.
1. From the Edit menu, select Go To Bookmark. The Go To Bookmark dialog opens with the current bookmarks listed.
2. Select the bookmark "parameters" and click OK. The cursor moves to the bookmark, at the beginning of the Parameters section.

For more information, refer to the ?bookmarks help page.

\subsection*{7.7 Embedded Components}

You can embed simple graphical interface components, such as a button, in your document. These components can then be associated with actions that are to be executed. For example, the value of a slider component can be assigned to a document variable, or a text field can be used to input an equation.

\section*{Adding Graphical Interface Components}

The graphical interface components can be inserted by using the Components palette (Figure 7.21) or by cutting/copying and pasting existing components to another area of the document. Although copied components have most of the same characteristics, they are distinct.

By default, palettes are displayed when you launch Maple. If palettes are not visible, use the following procedure.
1. From the View menu, select Palettes.
2. Select Expand Docks.
3. If the Components palette is not displayed, right-click (Control-click, for Macintosh) the palette dock. From the context menu, select Show Palette, and then Components.

For more information, see Palettes (page 22).
You can embed the following items.
- Button, Toggle Button
- Combo Box, Check Box, List Box, Radio Button
- Text Area, Label
- Slider, Plot, Mathematical Expression
- Dial, Meter, Rotary Gauge, Volume Gauge


Figure 7.21: Components Palette

\section*{Task Template with Embedded Components}

In your document, you can add components that have already been configured to work together, by using a task template. Here, we use the template. For details on how to create and modify components, see Creating Embedded Components (page 393).

To insert the task template, from the Tools menu, select Tasks \(\rightarrow\) Browse. In the table of contents, expand Document Templates, and select Interactive Application. Click Insert Minimal Content. The following is inserted into your document.

Explanatory text, describing the application
\begin{tabular}{|c|c|}
\hline Title & Title \\
\hline use the Dials to set parameters & use the Plot and Math Components to display the results \\
\hline  &  \\
\hline Title & \(\begin{array}{llllll}-40 & -20 & 0 & 20 & 40\end{array}\) \\
\hline use the Gauge component to display the result &  \\
\hline parameter1/parameter2 & Plot of \(y=x\) \\
\hline
\end{tabular}

Figure 7.22: Interactive Application Task Template
This configuration of components plots a linear function with slope and y-intercept given respectively by the two dials parameter 2 and parameter 1 , and displays the function \(\frac{\text { parameter } 2}{\text { parameter } 1}\) on a gauge. For details on how these components work together, see Embedded Components and Maplets (page 389).

\subsection*{7.8 Spell Checking}

The Spellcheck utility examines all designated text regions of your document for potential spelling mistakes, including regions that are in collapsed sections. It does not check input, output, text in execution groups, or math in text regions. See Figure 7.23.

Note: The Spellcheck utility uses American spelling.
The CodeGeneration package is a collection of comands and subpackages
that enable the translation of Maple code to other programming languages.


Figure 7.23: Spellcheck Dialog

\section*{How to Use the Spellcheck Utility}
1. From the Tools menu, select Spellcheck. Alternatively, press F7. The Spellcheck dialog appears. It automatically begins checking the document for potential spelling mistakes.
2. If the Spellcheck utility finds a word that it does not recognize, that word is displayed in the Not Found text box.

You have six choices:
- To ignore the word, click Ignore.
- To ignore all instances of the word, click Ignore All.
- To change the word, that is, accept the suggested spelling that is in the Change To text box, click Change.
- To change all instances of the word, that is, accept the suggested spelling to replace all instances of the word, click Change All.
- To add the word to your dictionary, click Add. For details, see the following User Dictionary section.
- To close the Spellcheck dialog and stop the spelling check, click Cancel.
3. When the Spellcheck is complete, a dialog containing the message "The spelling check is complete" appears. Click OK to close this dialog.

Note: when using the Spellcheck utility, you can fix spelling errors in the dialog, but you cannot change the text in document. The Spellcheck utility does not check grammar.

\section*{Selecting a Suggestion}

To select one of the suggestions as the correct spelling, click the appropriate word from the list in the Suggestions text box.

If none of the suggestions are correct, highlight the word in the Change To text box and enter the correct spelling. Click Change to accept this new spelling.

\section*{User Dictionary}

You can create and maintain a custom dictionary that works with the Maple Spellcheck utility.

\section*{Properties of the Custom Dictionary File}
- It must be a text file, that is, have the file extension .txt. For example, mydictionary.txt.
- It is a list of words, one word per line.
- It is case sensitive. This means that integer and Integer require individual entries in the dictionary file.
- It does not require manual maintenance. You build your dictionary file by using the Add functionality of the Spellcheck. However, you can manually edit the file.

To specify a custom dictionary to be used with the Maple Spellcheck utility:
1. Create a .txt file in a directory/folder of your choice.
2. In Maple, open the Options dialog, Tools \(\rightarrow\) Options, and select the General tab.
3. In the User Dictionary field, enter the path and name of the .txt file you created, or click Browse to select the location and filename.
4. To ignore Maple words that are command and function names, clear the Use Maple Words in spellchecker check box.
5. Click Apply to Session or Apply Globally to save the settings, or Cancel to discard.

\section*{Adding a Word to Your Dictionary}

When running the spellcheck, if the word in the Not Found text box is correct, you can add the word to your dictionary.
1. Click the Add button. If this is the first time you are adding a word, the Select User Dictionary dialog opens.
2. Enter or select the custom dictionary (.txt file) you created. See User Dictionary (page 333).
3. Click Select. The word is automatically added to your custom dictionary file.

Note: Specifications in the Options dialog determine whether this word is recognized in your next Maple session. If you set your custom dictionary and clicked Apply to Session, then this word will not be recognized in a new Maple session. If you set your custom dictionary and clicked Apply Globally, then this new word will be recognized.

\subsection*{7.9 Creating Graded Assignments}

You can use Maple to create graded assignments. Question types include multiple choice, essay, true-or-false, fill-in-the-blanks, and Maple-graded.

Note: This feature can be used to create questions for Maple T.A.-an online automated testing and assessment system. For details about Maple T.A., see Maple T.A. (page 419).

\section*{Creating a Question}

\section*{To create a question:}
1. Open the Task browser (Tools \(\rightarrow\) Tasks \(\rightarrow\) Browser).
2. From the Maple T.A. folder, select the appropriate question type.
3. Insert the question template into a document.
4. Enter the question content as described in the template.
5. Repeat steps 1 to 4 for each question to add to the document.

\section*{Viewing Questions in Maple}

\section*{To view and test your questions in Maple:}
- From the View menu, select Assignment. This view displays all of the questions in your assignment with access to hints, plotting, and grading.

After answering your questions, you can test the grading function by clicking the Grade button. A Maplet dialog is displayed indicating if the question was answered correctly. If hints were provided in the question, these are also displayed.

\section*{Saving Test Content}

When you save a document with test content, the authoring and assignment modes determine what the user sees when opening your document.
- If you save the document in authoring mode (task template contents visible), the user sees this content when opening the document.
- If you save the document in assignment mode, the user sees only the assignment layout.

In both cases the View \(\rightarrow\) Assignment menu is accessible. As such, users (students) can switch between the original document contents and the displayed assignment.

\subsection*{7.10 Worksheet Compatibility}

Maple provides users with two worksheet interfaces: the Standard Worksheet and the Classic Worksheet. Both have access to the full mathematical engine of Maple and take advantage of the new functionality in Maple. The Classic Worksheet has the traditional Maple worksheet look and uses less memory.

If you create a document in the Standard Worksheet interface of Maple and then open it in the Classic Worksheet interface, you should note possible changes to your file. For example, a bulleted list in the Standard Worksheet will not be displayed with bullets in the Classic Worksheet. Many of the graphical features in this manual, especially those in this chapter, are not available in the Classic Worksheet interface.

If you are creating documents for distribution, refer to the ?Compatibility help page.

\section*{8 Maple Expressions}

This chapter provides basic information on using Maple expressions, including an overview of the basic data structures. Many of the commands described in this chapter are useful for programming. For information on additional Maple programming concepts, such as looping, conditional execution, and procedures, see Basic Programming (page 369).

\subsection*{8.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Creating and Using Data Structures (page 337) How to define and use basic data structures & \begin{tabular}{l}
- Expression Sequences \\
- Sets \\
- Lists \\
- Tables \\
- Arrays \\
- Matrices and Vectors \\
- Functional Operators \\
- Strings
\end{tabular} \\
\hline Working with Maple Expressions (page 348)- Tools for manipulating and controlling the evaluation of expressions & \begin{tabular}{l}
- Low-Level Operations \\
- Manipulating Expressions \\
- Evaluating Expressions
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.2 Creating and Using Data Structures}

Constants, data structures, mathematical expressions, and other objects are Maple expressions. For more information on expressions, refer to the Maple Help System.

This section describes the key data structures:
- Expression sequences
- Sets
- Lists
- Tables
- Arrays
- Matrices and Vectors
- Functional operators
- Strings

\section*{Expression Sequences}

The fundamental Maple data structure is the expression sequence. It is a group of expressions separated by commas.
\(>S:=2, y, \sin \left(x^{2}\right), I\) :

\section*{Accessing Elements}

To access one of the expressions:
- Enter the sequence name followed by the position of the expression enclosed in brackets([ ]).

For example:
\(>S[2]\)

\section*{\(y\)}

Using negative integers, you can select an expression from the end of a sequence.
\(>S[-2]\)
\[
\sin \left(x^{2}\right)
\]

You can select multiple expressions by specifying a range using the range operator (..).
\(>S[2 . .-2]\)
\[
y, \sin \left(x^{2}\right)
\]

Note: This syntax is valid for most data structures.

\section*{Sets}

A set is an expression sequence enclosed in curly braces ( \(\}\) ).
\(>\left\{4,12 i, \sin \left(\frac{2}{3}\right)\right\}\) :
A Maple set has the basic properties of a mathematical set.
- Each element is unique. Repeated elements are stored only once.
- The order of elements is not stored.

For example:
\(>\{c, a, a, a, b, c, a\}\)
\[
\{a, b, c\}
\]

\section*{Using Sets}

To perform mathematical set operations, use the set data structure.
\(>\{2,6,5,1\} \cup\{2,8,6,7\}\)
\[
\{1,2,5,6,7,8\}
\]

Note: The union operator is available in 1-D Math input as union. For more information, refer to the ?union help page.

For more information on sets, refer to the ?set help page.

\section*{Lists}

A list is an expression sequence enclosed in brackets ([ ]).
\(>L:=[2,3,3,1,0]\)
\[
L:=[2,3,3,1,0]
\]

Note: Lists preserve both the order and repetition of elements.

\section*{Accessing Entries}

To refer to an element in a list:
- Use square brackets.

For example:
\(>L[-2 . .-1]\)
\[
[1,0]
\]

For more information, see Accessing Elements (page 338).

\section*{Using Lists}

Some commands accept a list (or set) of expressions.

For example, you can solve a list (or set) of equations using a context menu or the solve command.
\[
\begin{aligned}
& >\operatorname{solve}\left(\left[x-y^{2}=-2, x+y=0\right]\right) \\
& \qquad\{x=2, y=-2\},\{x=-1, y=1\}
\end{aligned}
\]

For more information, see Solving Equations and Inequations (page 112).
For more information on sets and lists, refer to the ?set help page.

\section*{Arrays}

Conceptually, the Array data structure is a generalized list. Each element has an index that you can use to access it.

The two important differences are:
- The indices can be any integers.
- The dimension can be greater than one.

\section*{Creating and Using Arrays}

To define an Array, use the Array constructor.
Standard Array constructor arguments are:
- Expression sequences of ranges - Specify the indices for each dimension
- Nested lists - Specify the contents

For example:
\(>a:=\operatorname{Array}(1 . .3,1 . .3,[[1,2,3],[4,5,6],[7,8,9]])\)
\[
a:=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
\]
\[
\begin{aligned}
>b & :=\operatorname{Array}(1 . .2,2 . .5,[[1.2,4.9,6.3,7.1],[9.2,5.5,2.4,1.7]]) \\
b:= & \text { Array }(1.2,2 . .5,\{(1,2)=1.2,(1,3)=4.9,(1,4)=6.3,(1,5)=7.1,(2,2)=9.2,(2,3)=5.5, \\
& (2,4)=2.4,(2,5)=1.7\}, \text { datatype }=\text { anything, storage }=\text { rectangular, order }=\text { Fortran_order })
\end{aligned}
\]

To access entries in an Array, use either square bracket or round bracket notation.

Square bracket notation respects the actual index of an Array, even when the index does not start at 1 .
\(>a[1,1]\)
1
\(>a[2,3]\)
6
\(>b[2,3]\)
5.5
\(>b[1,1]\)
Error, Array index out of range
Round bracket indexing normalizes the dimensions to begin at 1 . Since this method is relative, you can access the end of the array by entering -1 .
\(>a(-1,2)\)
8
\(>b(1,1)\)
1.2

The Array constructor supports other syntaxes. It also supports many options. For more information on the Array constructor and the Array data structure, refer to the ?Array help page. For more information on indexing methods, refer to the ?rtable_indexing help page.

\section*{Large Arrays}

Only one- and two-dimensional Arrays (with at most 10 indices in each dimension) display in the document. Larger Arrays display as a placeholder.
\(>\operatorname{Array}(0 . .100)\)
\(\left[\begin{array}{c}0 . .100 \text { Array } \\ \text { Data Type: anything } \\ \text { Storage: rectangular } \\ \text { Order: Fortran_order }\end{array}\right]\)

\section*{To view large Arrays:}
- Double-click the placeholder.

The Matrix Browser displays the Array. For more information, see Viewing Large Matrices and Vectors (page 162).

\section*{Tables}

Tables are conceptually an extension of the Array data structure, but the table data structure is implemented using hash tables. Tables can be indexed by any values, not only integers.

\section*{Defining Tables and Accessing Entries}
\(>\) Greek \(:=\operatorname{table}([a=\alpha, b=\beta, c=\gamma]):\)
> Greek[b]

\section*{\(\beta\)}

You can also assign anything, for example, a list, to each element.
\(>\) Translation \(:=\) table \(([\) one \(=[\) un, uno \(]\), two \(=[\) deux, dos \(]\), three \(=[\) trois, tres \(]]):\)
> Translation[two]
\[
[d e u x, d o s]
\]

For more information on tables, refer to the ?table help page.

\section*{Matrices and Vectors}

Matrices and Vectors are specialized data structures used in linear algebra and vector calculus computations.
\(>M:=\left[\begin{array}{ll}12 & 33 \\ 83 & 12\end{array}\right]: v:=<2,14>:\)
For information on defining Matrices and Vectors, see Creating Matrices and Vectors (page 159).
> M.v
\[
\left[\begin{array}{l}
486 \\
334
\end{array}\right]
\]
\(>v^{\% T} \cdot M\)
\(\left[\begin{array}{ll}1186 & 234\end{array}\right]\)
\(>M^{-1}\)
\[
\left[\begin{array}{cc}
-\frac{4}{865} & \frac{11}{865} \\
\frac{83}{2595} & -\frac{4}{865}
\end{array}\right]
\]

For more information on these data structures, including how to access entries and perform linear algebra computations, see Linear Algebra (page 159).

\section*{Functional Operators}

A functional operator is a mapping \(f: x \rightarrow y(x)\). The value of \(f(x)\) is the result of evaluating \(y(x)\).

Using functional operators, you can define mathematical functions.

\section*{Defining a Function}

To define a function of one or two variables:
1. In the Expression palette, click one of the function definition items. See Figure 8.1. Maple inserts the function definition.
2. Replace the placeholders, using Tab to move to the next placeholder. Note: If pressing the Tab key indents the text, click the Tab icon \(\overrightarrow{n^{-2}}\) in the toolbar. This allows you to move between placeholders.

\section*{3. Press Enter.}
\[
\begin{gathered}
f:=a \rightarrow y \\
f:=(a, b) \rightarrow z
\end{gathered}
\]

Figure 8.1: Function Definition Palette Items
For example, define a function that adds 1 to its input.
\(>\) addl \(:=x \rightarrow x+1\) :
Note: To insert the right arrow, you can enter the characters ->. In 2-D Math, Maple replaces \(->\) with the right arrow symbol \(\rightarrow\). In 1-D Math, the characters are not replaced.

You can evaluate the function add1 with symbolic or numeric arguments.
```

$>\operatorname{addl}(12) ; \operatorname{addl}(x+y)$

```
\[
x+y+1
\]

\section*{Distinction between Functional Operators and Other Expressions}

The expression \(x+1\) is different from the functional operator \(x \rightarrow x+1\).
Assign the functional operator \(x \rightarrow x+1\) to \(f\).
\(>f:=x \rightarrow x+1:\)

Assign the expression \(x+1\) to \(g\).
\(>g:=x+1\) :
To evaluate the functional operator \(f\) at a value of \(x\) :
- Specify the value as an argument to \(f\).
\(>f(22)\)

To evaluate the expression \(g\) at a value of x :
- You must use the eval command.
\(>g(22)\)
\[
x(22)+1
\]
\(>\operatorname{eval}(g, x=22)\)

For more information on the eval command, and on using palettes and context menus to evaluate an expression at a point, see Substituting a Value for a Subexpression (page 359).

\section*{Multivariate and Vector Functions}

To define a multivariate or vector function:
- Enclose coordinates or coordinate functions in parentheses (()).

For example, a multivariate function:
\[
\begin{aligned}
& >f:=(x, y) \rightarrow \frac{x^{3}}{y^{2}+1}: \\
& >f(0,0) ; f(-2.1,1.9)
\end{aligned}
\]

A vector function:
\(>g:=t \rightarrow(\sin (t), \cos (t), t):\)
\(>g(0) ; g\left(\frac{\pi}{2}\right)\)
\[
\begin{gathered}
0,1,0 \\
1,0, \frac{1}{2} \pi
\end{gathered}
\]

\section*{Using Operators}

To perform an operation on a functional operator, specify arguments to the operator. For example, for the operator \(f\), specify \(f(x)\), which Maple evaluates as an expression. See the following examples.

\section*{Plotting:}

Plot a three-dimensional operator as an expression using the plot3d command.
\(>h:=(x, y) \rightarrow x^{2} \cos (y):\)
\(>\operatorname{plot} 3 d(h(x, y), x=-2 . .2, y=-2 \pi .2 \pi)\)


For information on plotting, see Plots and Animations (page 237).

\section*{Integration:}

Integrate a function using the int command.
\(>k:=x \rightarrow \sin (\cos (x) \pi):\)
\(>\operatorname{int}\left(k(t), t=0 . . \frac{\pi}{2}\right)\)
\[
\frac{1}{2} \pi \operatorname{StruveH}(0, \pi)
\]

For information on integration and other calculus operations, see Calculus (page 175).

\section*{Strings}

A string is a sequence of characters enclosed in double quotes (" ").
\(>S:=\) "This is a sequence of characters." :

\section*{Accessing Characters}

You can access characters in a string using brackets.
```

> S[11..-2]

```

> "sequence of characters"

\section*{Using Strings}

The StringTools package is an advanced set of tools for manipulating and using strings.
\(>\) with(StringTools):
> Random(9, 'alnum')

> "8dvpw7bJm"
> Stem("impressive")

> "impress"
> Split( "Create a list of strings from the words in a string")
["Create", "a", "list", "of", "strings", "from", "the", "words", "in", "a", "string"]

\subsection*{8.3 Working with Maple Expressions}

This section describes how to manipulate expressions using commands. Topics covered include testing the expression type, accessing operands of an expression, and evaluating an expression.

\section*{Low-Level Operations}

\section*{Expression Types}

A Maple type is a broad class of expressions that share common properties. Maple contains over 200 types, including:
- `+`
- boolean
- constant
- integer
- Matrix
- trig
- truefalse

For more information and a complete list of Maple types, refer to the ?type help page.
The type commands return true if the expression satisfies the type check. Otherwise, they return false.

\section*{Testing the Type of an Expression}

To test whether an expression is of a specified type:
- Use the type command.
> type( \(\sin (x)\), 'trig')
\(>\operatorname{type}(\sin (x)+\cos (x)\), 'trig' \()\)
false

For information on enclosing keywords in right single quotes ('), see Delaying Evaluation (page 366).

Maple types are not mutually exclusive. An expression can be of more than one type.
```

> type(3,'constant')

```
true
> type(3,'integer')
true

For information on converting an expression to a different type, see Converting (page 356).

\section*{Testing the Type of Subexpressions}

To test whether an expression has a subexpression of a specified type:
- Use the hastype command.
\(>\) hastype \((\sin (x)+\cos (x)\), 'trig' \()\)
true

\section*{Testing for a Subexpression}

To test whether an expression contains an instance of a specified subexpression:
- Use the has command.
\[
\begin{array}{lr}
>\operatorname{has}(\sin (x+y), x) & \\
& \text { true } \\
>\operatorname{has}(\sin (x+y), x+y) & \\
>\operatorname{true} \\
& \\
& \text { false }(\sin (x+y), \sin (x))
\end{array}
\]

The has command searches the structure of the expression for an exactly matching subexpression.

For example, the following calling sequence returns false.
\(>\operatorname{has}(x+y+z, x+z)\)
false

To return all subexpressions of a particular type, use the indets command. For more information, see Indeterminates (page 352).

\section*{Accessing Expression Components}

\section*{Left and Right-Hand Side}

To extract the left-hand side of an equation, inequality, or range:
- Use the lhs command.

To extract the right-hand side of an equation, inequality, or range:
- Use the rhs command.

For example:
\(>y=x+1\)
\[
\begin{equation*}
y=x+1 \tag{8.1}
\end{equation*}
\]
\(>\operatorname{lhs}(\) (8.1) \()\)
\[
\begin{equation*}
y \tag{8.2}
\end{equation*}
\]
\(>\operatorname{rhs}(\) (8.1))
\[
\begin{equation*}
x+1 \tag{8.3}
\end{equation*}
\]

For the following equation, the left endpoint of the range is the left-hand side of the righthand side of the equation.
\(>x=3 . .5\)
\[
\begin{equation*}
x=3 . .5 \tag{8.4}
\end{equation*}
\]
\(>\operatorname{lhs}(r h s((8.4)))\)
\[
\begin{equation*}
3 \tag{8.5}
\end{equation*}
\]

\section*{Numerator and Denominator}

\section*{To extract the numerator of an expression:}
- Use the numer command.

\section*{To extract the denominator of an expression:}
- Use the denom command.
\(>e:=\frac{1+\sin (x)^{3}-\frac{y}{x}}{y^{2}-1+x}\).
If the expression is not in normal form, Maple normalizes the expression before selecting the numerator or denominator. (For more information on normal form, refer to the ?normal help page.)
```

$>\operatorname{numer}(e)$

$$
x+\sin (x)^{3} x-y
$$

$>\operatorname{denom}(e)$

$$
x\left(y^{2}-1+x\right)
$$

$>\operatorname{denom}(\operatorname{denom}(e))$

```

1

The expression can be any algebraic expression. For information on the behavior for nonrational expressions, refer to the ?numer help page.

\section*{Components of an Expression}

The components of an expression are called its operands.
To count the number of operands in an expression:
- Use the nops command.

For example, construct a list of solutions to an equation.
\(>\) solutions \(:=\left[\operatorname{solve}\left(6 x^{3}-x^{2}+7, x\right)\right]\)
\[
\text { solutions }:=\left[-1, \frac{7}{12}-\frac{1}{12} \mathrm{I} \sqrt{119}, \frac{7}{12}+\frac{1}{12} \mathrm{I} \sqrt{119}\right]
\]

Using the nops command, count the number of solutions.
> nops(solutions)
3

For more information on the nops command and operands, refer to the ?nops help page.

\section*{Indeterminates}

\section*{To find the indeterminates of an expression:}
- Use the indets command.

The indets command returns the indeterminates as a set. Because the expression is expected to be rational, functions such as \(\sin (\mathrm{x}), \mathrm{f}(\mathrm{x})\), and \(\operatorname{sqrt}(\mathrm{x})\) are considered to be indeterminate.
\[
\begin{aligned}
& >\operatorname{indets}\left((3+\pi) x^{2} \sin (\sqrt{1+y})\right) \\
& \qquad\{x, y, \sqrt{1+y}, \sin (\sqrt{1+y})\}
\end{aligned}
\]

To return all subexpressions of a particular type, specify the type as the second argument. For information on types, see Testing the Type of an Expression (page 348).
\[
>\operatorname{indets}\left((3+\pi) x^{2} \sin (\sqrt{1+y}), \text { 'radical }\right)
\]
\[
\{\sqrt{1+y}\}
\]

To test whether an expressions has subexpressions of a specific type (without returning them), use the has command. For more information, see Testing for a Subexpression (page 349).

\section*{Manipulating Expressions}

This section introduces the most commonly used manipulation commands. For additional manipulation commands, see Iterative Commands (page 380).

\section*{Simplifying}

\section*{To simplify an expression:}
- Use the simplify command.

The simplify command applies simplification rules to an expression. Maple has simplification rules for various types of expressions and forms, including trigonometric functions, radicals, logarithmic functions, exponential functions, powers, and various special functions. You can also specify custom simplification rules using a set of side relations.
\(>\) simplify \(\left(5+32-8^{\left(\frac{1}{3}\right)}\right)\)
\(>\operatorname{simplify}\left(\sin (x)^{2}+\ln (2 y)+\cos (x)^{2}\right)\)
\[
1+\ln (2)+\ln (y)
\]

To limit the simplification, specify the type of simplification to be performed.
\[
\begin{aligned}
& >\operatorname{simplify}\left(\sin (x)^{2}+\ln (2 y)+\cos (x)^{2},{ }^{\prime} \text { trig' }\right) \\
& \qquad 1+\ln (2 y) \\
& >\operatorname{simplify}\left(\sin (x)^{2}+\ln (2 y)+\cos (x)^{2},{ }^{\prime} \ln '\right) \\
& \qquad \sin (x)^{2}+\ln (2)+\ln (y)+\cos (x)^{2}
\end{aligned}
\]

You can also use the simplify command with side relations. See Substituting a Value for a Subexpression (page 359).

\section*{Factoring}

\section*{To factor a polynomial:}
- Use the factor command.
\[
\begin{aligned}
& >\operatorname{factor}\left(x^{6}-x^{5}-9 x^{4}+x^{3}+20 x^{2}+12 x\right) \\
& \qquad x(x-2)(x-3)(x+2)(x+1)^{2} \\
& >\operatorname{factor}\left(x^{3} y+x^{2} y^{2}-3 x^{3}-x^{2} y+2 x y^{2}-6 x^{2}-5 x y+y^{2}-3 x-3 y\right) \\
& \qquad(y-3)(x+1)^{2}(x+y)
\end{aligned}
\]

Maple can factor polynomials over the domain specified by the coefficients. You can also factor polynomials over algebraic extensions. For details, refer to the ?factor help page.

For more information on polynomials, see Polynomial Algebra (page 150).

\section*{To factor an integer:}
- Use the ifactor command.
> ifactor(196911)
\[
(3)^{4}(11)(13)(17)
\]

For more information on integers, see Integer Operations (page 106).

\section*{Expanding}

To expand an expression:
- Use the expand command.

The expand command distributes products over sums and expands expressions within functions.
\[
\begin{aligned}
& >\operatorname{expand}\left((y-3)(x+1)^{2}(x+y)\right) \\
& \qquad y x^{3}+y^{2} x^{2}-y x^{2}+2 y^{2} x-5 y x+y^{2}-3 x^{3}-6 x^{2}-3 x-3 y \\
& >\operatorname{expand}(\sin (x+y)) \\
& \qquad \sin (x) \cos (y)+\cos (x) \sin (y)
\end{aligned}
\]

\section*{Combining}

\section*{To combine subexpressions in an expression:}
- Use the combine command.

The combine command applies transformations that combine terms in sums, products, and powers into a single term.
```

$>$ combine $(\sin (x) \cos (y)+\cos (x) \sin (y))$

```
\[
\sin (x+y)
\]

Recall that \(a\) was previously assigned to represent a two-dimensional array (see Creating and Using Arrays (page 340)).
\(>\) combine \(\left(\left(x^{a}\right)^{2} x\right)\)
\[
\left[\begin{array}{ccc}
x^{3} & x^{5} & x^{7} \\
x^{9} & x^{11} & x^{13} \\
x^{15} & x^{17} & x^{19}
\end{array}\right]
\]

The combine command applies only transformations that are valid for all possible values of names in the expression.
\(>\operatorname{combine}(4 \ln (x)-\ln (y))\)
\[
4 \ln (x)-\ln y
\]

To perform the operation under assumptions on the names, use the assuming command. For more information about assumptions, see Assumptions on Variables (page 144).
```

$>$ combine $(4 \ln (x)-\ln (y))$ assuming $x>0, y>0$

```
\[
\ln \left(\frac{x^{4}}{y}\right)
\]

\section*{Converting}

\section*{To convert an expression:}
- Use the convert command.

The convert command converts expressions to a new form, type (see Expression Types (page 348), or in terms of a function. For a complete list of conversions, refer to the ?convert help page.

Convert a measurement in radians to degrees:
\(>\operatorname{convert}(\pi\), 'degrees')
\[
180 \text { degrees }
\]

To convert measurements that use units, use the Unit Converter or the convert/units command.
```

> convert(450.2\llbracketkg\rrbracket,'units',lb)

```
\[
992.5211043 \llbracket l b \rrbracket
\]

For information on the Unit Converter and using units, see Units (page 128).
Convert a list to a set:
\[
\begin{aligned}
& >\text { convert }([a, b, c, d], \text { 'set } ') \\
& \left\{c, d,\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \text { Array }(1.2,2.5,\{(1,2)=1.2,(1,3)=4.9,(1,4)=6.3,(1,5)=7.1,(2,2)=9.2,\right. \\
& \quad(2,3)=5.5,(2,4)=2.4,(2,5)=1.7\}, \text { datatype }=\text { anything, storage }=\text { rectangular, order } \\
& \quad=\text { Fortran_order })\}
\end{aligned}
\]

Maple has extensive support for converting mathematical expressions to a new function or function class.
```

>convert(}\operatorname{cos}(x),\operatorname{exp}

```
\[
\frac{1}{2} \mathrm{e}^{\mathrm{I} x}+\frac{1}{2} \mathrm{e}^{-\mathrm{I} x}
\]

Find an expression equivalent to the inverse hyperbolic cotangent function in terms of Legendre functions.
\(>\) convert \((\operatorname{arccoth}(z)\), Legendre \()\)
\[
\text { LegendreQ }\left(0, \frac{1}{z}\right)+\frac{1}{2} \frac{\pi \sqrt{-(z-1)^{2}}}{z-1}
\]

For more information on converting to a class of functions, refer to the ?convert/to_special_function help page.

\section*{Normalizing}

\section*{To normalize an expression:}
- Use the normal command.

The normal command converts expressions into factored normal form.
\(>\operatorname{normal}\left(\frac{x^{2}-y^{2}}{(x-y)^{3}}\right)\)
\[
\frac{x+y}{(x-y)^{2}}
\]

You can also use the normal command for zero recognition.
\(>\operatorname{normal}\left(x^{3}+1-(x+1)^{3}+3 x(1+x)\right)\)

0

To expand the numerator and denominator, use the expanded option.
\(>\operatorname{normal}\left(\frac{x^{2}-y^{2}}{(x-y)^{3}}\right.\), 'expanded \()\)
\[
\frac{x+y}{x^{2}-2 x y+y^{2}}
\]
\(>\operatorname{normal}\left(\sin \left(1+\frac{1}{x}\right)\right)\)
\[
\sin \left(\frac{x+1}{x}\right)
\]

\section*{Sorting}

\section*{To sort the elements of an expression:}
- Use the sort command.

The sort command orders a list of values or terms of a polynomial.
\[
\begin{aligned}
& >\operatorname{sort}([4,3,2.1,-4,43,0]) \\
& \qquad \quad[-4,0,2.1,3,4,43] \\
& >\operatorname{sort}\left(x+4 x^{5}-7 x^{2}+1+9 x^{4}-5 x^{3}\right) \\
& \qquad 4 x^{5}+9 x^{4}-5 x^{3}-7 x^{2}+x+1 \\
& >\operatorname{sort}\left(x y-6 y^{2} x+2 y^{3}+5 x-1\right) \\
& \quad-6 x y^{2}+2 y^{3}+x y+5 x-1
\end{aligned}
\]

For information on sorting polynomials, see Sorting Terms (page 152).
For more information on sorting, refer to the ?sort help page.

\section*{Evaluating Expressions}

\section*{Substituting a Value for a Subexpression}

To evaluate an expression at a point, you must substitute a value for a variable.
To substitute a value for a variable using context menus:
1. Right-click (Control-click, for Macintosh) the expression. Maple displays a context menu.
2. From the context menu, select Evaluate at a Point. The Evaluate at a Point dialog is displayed. See Figure 8.2.


Figure 8.2: Evaluate at a Point
3. In the drop-down list, select the variable to substitute.
4. In the text field, enter the value to substitute for the variable. Click OK.

In Worksheet mode, Maple inserts the eval command calling sequence that performs the substitution. This is the most common use of the eval command.

For example, substitute \(x=3\) in the following polynomial.
\(>x^{3}+4 x^{2}-7 x+2\)
\[
\begin{aligned}
& x^{3}+4 x^{2}-7 x+2 \\
& >\operatorname{eval}\left(x^{3}+4 x^{2}-7 x+2,[x=3]\right)
\end{aligned}
\]

\section*{To substitute a value for a variable using palettes:}
1. In the Expression palette, click the evaluation at a point item \(|f(x)|_{x=a}\).
2. Specify the expression, variable, and value to be substituted.

For example:
\(>\left.\sqrt{x^{2}-x-3}\right|_{x=5}\)
\[
\sqrt{17}
\]

Substitutions performed by the eval function are syntactical, not the more powerful algebraic form of substitution.

If the left-hand side of the substitution is a name, Maple performs the substitution.
\(>\operatorname{eval}\left(\cos (a b c), a=\frac{\pi}{6}\right)\)
\[
\cos \left(\frac{1}{6} \pi b c\right)
\]

If the left-hand side of the substitution is not a name, Maple performs the substitution only if the left-hand side of the substitution is an operand of the expression.
\[
\begin{aligned}
& >\operatorname{eval}\left(\cos (a b), a b=\frac{\pi}{6}\right) \\
& \frac{1}{2} \sqrt{3} \\
& >\operatorname{eval}\left(\cos (a b c), a b=\frac{\pi}{6}\right) \\
& \cos (a b c)
\end{aligned}
\]

Maple did not perform the evaluation because \(a b\) is not an operand of \(\cos (a b c)\). For information on operands, refer to the ?op help page.

For algebraic substitution, use the algsubs command, or the simplify command with side relations.
\[
\begin{aligned}
& >\operatorname{algsubs}\left(a b=\frac{\pi}{6}, \cos (a b c)\right) \\
& \qquad \cos \left(\frac{1}{6} c \pi\right) \\
& >\operatorname{simplify}\left(\cos (a b c),\left\{a b=\frac{\pi}{6}\right\}\right) \\
& \cos \left(\frac{1}{6} c \pi\right)
\end{aligned}
\]

\section*{Numerical Approximation}

\section*{To compute an approximate numerical value of an expression:}
- Use the evalf command.

The evalf command returns a floating-point (or complex floating-point) number or expression.
\(>\operatorname{evalf}\left(\cos \left(\frac{\pi}{6}\right)\right)\)
0.8660254040
\(>\operatorname{evalf}\left(\frac{17}{\sqrt{3}} x^{2}+x-\mathrm{e}^{\pi}\right)\)
\[
9.814954579 x^{2}+x-23.14069264
\]
\(>\operatorname{evalf}(\pi)\)
\[
3.141592654
\]

By default, Maple calculates the result to ten digits of accuracy, but you can specify any number of digits as an index, that is, in brackets ([ ]).
\(>\operatorname{evalf}[40](\pi)\)
\[
3.141592653589793238462643383279502884197
\]

For more information, refer to the ?evalf help page.

See also Numerically Computing a Limit (page 176) and Numeric Integration (page 185).

\section*{Evaluating Complex Expressions}

To evaluate a complex expression:
- Use the evalc command.

If possible, the evalc command returns the output in the canonical form expr1 +iexpr2.
In 2-D Math input, you can enter the imaginary unit using the following two methods.
- In the Common Symbols palette, click the \(\mathbf{i}\) or \(\mathbf{j} \mathbf{j}\) item. See Palettes (page 22).
- Enter \(i\) or \(j\), and then press the symbol completion key. See Symbol Names (page 29).
\(>\operatorname{evalc}(\sqrt{1+\mathrm{i}})\)
\[
\frac{1}{2} \sqrt{2+2 \sqrt{2}}+\frac{1}{2} \mathrm{I} \sqrt{-2+2 \sqrt{2}}
\]
\(>\operatorname{evalc}(\sin (3+5 \mathrm{j}))\)
\[
\sin (3) \cosh (5)+I \cos (3) \sinh (5)
\]

In 1-D Math input, enter the imaginary unit as an uppercase \(\mathrm{i}(\mathbf{I})\).
```

> evalc(2^(1 + I));

```
\[
2 \cos (\ln (2))+2 I \sin (\ln (2))
\]

\section*{Evaluating Boolean Expressions}

To evaluate an expression involving relational operators \((=, \neq,>,<, \leq\), and \(\geq\) ):
- Use the evalb command.

Note: In 1-D Math input, enter \(\neq, \leq\), and \(\geq\) using the \(<>,<=\), and \(>=\) operators.
The evalb command uses a three-valued logic system. The return values are true, false, and FAIL. If evaluation is not possible, an unevaluated expression is returned.
\(>\operatorname{evalb}(x=x)\)
true
\(>\operatorname{evalb}(x=y)\)

> false
\[
>\operatorname{evalb}(3+2 I<2+3 I)
\]

\section*{FAIL}

Important: The evalb command does not perform arithmetic for inequalities involving
\(<, \leq,>\), or \(\geq\), and does not simplify expressions. Ensure that you perform these operations before using the evalb command.
\(>\operatorname{evalb}(\Re(x)<\Re(x+1))\)
\[
\Re(x)<1+\Re(x)
\]
\(>\operatorname{evalb}(\Re(x)-\Re(x+1)<0)\)

> true

\section*{Applying an Operation or Function to All Elements in a List, Set, Table, Array, Matrix, or Vector}

You can use the tilde character \((\sim)\) to apply an operation or function to all of the elements in a list, set, table, Array, Matrix, or Vector.

In the following example, each element in the Matrix \(M\) is multiplied by 2 by adding a tilde character after the multiplication operator( \(\cdot\) ).
\(>M:=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\)
\[
M:=\left[\begin{array}{lll}
1 & 2 & 3  \tag{8.6}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
\]
\(>M \cdot \sim 2\)
\[
\left[\begin{array}{rrr}
2 & 4 & 6  \tag{8.7}\\
8 & 10 & 12 \\
14 & 16 & 18
\end{array}\right]
\]

In the following example, the function sin is applied to each element in the Matrix \(M\).
\(>\sin \sim(M)\)
\[
\left[\begin{array}{lll}
\sin (1) & \sin (2) & \sin (3)  \tag{8.8}\\
\sin (4) & \sin (5) & \sin (6) \\
\sin (7) & \sin (8) & \sin (9)
\end{array}\right]
\]

The tilde character can also be used to apply a function to multiple data sets, for example,
\[
>\operatorname{diff} \sim\left(z \cdot x^{2}+x \cdot y^{2},[x, x, y, y, z, z],[y, z, x, z, x, y]\right)
\]
\[
\begin{equation*}
[2 y, 2 x, 2 y, 0,2 x, 0] \tag{8.9}
\end{equation*}
\]

You can use values in one data structure type to compute values in another data structure type, as long as both data structures are dimensional and contain the same number of elements. In the following example, the values in an Array are compared to the values in a Matrix that contains the same number of elements.
\(>[12,88,20]>\sim\langle 3,100,25\rangle\)
\[
\left.\begin{array}{c}
3<12 \\
100<88  \tag{8.10}\\
25<20
\end{array}\right]
\]

For more information, refer to the ?elementwise help page.

\section*{Levels of Evaluation}

In a symbolic mathematics program such as Maple, you encounter the issue of levels of evaluation. If you assign \(\mathbf{y}\) to \(\mathbf{x}, \mathbf{z}\) to \(\mathbf{y}\), and then 5 to \(\mathbf{z}\), what is the value of \(\mathbf{x}\) ?

At the top-level, Maple fully evaluates names. That is, Maple checks if the name or symbol has an assigned value. If it has a value, Maple substitutes the value for the name. If this value has an assigned value, Maple performs a substitution, recursively, until no more substitutions are possible.

For example:
\(>x:=y\) :
> \(y:=z\).
\(>z:=5\) :
Maple fully evaluates the name \(\mathbf{x}\), and returns the value 5 .
\(>x\)
5

\section*{To control the level of evaluation of an expression:}
- Use the eval command with an integer second argument.

If passed a single argument, the eval command fully evaluates that expression. If you specify an integer second argument, Maple evaluates the expression to that level.
```

>eval(x)

```
```

>eval(x,1)

```
    \(y\)
\(>\operatorname{eval}(x, 2)\)
\(z\)
\(>\operatorname{eval}(x, 3)\)

5

For more details on levels of evaluation, refer to the ?lastnameevaluation, ?assigned, and ?evaln help pages.

\section*{Delaying Evaluation}

\section*{To prevent Maple from immediately evaluating an expression:}
- Enclose the expression in right single quotes (' ' ).

Because right single quotes delay evaluation, they are referred to as unevaluation quotes.
\(>i:=4\) :
\(>i\)
\(>{ }^{\prime} i^{\prime}\)
\(i\)

\section*{Using an Assigned Name as a Variable or Keyword}

If you use an assigned name as a variable, Maple evaluates the name to its value, and passes the value to the command. In this example, that causes Maple to return an error message.
\[
\begin{aligned}
& >\sum_{i=1}^{n} i^{2} \\
& \text { Error, (in sum) summation variable previously assigned, second argument } \\
& \text { evaluates to } 4=1 \ldots n
\end{aligned}
\]

Note: In general, it is recommended that you unassign a name to use it as a variable. See Unassigning a Name Using Unevaluation Quotes (page 368).

\section*{To use an assigned name as a variable:}
- Enclose the name in unevaluation quotes. Maple passes the name to the command.
\(>\sum_{i^{\prime}=1}^{n}{ }^{\prime} i^{\prime}{ }^{2}\)
\[
\frac{1}{3}(n+1)^{3}-\frac{1}{2}(n+1)^{2}+\frac{1}{6} n+\frac{1}{6}
\]

Important: It is recommended that you enclose keywords in unevaluation quotes.
For example, if you enclose the keyword left in unevaluation quotes, Maple uses the name, not its assigned value.
\(>\) left \(:=3\) :
\(>\operatorname{limit}\left(\frac{1}{x}, x=0, '\right.\) left' \()\)
\[
-\infty
\]

\section*{Full Evaluation of an Expression in Quotes}

Full evaluation of a quoted expression removes one set of right single quotes.
```

> i:=4:

```
```

> ' 'i' + 1'

```
\[
\begin{equation*}
' i '+1 \tag{8.11}
\end{equation*}
\]
\(>\) (8.11)
\[
\begin{equation*}
i+1 \tag{8.12}
\end{equation*}
\]
\(>\) (8.12)
\[
\begin{equation*}
5 \tag{8.13}
\end{equation*}
\]

For information on equation labels and equation label references, see Equation Labels (page 97).

Enclosing an expression in unevaluation quotes delays evaluation, but does not prevent automatic simplification.
\(>{ }^{\prime} q-i+3 q^{\prime}\)
\[
\begin{equation*}
4 q-i \tag{8.14}
\end{equation*}
\]

\section*{Unassigning a Name Using Unevaluation Quotes}

\section*{To unassign a name:}
- Assign the name enclosed in unevaluation quotes to itself.
\(>i={ }^{\prime} i^{\prime}\) :
\(>i\)
i

You can also unassign a name using the unassign command. For more information, see Unassigning Names (page 95).

\section*{9 Basic Programming}

You have used Maple interactively in the previous chapters, sequentially performing operations such as executing a single command. Because Maple has a complete programming language, you can also use sophisticated programming constructs.

In Maple, you can write programs called procedures, and save them in modules. These modules can be used and distributed in the same way as Maple packages.

Important: It is strongly recommended that you use the Worksheet mode and 1-D Math input when programming or using programming commands. Hence, all input in this chapter is entered as 1-D Math.

\subsection*{9.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Flow Control (page 370) - Basic programming constructs & \begin{tabular}{l}
- Conditional Execution (if Statement) \\
- Repetition (for Statement)
\end{tabular} \\
\hline Iterative Commands (page 380) - Specialized, efficient iterative commands & \begin{tabular}{l}
- Creating a sequence \\
- Adding and Multiplying Expressions \\
- Selecting Expression Operands \\
- Mapping a Command over a Set or List \\
- Mapping a Binary Command over Two Lists or Vectors
\end{tabular} \\
\hline Procedures (page 383) - Maple programs & \begin{tabular}{l}
- Defining and Running Simple Procedures \\
- Procedures with Inputs \\
- Procedure Return Values \\
- Displaying Procedure Definitions \\
- Displaying Maple Library Procedure Definitions \\
- Modules
\end{tabular} \\
\hline Programming in Documents (page 387) - Display methods for Maple code & \begin{tabular}{l}
- Code Edit Region \\
- Startup Code \\
- Document Blocks
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.2 Flow Control}

Two basic programming constructs in Maple are the if statement, which controls the conditional execution of statement sequences, and the for statement, which controls the repeated execution of a statement sequence.

\section*{Conditional Execution (if Statement)}

You can specify that Maple perform an action only if a condition holds. You can also perform an action, from a set of many, depending on which conditions hold.

Using the if statement, you can execute one statement from a series of statements based on a boolean (true, false, or FAIL) condition. Maple tests each condition in order. When a condition is satisfied, Maple executes the corresponding statement, and then exits the if statement.

\section*{Syntax}

The if statement has the following syntax.
```

> if conditional_expressionI then
statement_sequencel
elif conditional_expression2 then
statement_sequenceZ
elif conditional_expression3 then
statement_sequence3
else
statement_sequenceN
end if;

```

The conditional expressions (conditional_expression1, conditional_expression2, ...) can be any boolean expression. You can construct boolean expressions using:
- Relational operators \(-<,<=,=,>=,>,<>\)
- Logical operators - and, or, xor, implies, not
- Logical names - true, false, FAIL

The statement sequences (statement_sequence1, statement_sequence \(2, \ldots\), statement_sequen\(c e N\) ) can be any sequence of Maple statements, including if statements.

The elif clauses are optional. You can specify any number of elif clauses.
The else clause is optional.

\section*{Simple if Statements}

The simplest if statement has only one conditional expression.
```

> if conditional_expression then
statement_sequence
end if;

```

If the conditional expression evaluates to true, the sequence of statements is executed. Otherwise, Maple immediately exits the if statement.

For example:
```

>x := 1173:
> if not isprime(x) then
ifactor(x);
end if;

```
(3) (17) (23)

\section*{else Clause}

In a simple if statement with an else clause, if the evaluation of the conditional expressions returns false or FAIL, Maple executes the statement sequence in the else clause.

For example:
```

> if false then
"if statement";
else
"else statement";
end if;

```

> "else statement"

\section*{elif Clauses}

In an if statement with elif clauses, Maple evaluates the conditional expressions in order until one returns true. Maple executes the corresponding statement sequence, and then exits the if statement. If no evaluation returns true, Maple exits the if statement.
```

> x := 11:
> if not type(x, integer) then
printf("%a is not an integer.", x);
elif x >= 10 then
printf("%a is an integer with more than one digit.", x);
elif x >= 0 then
printf("%a is an integer with one digit.", x);
end if;
1 1 is an integer with more than one digit.

```

Order of elif Clauses: An elif clause's statement sequence is executed only if the evaluation of all previous conditional expressions returns false or FAIL, and the evaluation of its conditional expression returns true. This means that changing the order of elif clauses may change the behavior of the if statement.

In the following if statement, the elif clauses are in the wrong order.
```

> if not(type(x, integer)) then
printf("%a is not an integer.", x);
elif x >= 0 then
printf("%a is an integer with one digit.", x);
elif x >= 10 then
printf("%a is an integer with more than one digit.", x);
end if;
1 1 is an integer with one digit.

```

\section*{elif and else Clauses}

In an if statement with elif and else clauses, Maple evaluates the conditional expressions in order until one returns true. Maple executes the corresponding statement sequence, and then exits the if statement. If no evaluation returns true, Maple executes the statement sequence in the else clause.
```

> x := -12:

```
```

> if not type(x, integer) then
printf("%a is not an integer.", x);
elif x >= 10 then
printf("%a is an integer with more than one digit.", x);
elif x >= 0 then
printf("%a is an integer with one digit.", x);
else
printf("%a is a negative integer.", x);
end if;
-12 is a negative integer.

```

For more information on the if statement, refer to the ?if help page.

\section*{Repetition (for Statement)}

Using repetition statements, you can repeatedly execute a statement sequence. You can repeat the statements in three ways.
- Until a counter variable value exceeds a limit (for/from loop)
- For each operand of an expression (for/in loop)
- Until a boolean condition does not hold (while loop)

\section*{for/from Loop}

The for/from loop statement repeats a statement sequence until a counter variable value exceeds a limit.

\section*{Syntax}

The for/from loop has the following syntax.
\(>\) for counter from initial by increment to final do statement_sequence
end do;

The behavior of the for/from loop is:
1. Assign the initial value to the name counter.
2. Compare the value of counter to the value of final. If the counter value exceeds the final value, exit the loop. (This is the loop bound test.)
3. Execute the statement_sequence.
4. Increment the counter value by the value of increment.
5. Repeat steps 2 to 4, until Maple exits the loop.

The from, by, and to clauses are optional and can be in any order between the for clause and the do keyword. Table 9.1 lists the default clause values.

Table 9.1: Default Clause Values
\begin{tabular}{|l|l|}
\hline Clause & Default Value \\
\hline from initial & 1 \\
\hline by increment & 1 \\
\hline to final & infinity \((\infty)\) \\
\hline
\end{tabular}

\section*{Examples}

The following loop returns the square root of the integers 1 to 5 (inclusive).
```

>for n to 5 do
evalf(sqrt(n));
end do;

```
1.
1.414213562
1.732050808
2.
2.236067977

When the value of the counter variable \(\mathbf{n}\) is strictly greater than \(\mathbf{5}\), Maple exits the loop. \(>\mathrm{n}\);

The previous loop is equivalent to the following for/from statement.
```

> for n from 1 by 1 to 5 do
evalf(sqrt(n));
end do;

```

\section*{1.}

\subsection*{1.414213562}
1.732050808
2.
2.236067977

The by value can be negative. The loop repeats until the value of the counter variable is strictly less than the final value.
```

> for n from 10 by -1 to 3 do
if isprime(n) then
print(n);
end if;
end do;

```

7
5

3
```

>n;

```

2

\section*{forlin Loop}

The for/in loop statement repeats a statement sequence for each component (operand) of an expression, for example, the elements of a list.

\section*{Syntax}

The for/in loop has the following syntax.
\(>\) for variable in expression do statement_sequence
end do;

The for clause must appear first.
The behavior of the for/in loop is:
1. Assign the first operand of expression to the name variable.
2. Execute the statement_sequence.
3. Assign the next operand of expression to variable.
4. Repeat steps 2 and 3 for each operand in expression. If there are no more operands, exit the loop. (This is the loop bound test.)

\section*{Example}

The following loop returns a floating-point approximation to the sin function at the angles (measured in degree) in the list \(\mathbf{L}\).
```

> L := [23.4, 87.2, 43.0, 99.7]:
> for i in L do
evalf(sin(i*Pi/180));
end do;

```
0.3971478907
0.9988061374
0.6819983602
0.9857034690

\section*{while Loop}

The while loop repeats a statement sequence until a boolean expression does not hold.

\section*{Syntax}

The while loop has the following syntax.
```

> while conditional_expression do
statement_sequence
end do;

```

A while loops repeats until its boolean expression conditional_expression evaluates to false or FAIL. For more information on boolean expressions, see Conditional Execution (if Statement) (page 370).

\section*{Example}

The following loop computes the digits of 872,349 in base 7 (in order of increasing significance).
```

>x := 872349:

```
```

> while x > 0 do
irem(x, 7);
x := iquo(x, 7);
end do;

```
\[
\begin{gathered}
2 \\
x:=124621 \\
0 \\
x:=17803 \\
2 \\
x:=2543 \\
2 \\
x:=363 \\
6 \\
x:=51 \\
2 \\
x:=7 \\
0 \\
x:=1 \\
1 \\
x:=0
\end{gathered}
\]

To perform such conversions efficiently, use the convert/base command.
```

> convert(872349, base, 7);

```
\[
[2,0,2,2,6,2,0,1]
\]

For information on non-base 10 numbers, see Non-Base 10 Numbers (page 108).

\section*{General Loop Statements}

You can include a while statement in a for/from or for/in loop.
The general for/from loop has the following syntax.
```

> for counter from initial by increment to final
while conditional_expression do
statement_sequence
end do;

```

The general for/in loop has the following syntax.
```

> for variable in expression
while conditional_expression do
statement_sequence
end do;

```

After testing the loop bound condition at the beginning of each iteration of the for loop, Maple evaluates conditional_expression.
- If conditional_expression evaluates to false or FAIL, Maple exits the loop.
- If conditional_expression evaluates to true, Maple executes statement_sequence.

\section*{Infinite Loops}

You can construct a loop for which there is no exit condition, for example, a while loop in which the conditional_expression always evaluates to true. This is called an infinite loop. Maple indefinitely executes an infinite loop unless it executes a break, quit, or return statement or you interrupt the computation. For more information, refer to the ?break, ?quit, ?return, and ?interrupt help pages.

\section*{Additional Information}

For more information on the for statement and looping, refer to the ?do help page.

\subsection*{9.3 Iterative Commands}

Maple has commands that perform common selection and repetition operations. These commands are more efficient than similar algorithms implemented using library commands. Table 9.2 lists the iterative commands.

Table 9.2: Iterative Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline seq & Create sequence \\
\hline add & Compute numeric sum \\
\hline mul & Compute numeric product \\
\hline select & Return operands that satisfy a condition \\
\hline remove & Return operands that do not satisfy a condition \\
\hline selectremove & \begin{tabular}{l} 
Return operands that satisfy a condition and separately return operands that \\
do not satisfy a condition
\end{tabular} \\
\hline map & Apply command to the operands of an expression \\
\hline zip & Apply binary command to the operands of two lists or vectors \\
\hline
\end{tabular}

\section*{Creating a Sequence}

The seq command creates a sequence of values by evaluating a specified expression over a range of index values or the operands of an expression. See Table 9.3.

Table 9.3: The seq Command
\begin{tabular}{|c|c|}
\hline Calling Sequence Syntax & Examples \\
\hline seq(expression, name = initial .. final); & \[
\begin{gathered}
>\operatorname{seq}(\exp (x), x=-2 \ldots 0) ; \\
\mathrm{e}^{-2}, \mathrm{e}^{-1}, 1
\end{gathered}
\] \\
\hline seq(expression, name in expression); & \[
\begin{aligned}
& >\operatorname{seq}\left(\mathrm { u } , \mathrm { u } \text { in } \left[\mathrm{Pi} / 4, \mathrm{Pi}^{\wedge} 2 / 2,\right.\right. \\
& 1 / \mathrm{Pi}]) ; \\
& \frac{1}{4} \pi, \frac{1}{2} \pi^{2}, \frac{1}{\pi}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Adding and Multiplying Expressions}

The add and mul commands add and multiply sequences of expressions over a range of index values or the operands of an expression. See Table 9.4.

Table 9.4: The add and mul Commands
\begin{tabular}{|c|c|}
\hline Calling Sequence Syntax & Examples \\
\hline \[
\begin{aligned}
& \operatorname{add}(\text { expression, } \text { name }=\text { initial } . . \text { final }) ; \\
& \text { mul }(\text { expression, } \text { name }=\text { initial } . . \text { final }) ;
\end{aligned}
\] & \[
\begin{gathered}
>\operatorname{add}(\exp (\mathrm{x}), \mathrm{x}=2 \ldots 4) ; \\
\mathrm{e}^{2}+\mathrm{e}^{3}+\mathrm{e}^{4} \\
>\operatorname{mul}(2 * \mathrm{x}, \mathrm{x}=1 \ldots 10) ; \\
3715891200
\end{gathered}
\] \\
\hline \begin{tabular}{l}
add(expression, name in expression); \\
mul(expression, name in expression);
\end{tabular} & \[
\begin{gathered}
>\text { add }(u, u \text { in }[P i / 4, \mathrm{Pi} / 2, \mathrm{Pi}]) ; \\
\frac{7}{4} \pi \\
>\operatorname{mul}(u, u \text { in }[P i / 4, \mathrm{Pi} / 2, \mathrm{Pi}]) ; \\
\frac{1}{8} \pi^{3}
\end{gathered}
\] \\
\hline
\end{tabular}

The endpoints of the index range (initial and final) in the add and mul calling sequence must evaluate to numeric constants. For information on symbolic sums and products, refer to the ?sum and ?product help pages.

\section*{Selecting Expression Operands}

The select, remove, and selectremove commands apply a boolean-valued procedure or command to the operands of an expression. For information on operands, refer to the ?op help page.
- The select command returns the operands for which the procedure or command returns true.
- The remove command returns the operands for which the procedure or command returns false or FAIL.
- The selectremove command returns two expressions of the same type as the input expression. - The first consists of the operands for which the procedure or command returns true. - The second consists of the operands for which the procedure or command returns false or FAIL.

The structure of the output is the same as the structure of the input. See Table 9.5.
For information on Maple procedures, see Procedures (page 383).
Table 9.5: The select, remove, and selectremove Commands
\begin{tabular}{|c|c|}
\hline Calling Sequence Syntax & Examples \\
\hline select(proc_cmd, expression); & ```
> select(issqr, {198331, 889249,
11751184, 9857934});
    {889249, 11751184}
``` \\
\hline remove(proc_cmd, expression); & ```
> remove (var -> degree (var) > 3, 2*x^3*y
- y^3*x + z);
```

    \(z\) \\
    \hline selectremove(proc_cmd, expression); \& ```
> selectremove (x -> evalb(x > round(x)),
[sin(0.), sin(1.), sin(3.)]);
[0.1411200081], [0., 0.8414709848]

``` \\
\hline
\end{tabular}

For information on optional arguments to the selection commands, refer to the ?select help page.

\section*{Mapping a Command over a Set or List}

The map command applies a name, procedure, or command to each element in a set or list. See Table 9.6.

Table 9.6: The map Command
\begin{tabular}{|c|c|}
\hline Calling Sequence Syntax & Examples \\
\hline \(\boldsymbol{m a p}\) (name _proc_cmd, expression); & \[
\begin{aligned}
& >\operatorname{map}(f,\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}) ; \\
& \quad\{f(a), f(b), f(c)\} \\
& >\operatorname{map}(\mathrm{u}->\operatorname{int}(\cos (\mathrm{x}), \mathrm{x}=0 \ldots \mathrm{u}), \\
& [\mathrm{Pi} / 4, \mathrm{Pi} / 7, \mathrm{Pi} / 3.0]) ; \\
& \quad\left[\frac{1}{2} \sqrt{2}, \cos \left(\frac{5}{14} \pi\right), 0.8660254038\right]
\end{aligned}
\] \\
\hline
\end{tabular}

For information on mapping over the operands of other expressions, optional arguments to the map command, and other mapping commands, refer to the ?map help page.

\section*{Mapping a Binary Command over Two Lists or Vectors}

The zip command applies a name or binary procedure or command component-wise to two lists or vectors.

By default, the length of the returned object is that of the shorter list or vector. If you specify a value as the (optional) fourth argument, it is used as the value of the missing elements of the shorter list or vector. In this case, the length of the return value is that of the longer list or vector. See Table 9.7.

Table 9.7: The zip Command
\begin{tabular}{|c|c|}
\hline Calling Sequence Syntax & Examples \\
\hline \[
\begin{aligned}
& \operatorname{zip}\left(p r o c _c m d, a, b\right) ; \\
& \operatorname{zip}\left(p r o c _c m d, a, b, \text { fill }\right) ;
\end{aligned}
\] & \[
\begin{gathered}
>\text { zip }(\mathrm{f},[\mathrm{i}, j],[\mathrm{k}, \mathrm{l}]) ; \\
{[f(i, k), f(j, l)]} \\
>\operatorname{zip}(\operatorname{AiryAi},[1,2],[0], 1) ; \\
{\left[-\frac{1}{2} \frac{3^{1 / 6} \Gamma\left(\frac{2}{3}\right)}{\pi}, \operatorname{AiryAi}(2,1)\right]}
\end{gathered}
\] \\
\hline
\end{tabular}

For more information on the zip command, refer to the ?zip help page.

\section*{Additional Information}

For more information on looping commands, refer to the corresponding command help page.

\subsection*{9.4 Procedures}

A Maple procedure is a program consisting of Maple statements. Using procedures, you can quickly execute the contained sequence of statements.

\section*{Defining and Running Simple Procedures}

To define a procedure, enclose a sequence of statements between proc(...) and end proc statements. In general, you assign a procedure definition to a name.

The following procedure returns the square root of 2 .
```

> p := proc() sqrt(2); end proc;

```
\[
p:=\operatorname{proc}() \operatorname{sqrt}(2) \text { end proc }
\]

Note: Maple returns the procedure definition.
To improve readability of procedures, it is recommended that you define a procedure using multiple lines, and indent the lines using space characters. To begin a new line (without evaluating the incomplete procedure definition), press Shift+Enter. When you have finished entering the procedure, press Enter to create the procedure.

For example:
```

>p := proc()
sqrt(2) ;
end proc:

```

To run the procedure \(\mathbf{p}\), enter its name followed by parentheses (()).
```

> p();

```
\[
\sqrt{2}
\]

\section*{Procedures with Inputs}

You can define a procedure that accepts user input. In the parentheses of the proc statement, specify the parameter names. For multiple parameters, separate the names with commas.
```

> geometric_mean := proc(x, y)
sqrt(x*y) ;
end proc:

```

When the user runs the procedure, the parameter names are replaced by the argument values.
```

> geometric_mean(13, 17);

```
 \(\sqrt{221}\)
\(>\) geometric_mean(13.5, 17.1);

For more information on writing procedures, including options and local and global variables, refer to the ?procedure help page.

\section*{Procedure Return Values}

When you run a procedure, Maple returns only the last statement result value computed. Maple does not return the output for each statement in the procedure. It is irrelevant whether you use semicolons or colons as statement separators.
```

> p := proc(a, b)
a + b;
a - b:
end proc:
> p(1, 2);

```

\section*{Displaying Procedure Definitions}

Unlike simple Maple objects, you cannot display the value of a procedure by entering its name.
```

> geometric_mean;

```

\section*{geometric_mean}

You must evaluate the name of the procedure using the print (or eval) command.
```

> print(geometric_mean);

```
\[
\operatorname{proc}(x, y) \operatorname{sqrt}\left(x^{*} y\right) \text { end proc }
\]

\section*{Displaying Maple Library Procedure Definitions}

Maple procedure definitions are a valuable learning tool. To learn how to program in Maple, it is recommended that you examine the procedures available in the Maple library.

By default, the print command returns only the proc and end proc statements and (if present) the description fields of a Maple procedure.
```

> print(assign);

```
\[
\operatorname{proc}(a) \ldots \text { end proc }
\]

To display a Maple library procedure definition, first set the value of the interface verboseproc option to 2 . Then re-execute the print calling sequence.
```

> interface('verboseproc' = 2):
> print(assign);
proc(a)
option Copyright (c) 1990 by Waterloo Maple Inc. All rights reserved.;
local i;
if 1<=nargs and type(a,{':','name','function'}) then
a:= args[2 .. - 1]
elif nargs =1 then
if type(a, {':',''name','function'} = 'anything') then
assign/internal(op(a))
elif type( }\mp@subsup{a}{}{\prime},\mp@subsup{}{}{\prime}=\mp@subsup{}{}{`})\mathrm{ then
if type([lhs(a)], 'list'({'::','name','function'})) then
if nops([lhs(a)])=nops([rhs(a)]) then
zip('assign/internal', [lhs(a)], [rhs(a)])
else
error "ambiguous multiple assignment"
end if
else
error "invalid arguments"
end if
elif type(a, {'set', 'list'}) then
map(procname, a)
else
error "invalid arguments"
end if
else
seq(procname(i),i=args)
end if,
NULL
end proc

```

\section*{Modules}

Maple procedures associate a sequence of commands with a single command. The module, a more complex programming structure, allows you to associate related procedures and data.

A key feature of modules is that they export variables. This means that the variables are available outside the module in which they are created. Most Maple packages are implemented as modules. The package commands are exports of the module.

For more information on modules, refer to the ?module help page.

\subsection*{9.5 Programming in Documents}

To write Maple code, you could simply open a Maple worksheet and start typing. However, if you want to create a readable document with the code interspersed or hidden, there are several options available.

\section*{Code Edit Region}

The code edit region allows you to program in one contained region, in a natural way. Features include the ability to press Enter for line breaking and indentation preservation. Figure 9.1 shows the expanded code edit region.

\section*{To insert a new code edit region into your worksheet:}
- From the Insert menu, select Code Edit Region.

Figure 9.1: Code Edit Region
To execute the code within this region, right-click in the region and select Execute Code.
You can hide the code in a code edit region by minimizing the region. To minimize, rightclick in the region and select Collapse Code Edit Region. When the region is minimized, an icon appears with the first line of the code written next to it. It is recommended that you make the first line a comment describing the program or programs contained in the region. See Figure 9.2.

Figure 9.2: Collapsed Code Edit Region
To re-execute the code in the region while it is collapsed, click this icon.
For more information, refer to the ?CodeEditRegion help page.

\section*{Startup Code}

Startup code allows you to define commands and procedures that are executed each time the document is opened and after restart is called. This code is completely hidden to others reading the document. For example, use this region to define procedures that will be used throughout the document code but that would take up space and distract readers from the message of the document.

To enter startup code for a document:
1. From the Edit menu, select Startup Code. Alternatively, click the startup code icon in the toolbar,
2. Enter commands to be run each time the worksheet is opened or restart is called.
3. Click Syntax to check the syntax of the entered code before closing.
4. Click Save to save the contents and close the dialog.

Figure 9.3: Startup Code Editor
For more information, refer to the ?startupcode help page.

\section*{Document Blocks}

Document blocks allow you to display the output from commands without showing the commands used. You can intersperse text, 2-D math, and Maple commands in a readable way. For more information, see Document Blocks (page 51) in Chapter 1.

\section*{10 Embedded Components and Maplets}

These graphical components help you to create documents to use and share with colleagues or students, that interact with Maple code within the document without needing the reader to understand that Maple code. Other methods of interaction with Maple are described throughout this guide.

\subsection*{10.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Using Embedded Components (page 389) - Basic interacting with Maple documents containing embedded components & \begin{tabular}{l}
- Interacting with Components \\
- Printing and Exporting
\end{tabular} \\
\hline Creating Embedded Components (page 393) - Methods for creating embedded components that work together and with your document & \begin{tabular}{l}
- Inserting Components \\
- Editing Components \\
- Removing Components \\
- Integrating into a Document
\end{tabular} \\
\hline Using Maplets (page 400) - Methods for launching a Maplet & \begin{tabular}{l}
- Maplet File \\
- Maple Document
\end{tabular} \\
\hline Authoring Maplets (page 402) - Methods for authoring and saving a Maplet & \begin{tabular}{l}
- Maplet Builder \\
- Maplets Package \\
- Saving
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.2 Using Embedded Components}

\section*{Interacting}

Embedded components allow readers to interact with Maple code through graphical components, rather than commands. They can be used alone, as with a button that you click to execute code, or together, such as a drop-down menu where you select an item, and a change takes place in a plot component.

\section*{Component Descriptions}

Table 10.1: Embedded Component Descriptions
\begin{tabular}{|l|l|}
\hline Component Name and Description & Inserted Image \\
\hline Button - Click to perform an action; that is, execute code. & Button \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Component Name and Description & Inserted Image \\
\hline \begin{tabular}{l}
Check Box - Select or de-select. Change the caption, and \\
enter code to execute when the value changes.
\end{tabular} & \(\square\) CheckBox \\
\hline \begin{tabular}{l}
Combo Box - Select one of the listed options from the \\
drop-down menu. Change the items listed, and enter code \\
to execute when the value changes.
\end{tabular} & ComboBox \\
\hline \begin{tabular}{l}
Dial - Select or display an integer or floating-point value. \\
Change the display, and enter code to execute when the \\
value changes.
\end{tabular} & & \\
\hline \begin{tabular}{l}
Label - Display a label. The value can be updated based \\
on code in the document or another embedded component.
\end{tabular} & Label & \\
\hline \begin{tabular}{l}
List Box - Display a list of items. Change the items listed, \\
and enter code to execute when an item is selected.
\end{tabular} & ListBox & \\
\hline \begin{tabular}{l}
Math Expression - Enter or display a mathematical expres- \\
sion. The value can be updated based on code in the docu- \\
ment or another embedded component.
\end{tabular} & & \\
\hline \begin{tabular}{l}
Meter - Select or display an integer or floating-point value. \\
Change the display, and enter code to execute when the \\
value changes.
\end{tabular} & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Component Name and Description & Inserted Image \\
\hline \begin{tabular}{l}
Rotary Gauge - Select or display an integer or floating- \\
point value. Change the display, and enter code to execute \\
when the value changes.
\end{tabular} \\
\hline \begin{tabular}{l}
Slider - Select or display an integer or floating-point value. \\
Change the display, and enter code to execute when the \\
value changes.
\end{tabular} & \\
\hline \begin{tabular}{l}
Text Area - Enter or display plain text. The value can be \\
updated based on code in the document or another embed- \\
ded component, and you can enter code to execute when \\
the value changes.
\end{tabular} & \\
\hline \begin{tabular}{l}
Toggle Button - Select or display one of two options. \\
Change the images displayed, and enter to code to execute \\
when the value changes.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Example 1 - Using Embedded Components}

This example demonstrates several components working together to perform a task. The user inputs an expression, which is plotted when the button is clicked. Plot options are controlled by text areas, a combo box, a math expression, and radio buttons.

For an interactive version of this example, see the .mw version of this manual. In Maple, from the Help menu, select Manuals, Resources, and More... \(\rightarrow\) Manuals \(\rightarrow\) User Manual.

\section*{Printing and Exporting a Document with Embedded Components}

Printing: When printing a document, embedded components are rendered as they appear on screen.

Exporting: Exporting a document with embedded components to other formats produces the following results.
- HTML format - components are exported as .gif files.
- RTF format - components are rendered as bitmap images in the .rtf document.
- LaTeX - components are exported as .eps files.
- PDF - components are rendered as static images.

\subsection*{10.3 Creating Embedded Components}

Embedded Components are graphical components that you can add to your document. They provide interactive access to Maple code without requiring the user to know Maple commands, and include buttons, sliders, math and text input areas, and plot display.

\section*{Inserting Components}

The graphical interface components can be inserted by using the Components palette (Figure 10.1) or by cutting/copying and pasting existing components to another area of the document. Although copied components have most of the same characteristics, they are distinct.

If the Components palette is not visible, see Palettes (page 22) for instructions on viewing palettes.

Figure 10.1: Components Palette

\section*{Editing Component Properties: General Process}

\section*{To edit properties of components embedded in the document:}
1. Right-click (Control-click, for Macintosh) the component to display the context menu.
2. If available, select Component Properties...; otherwise, select Components \(\rightarrow\) Component Properties.... The related dialog opens.
3. Enter values and contents in the fields as necessary.
4. For actions, such as Action When Value Changes in the Slider component dialog, click Edit. A blank dialog opens allowing you to enter Maple code that is executed when the event occurs. For details, refer to the ?DocumentTools help page.

\section*{Removing Graphical Interface Components}

You can remove an embedded component by:
- Using the Delete key
- Using the Backspace key
- Placing the cursor at the component and selecting from the document menu, Edit \(\rightarrow\) Delete Element

\section*{Integrating Components into a Document}

Use embedded components to display information from calculations, obtain input from a reader, or perform calculations at the click of a button, all without your readers having an understanding of Maple commands. They can be entered in any part of a Maple document, including a document block or table. For details on each component, see its help page.

This simple example inserts a slider with a label that indicates the current value of the slider.
1. Place the cursor in the location where the embedded component is to be inserted.
2. In the Components palette, click the Slider item. A slider is inserted into the document.
3. In the Components palette, click the Label item. A label is inserted next to the slider.

4. Right-click (Control-click, for Macintosh) the label component. Select Component Properties. The Label Properties dialog opens. See Figure 10.2.

Figure 10.3: Slider Properties Dialog

Figure 10.2: Label Properties Dialog
5. Name the component SliderLabel and click Ok.
6. Right-click (Control-click, Macintosh) the slider component. Select Component Properties. The Slider Properties dialog opens. See Figure 10.3.
7. Name the component Slider1.
8. Enter the value at the lowest position as \(\mathbf{0}\) and the highest as \(\mathbf{1 0 0}\).
9. Enter major tick marks at \(\mathbf{2 0}\) and minor tick marks at \(\mathbf{1 0}\).
10. To define an action, click the Edit button for the Action When Value Changes. The dialog that opens allows you to program the action of displaying the slider value in the label component. The dialog includes instructions on how to program embedded components. The use...in/end use; statement allows you to specify routines using the short form of accessing a package command without invoking the package. For details on this command, refer to the ?use help page.
11. Before the end use; statement at the bottom of the dialog, enter the following command.

Do(\%SliderLabel(caption)=\%Slider1(value));

\section*{12. Click OK.}
13. Make sure that the Update Continuously while Dragging check box is selected.

The value from the slider as you move the arrow indicator populates the Label caption field.
For details on this command, refer to the ?DocumentTools[Do] help page.

\section*{Example 2 - Creating Embedded Components}

In chapter 7 (see Embedded Components (page 329)), you created a document that included embedded components, imported from a task template. Here, we re-create that configuration of components. This example takes two parameters, \(a\) and \(b\), as inputs, then plots the function \(y=b x+a\) and calculates \(\frac{a}{b}\).

\section*{1. Create the components.}

The table layout is best done after the components are finished, in case the configuration of the components changes as you are working.

Create two DialComponents to set the parameters, \(a\) and \(b\), one GaugeComponent to display the result, \(\frac{a}{b}\), one PlotComponent to display the plot, and one MathContainer-
Component to display the function. Note that you do not need to use the dial and gauge components here, there are others, such as the slider, that could also be used.

Figure 10.4: The Inserted Components

\section*{2. Edit the display of the components.}

Open the Component Properties dialog for the first DialComponent, and notice that it already has a name. This name is used to reference the component from other components, and is unique. Change the display of each of the components as follows:
- Dial0: no changes.
- Dial1: change the Value at Highest Position to 10, the Spacing of Major Tick Marks to 1 , and the Spacing of Minor Tick Marks to 1 .
- RotaryGauge0: change the Value at Highest Position to 40, the Spacing of Major Tick Marks to 5, and the Spacing of Minor Tick Marks to 1 .
- Plot0: no changes.
- MathContainer0: change the Width in Pixels to 200, and the Height in Pixels to 45.

Note the names of all of the components, and close each dialog before moving on.

\section*{3. Create actions for the components.}

Components can perform actions when their values are changed, so the code to execute needs to be in the dials. That way, whenever one of them is changed, the other components are updated to reflect that change.

The following Maple commands retrieve the values of the parameters and display them in the other three components:
```

> parameter1:=Do(%Dial0):
> parameter2 :=Do(%Dial1) :
> Do(%RotaryGauge0=parameter1/parameter2);
>Do(%Plot0=plot((parameter2*x+parameter1), x=-50..50, y=-
50..50));
> Do(%MathContainer0=(y=parameter2*x+parameter1));

```

\section*{4. Test the actions.}

To test these commands, first load the DocumentTools package with the following command.
> with(DocumentTools):
Execute the commands in the document, and verify that the components you inserted are updated: the gauge should change to the computed value, a plot should appear in the plot component, and the function should display in the math container.

\section*{5. Troubleshooting.}

The first Do command gives an error, because the second parameter is 0 . One way to avoid this problem is to change the range of the second dial. In the Component Properties dialog for the second DialComponent, change the Value at Lowest Position from 0 to 1. Alternatively, you could change the code to compensate, with an if statement.

\section*{6. Copy the actions to the components.}

Once the commands work as expected, you can copy them into the components.
- Open the Component Properties dialog for the first DialComponent and click the Edit button for Action When Value Changes. Copy and paste the commands into the space between the use statements.
```

Action When Value Changes
x
use DocumentTools in
parameter1:=Do(%Dial0):
parameter2:=Do(%Dial1):
Do (%RotaryGauge0=parameter1/parameter2);
Do (%Plot0=plot((parameter2*x+parameter1), x=-50..50,
Do(%MathContainer0= ( }\textrm{F}=\mathrm{ parameter 2*x+parameter 1)) ;
end use;
Check syntax before saving
Check Now
OK

```

Figure 10.5: DialComponent Action dialog
- Do the same for the second DialComponent.

\section*{7. Create the layout for the components.}

Create a table, and then cut and paste the components into it, along with explanatory text.
Important: you must cut, not copy, the components, or their names will be changed to
avoid duplication. For information on creating and modifying tables, refer to Tables (page 306).

\subsection*{10.4 Using Maplets}

A Maplet is a pop-up graphical user interface that provides interactive access to the Maple engine through buttons, text regions, slider bars, and other visual interfaces. You can create your own Maplets, and you can take advantage of the built-in Maplets that cover numerous academic and specialized topics. Built-in Maplets include some assistants and tutors, such as the ODE Analyzer. For more information on this assistant, see Ordinary Differential Equations (ODEs) (page 121).

Maplet applications are launched by executing Maplet code. Maplet code can be saved in a Maplet (.maplet) file or Maple document (.mw).

\section*{Maplet File}

To launch a Maplet application saved as a Maplet file:
- In Windows, double-click the file from a Windows file browser.
- In UNIX and on Macintosh, use the command-line interface. At the command-line, enter maple -q <maplet_filename>.

To view and edit the Maplet code contained within the .maplet file:
1. Start Maple.
2. From the File menu, select Open. Maple displays the Open dialog.
3. In the Files of Type drop-down list, select .maplet.
4. Navigate to the location of the .maplet file and select the file.

\section*{5. Click Open.}

\section*{Maple Document}

To launch a Maplet application for which the Maple code is contained in a Maple document, you need to execute the Maplet code. To display the Maplet application, you must use the Maplets[Display] command. Note: The Maplet code may be quite large if the Maplet application is complex. In this case, execute the document to ensure user-defined procedures that are referenced in the Maplet application are also defined.

\section*{Typical procedure:}
1. If present, evaluate user-defined procedures.
```

Myproc:=proc..

```
2. Load the Maplets[Elements] package.
```

with( Maplets[Elements] );

```
3. Evaluate the Maplet definition.
```

Maplet_name:=Maplet( Maplet_definition );

```
4. Display the Maplet application.
```

Maplets[Display](Maplet_name);

```

Important: When a Maplet application is running, you cannot interact with the Maple document.

\subsection*{10.5 Authoring Maplets}

To author Maplets, you can use the Maplet Builder (GUI-based) or the Maplets package (syntax-based). The Maplet Builder allows you to drag and drop buttons, sliders, text regions, and other elements to define the Maplet application and set the element properties to perform an action upon selection or update of the element. The Maplet Builder is designed to create simple Maplets. The Maplets package offers more capabilities, control, and options when designing complicated Maplet applications.

Designing a Maplet application is similar to constructing a house. When building a house, you first construct the skeletal structure (that is, foundation, floors, and walls) and then proceed to add the windows and doors. Constructing a Maplet is no different. First define the rows and columns of the Maplet application and then proceed to add the body elements (such as buttons, text fields, and plot regions).

\section*{Simple Maplet}

A Maplet application can be defined using the commands in the Maplets[Elements] package and then launched using the Maplets[Display] command. The following commands define and run a very simple Maplet application that contains the text string "Hello World".
```

> with(Maplets[Elements]):
> MySimpleMaplet:= Maplet([["Hello World"]]) :
> Maplets[Display] (MySimpleMaplet) :

```


Figure 10.6: A Simple Maplet

\section*{Maplet Builder}

To start the Maplet Builder:
- From the Tools menu, select Assistants \(\rightarrow\) Maplet Builder.

Figure 10.7: Maplet Builder Interface
The Maplet Builder is divided into four different panes.
- The Palette pane displays palettes, which contain Maplet elements, organized by category. For a description of the elements, see the ?MapletBuilder/Palette help page. The Body palette contains the most popular elements.
- The Layout pane displays the visual elements of the Maplet.
- The Command pane displays the commands and corresponding actions defined in the Maplet.
- The Properties pane displays the properties of an instance of a defined element in the Maplet.

\section*{Example 3 - Design a Maplet Using the Maplet Builder}

In this example, shown in Figure 10.8, the Maplet user enters a function and plots the result.

Figure 10.8: Image of the Maplet

Figure 10.9: Body Elements Used to Define This Maplet
\begin{tabular}{|l|l||}
\hline Action & Result in MapletBuilder \\
\hline Define the number of rows in the & \\
Maplet: & \\
\hline 1. In the Properties pane: & BoxColumn1 \\
\hline andign & \\
\hline n. In the drop-down list, select Box- & numcolumns \\
Column1. & numrows \\
\hline reference & 2 \\
\hline v. Change the numrows field to 2. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Add a plot region to row 1 : \\
2. From the Body palette, drag the Plotter element to the first row in the Layout pane.
\end{tabular} & \\
\hline \begin{tabular}{l}
Add columns to row 2: \\
3. In the Properties pane: \\
a. In the drop-down list, select BoxRow2. \\
b. Change the numcolumns field to 3 .
\end{tabular} & \\
\hline \begin{tabular}{l}
Add a label to row 2: \\
4. From the Body palette, drag the Label element to the left column in the Layout pane. \\
5. In the Properties pane: \\
a. In the drop-down list, select Label1. \\
b. Change the caption field to Enter a function of \(x\).
\end{tabular} & \\
\hline
\end{tabular}

\section*{Add a text region to row 2:}
6. From the Body palette, drag the Text-

Field element to the middle column. The TextField element allows the Maplet user to enter input that can be retrieved in an action.
7. If necessary, resize the Maplet Builder to display the entire Layout pane.

\section*{Add a button to row 2:}
8. From the Body palette, drag the Button element to the right column in the Layout pane.
9. In the Properties pane:
a. In the drop-down list, select Button1.
b. Change the caption field to Plot.
c. In the onclick property drop-down list, select <Evaluate>.
```

10. In the Evaluate Expression dialog that displays, the Target drop-down list contains the defined elements to which you can send information, in this case, Plotter1 and TextField1. The List group box, located below the Expression group box, displays the defined elements to which you can retrieve information, in this case, TextField1.
a. In the Target drop-down list, select Plotter1.
b. In the Command Form tab, enter plot(TextField1, $\mathbf{x = - 1 0 . . 1 0 )}$ ) in the Expression group box. (Note: Do not include a semicolon (;) at the end of the plot command.) You can also double-click TextField1 in the List group box to insert this element in the command syntax.
c. Click Ok.
Run the Maplet:
11. From the File menu, select Run. You are prompted to save the Maplet. Maplets created with the Maplet Builder are saved as .maplet files.
12. Click Yes and navigate to a location to save this Maplet.
```

For further information on the Maplet Builder, see the ?MapletBuilder help page. For more examples of designing Maplets using the Maplet Builder, see ?MapletBuilder/examples.

\section*{Maplets Package}

When designing a complicated Maplet, the Maplets package offers greater control. The Maplets[Elements] subpackage contains the elements available when designing a Maplet application. After you define the Maplet, use the Maplets[Display] command to launch the Maplet.

For more information on the Maplets package, refer to the ?MapletsPackage help page. For more examples of designing Maplets using the Maplets package, see the ?Maplets/Roadmap help page.

\section*{Example 4 - Design a Maplet Using the Maplets Package}

To introduce the structure of designing Maplets using the Maplets package, this example illustrates the equivalent syntax for the Design a Maplet Using the Maplet Builder (page 404).

Load the Maplets[Elements] package.
```

> with(Maplets[Elements]):

```

Define the Maplet application. To suppress the display of the data structure associated with the Maplet application, end the definition with a colon.
```

> PlottingMaplet:=Maplet(
BoxLayout(
BoxColumn (
\# First Box Row
BoxRow (
\# Define a Plot region
Plotter('reference' = Plotter1)
\# End of first Box Row
),
\# Second Box Row
BoxRow (
\# Define a Label
Label("Enter a function of x "),
\# Define a Text Field
TextField('reference' = TextField1),
\# Define a Button
Button(caption="Plot", Evaluate(value = 'plot(TextField1,
x = -10..10)', 'target' = Plotter1))
\# End of second Box Row
)
\# End of BoxColumn
)
\# End of BoxLayout
)
\# End of Maplet
) :

```

Launch the Maplet.
```

> Maplets[Display](PlottingMaplet);

```

For further examples using both the MapletBuilder and Maplets package commands, see the Maplets example worksheets. For a listing, refer to the ?examples/index help page.

\section*{Saving}

When saving a Maplet, you can save the document as an .mw file or you can export the document as a .maplet file.

\section*{Maple Document}

To save the Maplet code as an .mw file:
1. From the File menu, select Save.
2. Navigate to the save location.
3. Enter a filename.
4. Click Save.

If the document contains only Maplet code, it is recommended that you export the document as a .maplet file.

\section*{Maplet File}

To export the Maplet code as a .maplet file:
1. From the File menu, select Export As.
2. In the Files of Type drop-down list, select Maplet.
3. Navigate to the export location.
4. Enter the filename.
5. Click Save.

\section*{11 Input, Output, and Interacting with Other Products}

\subsection*{11.1 In This Chapter}
\begin{tabular}{|c|c|}
\hline Section & Topics \\
\hline Writing to Files (page 411) - Saving to Maple file formats & \begin{tabular}{l}
- Saving Data to a File \\
- Saving Expressions to a File
\end{tabular} \\
\hline Reading from Files (page 414) -Opening Maple files & \begin{tabular}{l}
- Reading Data from a File \\
- Reading Expressions from a File
\end{tabular} \\
\hline Exporting to Other Formats (page 416) - Exporting documents in file formats supported by other software & \begin{tabular}{l}
- Exporting Documents \\
- MapleNet \\
- Maple T.A.
\end{tabular} \\
\hline Connectivity (page 420) - Using Maple with other programming languages and software & \begin{tabular}{l}
- Translating Maple Code to Other Programming Languages \\
- Accessing External Products from Maple \\
- Accessing Maple from External Products \\
- Sharing and Storing Maple Worksheet Content with the MapleCloud \({ }^{\mathrm{TM}}\)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.2 Writing to Files}

Maple supports file formats in addition to the standard .mw file format.
After using Maple to perform a computation, you can save the results to a file for later processing with Maple or another program.

\section*{Saving Data to a File}

If the result of a Maple calculation is a long list or a large array of numbers, you can convert it to Matrix form and write the numbers to a file using the ExportMatrix command. This command writes columns of numerical data to a file, allowing you to import the numbers into another program. To convert a list or a list of lists to a Matrix, use the Matrix constructor. For more information, refer to the ?Matrix help page.
\(>L:=\left[\begin{array}{ccccc}-81 & -98 & -76 & -4 & 29 \\ -38 & -77 & -72 & 27 & 44 \\ -18 & 57 & -2 & 8 & 92 \\ 87 & 27 & -32 & 69 & -31 \\ 33 & -93 & -74 & 99 & 67\end{array}\right]\)
> ExportMatrix("matrixdata.txt", \(L\)) :
If the data is a Vector or any object that can be converted to type Vector, use the ExportVector command. To convert lists to Vectors, use the Vector constructor. For more information, refer to the ?Vector help page.
\(>R:=[3,3.1415,-65,0]\)
\[
\begin{equation*}
R:=[3,3.1415,-65,0] \tag{11.1}
\end{equation*}
\]
\(>V:=\operatorname{Vector}(R)\)
\[
V:=\left[\begin{array}{c}
3 \tag{11.2}\\
3.1415 \\
-65 \\
0
\end{array}\right]
\]
> ExportVector("vectordata.txt", V) :
You can extend these routines to write more complicated data, such as complex numbers or symbolic expressions. For more information, refer to the ?ExportMatrix and ?ExportVector help pages.

For more information on matrices and vectors, see Linear Algebra (page 159).

\section*{Saving Expressions to a File}

If you construct a complicated expression or procedure, you can save them for future use in Maple. If you save the expression or procedure in the Maple internal format, Maple can retrieve it more efficiently than from a document. Use the save command to write the expression to a.m file. For more information on Maple internal file formats, refer to the ?file help page.
\(>\) qbinomial \(:=(n, k) \rightarrow \frac{\prod_{i=n-k+1}^{n}\left(1-q^{i}\right)}{\prod_{i=1}^{k}\left(1-q^{i}\right)}\) :
In this example, small expressions are used. In practice, Maple supports expressions with thousands of terms.
\(>\operatorname{expr}:=q \operatorname{binomial}(10,4)\)
\[
\begin{equation*}
\operatorname{expr}:=\frac{\left(1-q^{7}\right)\left(1-q^{8}\right)\left(1-q^{9}\right)\left(1-q^{10}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)} \tag{11.3}
\end{equation*}
\]
> nexpr: \(=\) normal(expr)
\[
\begin{equation*}
\text { nexpr }:=\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{4}+1\right)\left(q^{6}+q^{3}+1\right)\left(q^{8}+q^{6}+q^{4}+q^{2}+1\right) \tag{11.4}
\end{equation*}
\]

You can save these expressions to the file qbinom.m.
> save qbinomial, expr, nexpr, "qbinom.m"
Clear the memory using the restart command and retrieve the expressions using the read command.
\(>\) restart
\(>\operatorname{read}\) "qbinom.m"
\(>\) expr
\[
\begin{equation*}
\frac{\left(1-q^{7}\right)\left(1-q^{8}\right)\left(1-q^{9}\right)\left(1-q^{10}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)} \tag{11.5}
\end{equation*}
\]

For more information on writing to files, refer to the ?save help page.

\subsection*{11.3 Reading from Files}

The most common reason for reading files is to load data, for example, data generated in an experiment. You can store data in a text file, and then read it into Maple.

\section*{Reading Data from a File}

\section*{Import Data Assistant}

If you generate data outside Maple, you can read it into Maple for further manipulation. This data can be an image, a sound file, or columns of numbers in a text file. You can easily import this external data into Maple using the Import Data Assistant, where the supported file formats include files of type Excel \({ }^{\circledR}\), MATLAB, Image, Audio, Matrix Market, and Delimited.

\section*{To launch the Import Data Assistant:}
- From the Tools menu, select Assistants, and then Import Data.
- A dialog window appears where you can navigate to your data file. Select the file that you want to import data from, and then select the file type before clicking Next.
- From the main window, you can preview the selected file and choose from the applicable options based on the format of the file read in before importing the data into Maple. See Figure 11.1 for an example.

Figure 11.1: Import Data Assistant

\section*{ImportMatrix Command}

The Import Data Assistant provides a graphical interface to the ImportMatrix command. For more information, including options not available in the assistant, refer to the ?ImportMatrix help page.

\section*{Reading Expressions from a File}

You can write Maple programs in a text file using a text editor, and then import the file into Maple. You can paste the commands from the text file into your document or you can use the read command.

When you read a file with the read command, Maple treats each line in the file as a command. Maple executes the commands and displays the results in your document but it does not, by default, insert the commands from the file in your document.

For example, the file ks.txt contains the following Maple commands.
```

S:= n -> sum( binomial( n, beta ) * ( ( 2*beta )! / 2^beta -
beta!*beta ), beta=1..n );
S(19);

```

Note that the file should not contain prompts (\(>\)) at the start of lines.
When you read the file, Maple displays the results but not the commands.
\[
S:=n \rightarrow \sum_{\beta=1}^{n} \operatorname{binomial}(n, \beta)\left(\frac{(2 \beta)!}{2^{\beta}}-\beta!\beta\right)
\]
\[
\begin{equation*}
1024937361666644598071114328769317982974 \tag{11.6}
\end{equation*}
\]
```

> filename := cat(kernelopts(datadir), kernelopts(dirsep), "ks.txt") :
> read filename
Error, unable to read `C:\Program Files\Maple 14\data\ks.txt`

```

If you set the interface echo option to 2, Maple inserts the commands from the file into your document.
```

> interface(echo =2):
read filename
> S:= n -> sum( binomial( n, beta ) * ( ( 2*beta )! / 2^beta -
beta!*beta ), beta=1..n );

$$
S:=n \rightarrow \sum_{\beta=1}^{n} \operatorname{binomial}(n, \beta)\left(\frac{(2 \beta)!}{2^{\beta}}-\beta!\beta\right)
$$

```
```

> S(19);

```
```

> S(19);

```

1024937361666644598071114328769317982974

For more information, refer to the ?read and ?interface help pages.

\subsection*{11.4 Exporting to Other Formats}

\section*{Exporting Documents}

You can save your documents by selecting Save or Save As from the File menu. By selecting Export As from the File menu, you can also export a document in the following formats: HTML, LaTeX, Maple input, Maplet application, Maple text, plain text, PDF, and Rich Text Format. This allows you to access your work outside Maple.

\section*{HTML}

The .html file that Maple generates can be loaded into any HTML browser. Exported mathematical content can be displayed in one of the following formats: GIF, MathML 2.0 Presentation, MathML 2.0 Content, or Maple Viewer, and is saved in a separate folder. MathML is the Internet standard, sanctioned by the World Wide Web Consortium (W3C), for the communication of structured mathematical formulae between applications. For more information about MathML, refer to the ?MathML help page.

Maple documents that are exported to HTML translate into multiple documents when using frames. If the frames feature is not selected, Maple creates only one page that contains the document contents.

\section*{LaTeX}

The .tex file generated by Maple is ready for processing by LaTeX. All distributions of Maple include the necessary style files. By default, the LaTeX style files are set for printing the .tex file using the dvips printer driver. You can change this behavior by specifying an option to the \usepackage LaTeX command in the preamble of your .tex file. For more information, refer to the ?exporttoLaTeX help page.

\section*{Maple Input}

You can export a Maple document as Maple input so that it can be loaded using the Maple Command-line version.

Important: When exporting a document as Maple input for use in Command-line Maple, your document must contain explicit semicolons in 1-D Math input. If not, the exported .mpl file does not contain semicolons, and Command-line Maple generates errors.

\section*{Maplet Application}

The Export as Maplet facility saves a Maple document as a .maplet file, so that you can run it using the command-line interface or the MapletViewer. The MapletViewer is an executable program that can launch saved Maplet applications. It displays and runs Maplet applications independently of the Maple Worksheet interface.

Important: When exporting a document as a Maplet Application for use in Command-line Maple or the MapletViewer, your document must contain explicit semicolons. If not, the exported .maplet file does not contain semicolons, and Command-line Maple and the MapletViewer generates errors.

\section*{Maple Text}

Maple text is marked text that retains the distinction between text, Maple input, and Maple output. Thus, you can export a document as Maple text, send the text file by email, and the recipient can import the Maple text into a Maple session and regenerate the computations in the original document.

\section*{PDF}

Export a Maple document to a Portable Document Format (PDF) file so that you can open the file in a reader such as Adobe \({ }^{\circledR}\) Acrobat \({ }^{\circledR}\). The PDF document is formatted as it would appear when the Maple worksheet is printed using the active printer settings.

Note: Images, plots, and embedded components may be resized in the PDF file.

\section*{Plain Text}

Export a Maple document as plain text so that you can open the text file in a word processor.

\section*{Rich Text Format (RTF)}

Export a Maple document to a rich text format file so that you can open and edit the file in a word processor.

Note: The generated .rtf format is compatible with Microsoft Word and Microsoft WordPad only.

\section*{Summary of Translation}

Table 11.1: Summary of Content Translation When Exporting to Different Formats
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Content & HTML & LaTeX & Maple Input & Maplet Application & Maple Text & Plain Text & Rich Text Format & \begin{tabular}{l}
PDF \\
Format
\end{tabular} \\
\hline Text & Maintained & Maintained & Preceded by \# & Preceded by \# & Preceded by \# & Maintained & Maintained & Maintained \\
\hline 1-D Math & Maintained & Maintained & Maintained & Maintained & Preceded by \(>\) & Preceded by \(>\) & Static image & Static image \\
\hline 2-D Math & GIF or MathML & \[
\begin{aligned}
& \hline \text { 1-D Math } \\
& \text { or LaTeX } \\
& \text { 2e }
\end{aligned}
\] & \begin{tabular}{l}
1-D \\
Math (if possible)
\end{tabular} & \begin{tabular}{l}
1-D \\
Math (if possible)
\end{tabular} & \begin{tabular}{l}
1-D \\
Math or charac-ter-based typesetting
\end{tabular} & \begin{tabular}{l}
1-D \\
Math or charac-ter-based typesetting
\end{tabular} & Static image & Either text or shapes depending on option selected \\
\hline Plot & GIF & Postscript file & Not exported & Not exported & Not exported & Not exported & Static image & Static image \\
\hline Animation & Animated GIF & Not exported & Static image \\
\hline Hidden content & Not exported \\
\hline Manually inserted page break & Not supported & \[
\begin{array}{|l}
\hline \text { RTF } \\
\text { page } \\
\text { break ob- } \\
\text { ject }
\end{array}
\] & Maintained \\
\hline Hyperlink & Links to help pages become plain text. Links to documents are renamed and converted to HTML links & Plain text & Plain
text & Plain text & \[
\begin{array}{|l}
\left\lvert\, \begin{array}{l}
\text { Plain } \\
\text { text }
\end{array}\right. \\
\hline
\end{array}
\] & Plain text & Plain text & Plain text \\
\hline Embedded image or sketch output & GIF & Not exported & Static image & Static image \\
\hline Spreadsheet & HTML table & LaTeX tables & Not exported & Not exported & Not exported & Not exported & \[
\begin{array}{|l}
\text { RTF } \\
\text { table }
\end{array}
\] & Static image \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Content & HTML & LaTeX & \begin{tabular}{l}
Maple \\
Input
\end{tabular} & \begin{tabular}{l}
Maplet \\
Applica- \\
tion
\end{tabular} & \begin{tabular}{l}
Maple \\
Text
\end{tabular} & \begin{tabular}{l}
Plain \\
Text
\end{tabular} & \begin{tabular}{l}
Rich \\
Text \\
Format
\end{tabular} & \begin{tabular}{l}
PDF \\
Format
\end{tabular} \\
\hline \begin{tabular}{l}
Document \\
style
\end{tabular} & \begin{tabular}{l}
Approxim- \\
ated by \\
HTML style \\
attributes
\end{tabular} & \begin{tabular}{l}
LaTeX en- \\
vironments \\
and sec- \\
tions, \\
LaTeX 2e \\
macro calls
\end{tabular} & \begin{tabular}{l}
Not ex- \\
ported
\end{tabular} & \begin{tabular}{l}
RTF \\
style
\end{tabular} & \begin{tabular}{l}
Main- \\
tained
\end{tabular} \\
\hline
\end{tabular}

\section*{MapleNet}

\section*{Overview of MapleNet}

Using MapleNet, you can deploy Maple content on the web. Powered by the Maple computation engine, MapleNet allows you to embed dynamic formulas, models, and diagrams as live content in web pages. The MapleNet software is not included with the Maple software. For more information on MapleNet, visit http://www.maplesoft.com/maplenet.

\section*{MapleNet Documents and Maplets}

After you upload your Maple document to the MapleNet server, it can be accessed by anyone in the world using a Web browser. Even if viewers do not have a copy of Maple installed, they can view documents and Maplets, manipulate 3-D plots, and execute code at the click of a button.

\section*{Custom Java Applets and JavaServer Pages \({ }^{\text {TM }}\) Technology}

MapleNet provides a programming interface to the Maple math engine so commands can be executed from a Java applet or using JavaServer Pages technology. Embed MapleNet into your web application, and let Maple handle the math and visualization.

\section*{Maple T.A.}

\section*{Overview of Maple T.A.}

Maple T.A. is a web-based automated testing system, based on the Maple engine. Instructors can use pre-written questions or create custom question banks and then choose from these questions to form quizzes and assignments. Maple T.A. automatically grades responses as students complete assignments and tests.

For more information, visit http://www.maplesoft.com/mapleta.

\section*{Exporting Assignments to Maple T.A.}

You can use Maple to create graded questions for use in Maple T.A. For information on creating and testing questions, see Creating Graded Assignments (page 334). Using the Maple T.A. export feature, you can create and test Maple T.A. content.

\section*{To export the document:}
1. From the File menu, select Export As.
2. In the Export As dialog, specify a filename and the Maple T.A. (.zip) file type. The .zip file containing your questions and assignment can be uploaded to Maple T.A. as a course module.

Any document content outside Maple T.A. sections (indicated by green section markers) is ignored by the export process.

For more details, refer to the ?exporttoMapleTA help page.

\subsection*{11.5 Connectivity}

\section*{Translating Maple Code To Other Programming Languages}

\section*{Code Generation}

The CodeGeneration package is a collection of commands and subpackages that enable the translation of Maple code to other programming languages. Languages currently supported include C, Fortran 77, Java, MATLAB, and Visual Basic.

For details on Code Generation, refer to the ?CodeGeneration help page.

\section*{Accessing External Products from Maple}

\section*{External Calling}

External calling allows you to use compiled C, Fortran 77, or Java code in Maple. Functions written in these languages can be linked and used as if they were Maple procedures. With external calling you can use pre-written optimized algorithms without the need to translate them into Maple commands. Access to the NAG library routines and other numerical algorithms is built into Maple using the external calling mechanism.

External calling can also be applied to functions other than numerical algorithms. Routines exist that accomplish a variety of non-mathematical tasks. You can use these routines in Maple to extend its functionality. For example, you can link to controlled hardware via a serial port or interface with another program. The Database package uses external calling to allow you to query, create, and update databases in Maple. For more information, refer to the ?Database help page.

For more information on using external calling, refer to the ?ExternalCalling help page.

\section*{Mathematica Translator}

The MmaTranslator package provides translation tools for converting Mathematica \({ }^{\circledR}\) expressions, command operations, and notebooks to Maple. The package can translate Mathematica input to Maple input and Mathematica notebooks to Maple documents. The Mma subpackage contains commands that provide translation for Mathematica commands when no equivalent Maple command exists. In most cases, the command achieves the translation through minor manipulations of the input and output of similar Maple commands.

Note: The MmaTranslator package does not convert Mathematica programs.
There is a Maplet interface to the MmaTranslator package. For more information, refer to the \(\mathbf{? M m a T o M a p l e}\) help page.

\section*{Matlab Package}

The Matlab package enables you to translate MATLAB code to Maple, as well as call selected MATLAB functions from a Maple session, provided you have MATLAB installed on your system.

For more information, refer to the ?Matlab help page.

\section*{Accessing Maple from External Products}

\section*{Microsoft Excel Add-In}

Maple is available as an add-in to Microsoft Excel. This add-in is supported for Excel 2007 and Excel 2003 for Windows, and provides the following features.
- Access to Maple commands from Excel
- Ability to copy and paste between Maple and Excel
- Access to a subset of the Maple help pages
- Maple Function Wizard to step you through the creation of a Maple function call

To enable the Maple Excel Add-in in Excel 2007:
1. Click the Microsoft Office Button and select Excel Options.
2. Click Add-ins.
3. In the Manage box select Excel Add-ins, and then Go.
4. Navigate to the Excel subdirectory of your Maple installation, select WMIMPLEX.xla, and click OK.
5. Select the Maple Excel Add-in check box.
6. Click OK.

To enable the Maple Excel Add-in for versions of Excel prior to Excel 2007:
1. From the Tools menu in Excel, choose Add-Ins.
2. If the Maple Excel Add-in is not listed:
- Click Browse and navigate to the directory in which Maple is installed.
- In the Excel directory, select the WMIMPLEX.xla file.
- Click OK.
3. Select the Maple Excel Add-in check box.
4. Click OK.

More information is available in the Using Maple in Excel help file within Excel.
To view this help file:
1. Enable the add-in.
2. From the View menu, select Toolbars, and then Maple.
3. On the Maple toolbar, click the Maple help icon

\section*{OpenMaple}

OpenMaple is a suite of functions that allows you to access Maple algorithms and data structures in your compiled C, Java, or Visual Basic programs. (This is the reverse of external calling, which allows access to compiled C, Fortran 77, and Java code from Maple.)

To run your application, Maple must be installed. You can distribute your application to any licensed Maple user. For additional terms and conditions on the use of OpenMaple, refer to the extern/OpenMapleLicensing.txt file in your Maple installation.

For more details on using OpenMaple functions, refer to the ?OpenMaple help page.

\section*{MapleSim}

MapleSim \({ }^{\mathrm{TM}}\) is a complete environment for modeling and simulating multi-domain engineering systems. During a simulation, MapleSim uses the symbolic Maple computation engine to generate the mathematical models that represent the system behavior.

Because both products are tightly integrated, you can use Maple commands and technical document features to edit, manipulate, and analyze a MapleSim model. For example, you
can use Maple commands and tools to manipulate your model equations, develop custom components based on a mathematical model, and visualize simulation results.

MapleSim software is not included with the Maple software. For more information on MapleSim, visit http://www.maplesoft.com/maplesim.

\section*{Sharing and Storing Maple Worksheet Content}

\section*{The MapleCloud}

You can use the MapleCloud to share worksheet content with other users, view content shared by other users, and store entire standard Maple worksheets or selected content from standard Maple worksheets. Through the MapleCloud palette, you can upload standard Maple worksheet content and allow other users to download a copy of that content. You can also upload and store content in a user-specific area that only you can access.

A list of shared worksheets that you have permissions to view are displayed in the MapleCloud palette. To share content with specific users, you can either create a user group or select an existing group and allow only those group members to access your content. For more information about groups, see ?worksheet,cloud,groups.

Users need an internet connection to use the MapleCloud. To share worksheet content, create, manage and join user groups; and view group-specific content, you must log in to the MapleCloud using a Maplesoft.com, Gmail \({ }^{\mathrm{TM}}\), or Google Mail \({ }^{\mathrm{TM}}\) account name and password.

A Maplesoft.com membership account gives you access to thousands of free Maple resources and MaplePrimes, which is an active web community for sharing techniques and experiences with Maple and related products. To sign up for a free Maplesoft.com membership account, visit http://www.maplesoft.com/members/sign_up_form.aspx. The MapleCloud is integrated with several of these online features, so it is strongly recommended that you use a Maplesoft.com membership account.

\section*{Index}

\section*{Symbols}
! toolbar icon, 69
!!! toolbar icon, 69
"", 347
\$, 178
\%H, 171
\%T, 171
\&x, 171
', 95, 366
(), 384
->, 95
., 169
1-D Math, 81
switching to 2-D, 81
2-D Math, 80
converting to \(1-\mathrm{D}, 81\)
entering, 5
shortcuts, 7
switching to 1-D, 81
:, 81, 82
::, 144
:=, 94
;, 81,82
\(>, 159,161\)
>, 80
?
help topic, 55
[], 167, 338, 339
^, 6, 110
entering, 110
, 96
entering, 96
_ZN~, 116
', 96
\{\}, 338
।, 162
\(\sim, 116,144\)

\section*{A}
about command, 144
abs command, 107
absolute value, 107
add
word to your dictionary, 334
add command, 381
additionally command, 145
algebra, 157
linear, 173
polynomial, 150
algsubs command, 360
alignment format, 286
American spelling
spellcheck, 332
and operator, 370
angle brackets, \(159,161,206\)
angles, 356
animations
creating, 273
customizing, 277
Application Center, 60
applications
sample documents, 58
apply
character styles, 289
paragraph styles, 292
approximation, 104
least-squares, 173
numeric, 361
arguments, 384
arithmetic, 68
finite-precision, 102
interval, 139
matrix and vector, 169
modular, 108, 109
polynomial, 150
Arrays, 340
indexing, 340
large, 341
arrow operator, 95
assign command, 119
assigned command, 366
assignment operator (\(:=\)), 94
Assistants
Back-Solver, 36
CAD Link, 37
Curve Fitting, 34, 158
Data Analysis, 36, 198
Equation Manipulator, 36
Import Data, 36, 414
Installer Builder, 37
Library Browser, 37
Maplet Builder, 37
ODE Analyzer, 37, 121
Optimization, 37, 188
overview, 32
Plot Builder, 37, 238
Scientific Constants, 37
Special Functions, 37
Tools menu, 33
Unit Converter, 356
Units Calculator, 37, 129
Worksheet Migration, 37
assume command, 144
adding assumptions, 145
and procedure variables, 147
imposing multiple assumptions, 145
removing assumptions, 145
setting relationships between variables, 144
setting variable properties, 144
testing property, 145
using with assuming command, 146
viewing assumptions, 144
assuming command, \(144,146,184,356\)
additionally option, 146
and procedure variables, 147
applying to all names, 146
using with assume command, 146
Attributes submenu
character, 285
paragraph, 286
auto-execute, 304
repeating, 305
security levels, 306

Avogadro constant, 135

\section*{B}

Back-Solver Assistant, 36
bar chart, 195
basis, 173
vector space, 173
binary numbers, 108
Bohr radius, 135
bold format, 284
bookmarks
using, 327
boolean expressions, 362, 370, 377
brackets
angle, 159, 161
break statement, 379
browser
Matrix, 163, 342
Task, 91
bullets
format, 286
button
embedding, 329
Button component, 389
by clause, 374
excluding, 374
negative, 375

\section*{C}

CAD Link Assistant, 37
calculus, 187
clickable problem solving, 235
multivariate, 186
Student package, 187
of variations, 187
packages, 186
study guides, 199
teaching, 187, 199
vector, 186
Student package, 187
calling sequence, 83
canvas
inserting, 319
canvas style
sketch pad, 321
caret
entering, 110
central tendency, 139
character styles
creating, 290
description, 288
Check Box component, 390
Cholesky decomposition, 171
Classic Worksheet
tables, 315
Classic Worksheet Interface, xiii
clickable math, 235
Code Edit Region, 387
CodeGeneration
package description, 86
coeff command, 156
coefficients
polynomials, 156
coeffs command, 157
collect command, 156
colon, 81, 82
color
of plots, 267
combine command, 355
errors option, 142
Combo Box component, 390
command completion, 7, 48
Command-line Interface, xiii
commands, 85
and task templates, 91
displaying procedures, 385
entering, 46
help, 54
hiding, 387, 388
iterative, 381
mapping over set or list, 382
package, 84
top, 84
top-level, 82
compatibility
worksheet, 335
complex expressions, 362
complex numbers, 30
compoly command, 157
components
adding GUI elements, 329
palette, 329
computations
assistants, 91
commands, 85
context menus, 89
errors, 105
avoiding, 105
integers, 109
interrupting, 379
linear algebra, 168
mathematics, 149
numeric, 105
palettes, 87
performing, 101, 149
Real number system, 143
symbolic, 105
syntax-free, 77
task templates, 91
tutors, 91
under assumptions, 144
single evaluation, 146
updating, 68
with uncertainty, 141
with units, 132
conditional execution, 370
constants, 65
content command, 157
context
of unit, 129
context menus, 70, 89, 171
customizing animations, 277
equation, 112
integer, 89, 106
overview, 39
tutors, 76
using, 39
convert command, 356
base option, 109, 378
degrees option, 356
mathematical functions, 357
polynom option, 183
set option, 356
temperature option, 131
units option, 130, 356
copy, 283
examples, 57
copy expressions, 12
correlation, 141
coulditbe command, 145
covariance, 141
cross product, 171
Curl command, 187
Curve Fitting
package
PolynomialInterpolation command, 158
Curve Fitting Assistant, 34, 158
cut and paste
in tables, 308

\section*{D}

D operator, 179
Data Analysis Assistant, 36, 198
data structures, 65,337
creating, 347
Database Integration, 420
datatype option, 165
degree
command, 157
polynomials, 156
denom command, 351
derivatives, 177
directional, 180
partial, 65, 177
prime notation, 303
Tutor, 199
Dial component, 390
dictionary, 58, 198
dictionary topic
adding hyperlink to, 326
diff command, 122, 178
differential equations
ordinary, 121
partial, 125
differentiation, 177
with uncertainty, 141
with units, 133
Differentiation Methods Tutor, 200
Digits environment variable, 105
dimension, 128, 171
base, 128
Directional Derivative Tutor, 180
discrim command, 158
display
bookmark, 327
distribution
probability, 193
divide command, 152
divisors, 108
document blocks, 51, 300
Document mode, 63
documents
running, 9
DocumentTools, 398
double colon operator, 144
dsolve command, 125

\section*{E}
e-notation, 104
Edit menu
in help system, 57
eigenvalues, 171
eigenvectors, 171
element-wise operators, 363
elementary charge, 135
elements, 134
definition, 136
isotopes, 136
definition, 136
properties, 136
list, 136
properties
list, 136
uncertainty, 138
units, 138
using, 136
value, 137
value and units, 138
elif clauses, 371
order, 372
else clause, 371
email
adding hyperlink to, 325
embedded components, 329, 389
inserting, 393
properties, 393
end do keywords, \(373,376,377\)
end if keywords, 370
end proc keywords, 383
engineers
portal for, 58
environment variables
Digits, 105
Order, 182
equation
solving step-by-step, 218
equation labels, 99
displaying, 97
features, 100
formatting, 51
inserting, 50
numbering schemes, 99
overview, 49
references to, 97
versus names, 100
with multiple outputs, 99
Equation Manipulator, 36, 218
equations
solving, 112
for real solutions, 143
numerically, 117
symbolically, 114
transcendental, 116
errors
quantities with, 139
Euclidean algorithm, 158
eval command, 359, 385
evalb command, 362
evalc command, 362
evalf command, 104, 116, 137, 140, 361
with Int command, 185
with Limit command, 176
evaln command, 366
evaluation
boolean expressions, 362
complex expressions, 362
delaying, 366
levels of, 365
Maple expressions, 359
of expression at a point, 359
output below, 68, 71
output inline, 67,70
updated computations, 68
exact
computation, 103
numbers, 102
quantities
converting to floating-point, 104
example worksheets
copy, 57
execution group, 81
execution groups, 19
expand
command, 355
document block, 302
execution group, 303
series, 182
Exploration Assistant, 43
exponents
entering, 6
export, 386
to HTML, 416
to LaTeX, 416
to Maple input, 417
to Maple T.A., 420
to Maple text, 417
to Maplet application, 417
to other formats, 419
to PDF, 417
to plain text, 417
to Rich Text Format, 417
worksheets, 416
exporting
embedded components, 392
expression sequences, 114,338
creating, 380
expressions, 65, 337
adding, 381
evaluating, 359
manipulating, 353
multiplying, 381
right-click, 40
versus functional operators, 344

\section*{F}
factor
integers, 106
polynomials, 157
QR factorization, 173
factor command, 157, 354
factored normal form, 357
factorial command, 108
FAIL, 370, 377
false, 370, 377
Faraday constant, 135
Favorites palette, 22
files
image formats, 322
reading from, 415
writing to, 413
fill option, 165
finite fields, 109
solving equations, 126
finite rings, 109
floating-point
computation, 103
accuracy, 105
hardware, 105
significant digits, 104
numbers, 102
rational approximation, 90
Flux command, 187
font color, 284
foot-pound-second (FPS) system, 75, 129
footers, 297
for/from loops, 373
for/in loops, 375
formal power series solutions, 125
format labels, 50
Format menu
bookmarks, 328
quick formatting, 284
frac command, 146
fractions
approximating, 71
entering, 6
frequency plot, 195
Frobenius form
matrix, 173
from clause, 374
excluding, 374
fsolve command, 117
full evaluation, 365, 367
FunctionAdvisor command, 83
functional operators, 343
differentiating, 179
plotting, 346
versus expressions, 344
functions
converting between, 357
defining as functional operators, 343

\section*{G}

Gaussian elimination, 173
Gaussian integers, 110
GaussInt package, 110
gcd command, 158
gcdex command, 158
Global Optimization Toolbox, 188
global variables, 385
glossiness
of 3-D plots, 267
go to
bookmark, 329
gradient, 202

Gradient Tutor, 201
Graphing Calculator, xiii
greatest common divisor, 108, 158

\section*{H}

Handwriting palette, 28
has command, 349
hastype command, 349
HazardRate command, 195
headers, 297
Help Navigator
Using, 56
help page
adding hyperlink to, 326
help system
accessing, 54
description, 58
Edit menu, 57
Help Navigator, 55
manuals, 56
search, 56
table of contents, 56
tasks, 56
topic search, 56
tutorials, 56
View menu, 57
Hermitian transpose
matrix and vector, 171
Hessenberg form, 173
hexadecimal numbers, 109
hide
worksheet content, 298
highlight color, 284
Hilbert Matrix, 173
histogram, 196
How Do I ... topics, 58
hyperlinks
in worksheet, 323
entering, 30, 111
icons
open as example worksheet, 57
if statement, 370
ifactor command, 106, 108, 354
igcd command, 108
images
adding hyperlink to, 324
file format, 322
inserting, 322
imaginary unit
entering, 30, 111
implied multiplication, 6
implies operator, 370
Import Data Assistant, 36, 414
indent
format, 286
indeterminates, 352
indets command, 352
indices, 83,167
inequations
solving, 112
for real solutions, 143
symbolically, 114
infinite loops, 379
infolevel command, 125
input
1-D Math, 81
2-D Math, 80
prompt, 80
separating, 82
setting default mode, 81
insert
bookmark, 328
hyperlink, 324
images, 322
section, 296
sketch pad, 319
table, 306
Installer Builder Assistant, 37
instructor resources, 211
Int command, 185
int command, 185
integers
commands, 107
computations, 109
context menu, 89
factoring, 106
Gaussian, 110
modulo m, 109
solving equations, 126
solving modular equations, 126
integration, 69, 88, 183
definite, 184
functional operators, 347
indefinite, 183
iterated, 185
line, 185, 204
numeric, 185
surface, 185
with units, 133
interactive commands
Student, 38
Interactive Linear System Solving tutor, 76
Interactive Plot Builder Assistant
creating animations, 270
creating plots, 238
customizing animations, 276
customizing plots, 264
interface command
rtablesize option, 164
verboseproc option, 386
international system (SI), 129
InterquartileRange command, 194
interval arithmetic, 139
iquo command, 108
iroot command, 108
is command, 145
isprime command, 108
isqrt command, 108
italic format, 284

\section*{J}
j
entering, 111
Jordan form, 171

\section*{K}
keyboard keys
Command Completion, xiv
Context Menu, xiv
keystrokes, 7

\section*{L}

Label component, 390
labels, 99
last name evaluation, 366
lcm command, 158
lcoeff command, 156
ldegree command, 157
least-squares, 173
left single quotes, 96
left-hand side, 350
levels of evaluation, 365
lexicographic order, 153
lhs command, 350
Library Browser
description, 37
Limit command, 176
limit command, 175
limits, 175
multidimensional, 176
line break, 286
line integrals, 204
linear algebra, 173
computations, 168
efficiency, 164, 174
LinearAlgebra package, 173
teaching, 174, 199
Linear System Solving tutor, 76
linear systems
solving, 126, 173
interactive, 76
LinearAlgebra
package description, 86
LinearAlgebra package, 171
commands, 173
numeric computations, 174
LinearSolve command, 126

List Box component, 390
lists, 168, 339
returning solutions as, 115
local variables, 385
logical operators, 370
loops, 373
general, 379
infinite, 379

\section*{M}

Macintosh
command complete, 7
context menus, 39
manipulate
equation, 218
map command, 382
Maple Application Center, 198
Maple library, 45
Maple Portal, 58, 198
Maple Student Help Center, 199
MapleCloud, 423
MaplePrimes, 61
Maplet Builder
description, 37
launching, 403
Maplet authoring, 403
Maplets
adding hyperlink to, 326
authoring, 409
Maplet Builder, 403
Maplets package, 407
launching
Maple worksheet, 401
Maplet file type, 400
Maplets package
Display command, 407
Elements subpackage, 407
Maplet authoring, 407
saving
Maple worksheet, 409
maplet file, 409
using, 401
markers
bookmarks, 327
displaying, 52
for document blocks, 300
math dictionary
description, 58
math educators
portal for, 198
Math Expression component, 390
Math mode, 20
shortcuts, 7
mathematical functions
list, 83
mathematics
computations, 149
teaching and learning, 211
matrices, 343
arithmetic, 169
context menus, 171
data type, 164, 166
defining, 159
efficiency, 164
filling, 166
Hermitian transpose, 171
image, 164
large, 163
multiplication, 169
operations, 171
random, 163
scalar multiplication, 170
selecting submatrices, 167
shape, 164, 166
transpose, 171
type, 164
Matrix
Browser, 162, 163, 342
constructor, 165
data structure, 159
palette, 126, 159, 164
Matrix command, 159
max command, 108
maximize, 188
maximum, 108
Mean command, 194

Meter component, 390
min command, 108
minimize, 188
minimum, 108
mod command, 108
\(\bmod\) operator, 109
modes
Document, 63
Worksheet, 63
modify
table, 307
modp command, 109
mods command, 109
modular arithmetic, 108, 109
modules, 386
MPS(X) files, 192
msolve command, 126
mul command, 381
multiplication
implied, 6

\section*{N}
names, 65, 95
adding assumptions, 144
and symbols, 29
assigned, 366
assigning values to, 94
logical, 370
previously assigned, 366
protected, 95
removing assumptions, 145
reserved, 95
unassigning, 95, 145, 368
valid, 96
versus equation labels, 100
with assumptions, 144
nops command, 352
norm command, 158, 172
normal command, 357
normal form, 357
not operator, 370
numbers, 65
exact, 102
floating-point, 102
non-base 10, 108
numer command, 351
numeric
approximation, 361
computation, 102
numtheory[divisors] command, 108

\section*{0}

ODE Analyzer Assistant, 37, 121
online help, 61
operands, 352
selecting, 381
operators, 65
functional, 343
logical, 370
relational, 370
Optimization
package description, 86
optimization, 191
efficiency, 191
plotting, 190
point-and-click interface, 188
Optimization Assistant, 33, 37, 188
Plotter, 190
Options dialog, 21
or operator, 370
Order environment variable, 182
ordinary differential equations
plotting solution, 124
solving, 121
orthogonal matrix, 173
output
suppressing, 81

\section*{P}
packages, 82
accessing commands, 47
definition, 45
help, 54
loading, 84
top, 86
unloading, 85
page break, 286
page headers and footers, 297
palettes, \(65,69,87,359\)
categories, 23
Components, 393
favorites, 22
managing, 25
Matrix, 159, 164
overview, 22
symbol recognition, 28
Units, 75, 131
paragraph styles
creating, 293
description, 288
parameters, 384
parametric solutions, 117
partial derivative
entering, 65
partial differential equations
solving, 125
paste, 283
examples, 57
PDEs, 125
pdsolve command, 125
pencil
sketch pad, 320
Physics
package description, 86
pie chart, 196
piecewise command, 194
Planck constant, 135
Plot Builder
description, 37
plot command, 183
Plot component, 390
plot3d command, 346
plots
analyzing, 269
pan, 269
point probe, 269
rotate, 269
scale, 269
code for color plates, 279
creating, 263
context menu, 246
displaying multiple plots, 262
insert plot, 249
Interactive Plot Builder, 238
plot command, 249
plot3d command, 249
plots package, 257
creating animations
animate command, 271
Interactive Plot Builder, 270
plot3d[viewpoint] command, 273
customizing, 267
context menu, 264
Interactive Plot Builder, 264
plot options, 267
plot3d options, 267
customizing animations, 277
command-line options, 277
context menu, 277
Interactive Plot Builder, 276
exporting, 279
functional operators, 346
gradient, 203
line integral, 204
ODEs
numeric solution, 123
symbolic solution, 124
optimization problem, 190
playing animations, 275
plots package
animate command, 271
contourplot command, 260
display command, 262
matrixplot command, 258
pointplot command, 257
series, 183
statistics, 195
viewing animations
animate context bar, 275
point-and-click, 32
polynomial equations
solving, 116
numerically, 117
polynomials
algebra, 150
arithmetic, 150
coefficients, 156
collecting terms, 156
degree, 156
division, 150, 152
efficient arithmetic, 158
expanding, 151
factoring, 157
implied multiplication, 152
numeric
algebraic manipulation, 158
operations, 157
sorting, 152
pure lexicographic, 153
total degree, 153
PolynomialTools package, 158
IsSelfReciprocal command, 158
powers
entering, 6
precalculus
teaching, 199
precision, 104
prem command, 158
previously assigned, 366
primality testing, 108
primpart command, 158
print
command, 385
table, 315
printing
embedded components, 392
probability distribution, 193
proc key word, 383
procedures, 385
and assumptions, 147
calling, 383
defining, 383
displaying, 385
inputs, 384
multiple lines, 384
output, 385
using, 383
product command, 381
products
entering, 6
implied, 6
programming
access to Maple's programming guides, 59
programs, 369
modules, 386
procedures, 385
prompt
input, 80
properties
testing, 145
protected names, 95

\section*{Q}

QPSolve command, 191
QR factorization, 173
quadratic programs, 191
quantities with uncertainty, 140
accessing error, 140
accessing value, 140
computing with, 141
constructing, 140
element properties, 141
rounding the error, 140
scientific constants, 141
with units, 141
quick
character formatting, 284
paragraph formatting, 286
quit statement, 379
quo command, 150
quotes
double, 347
left single, 96
right single, 95, 366
unevaluation, 366
quotient
integer, 108

\section*{R}

Radio Button component, 390
random
matrices, 163
variables, 193
randpoly command, 158
range
in plots, 265
operator, 168
rank, 171
rational expressions
entering, 6
read
from files, 415
RealDomain
package description, 86
recurrence relation
solving, 127
reference
equation labels, 99
names, 95
relational operators, 370
rem command, 150
remainder
integer, 108
remove command, 381
repetition statements, 373
reserved names, 95
resources
in help system, 56
restart command, 85, 96
resultant command, 158
return
statement, 379
values, 385
rhs command, 350
right single quotes, 95,366
right-click
expressions, 40
right-hand side, 350
RootOf structure, 116
roots
command, 158
of equations, 116
Rotary Gauge component, 391
row vector
creating, 165
rsolve command, 127
running
documents, 9
worksheets, 9

\section*{S}
saving a Maple Document, 19
scatter plot, 196
scientific constants, 134
list, 135
name, 135
symbol, 135
uncertainty, 138
units, 138
using, 135
value, 137
value and units, 138
Scientific Constants Assistant, 37
ScientificConstants
package description, 86
ScientificConstants package, 134
extensibility, 139
objects, 137
ScientificErrorAnalysis
package description, 86
ScientificErrorAnalysis package, 139
extensibility, 142
objects, 140
search
help system, 56
sections
in worksheet, 295
security levels
auto-execute, 306
security tab
options dialog, 306
select command, 381
selection
execute, 10
selectremove command, 381
semicolon, 81,82
seq command, 380
series, 182
command, 182
plotting, 183
Taylor, 182
type, 183
sets, 338
shape option, 165
show
worksheet content, 298
show contents dialog using, 298
significant digits, 104
simplify command, 353,360
sketch pad
canvas style, 299
slider
embedding, 329
Slider component, 391
solutions
assigning as expression, 119
assigning as function, 120
details, 125
formal, 125
formal power series, 125
integers, 126
real, 143
series, 125
verifying, 119
solve
equations, 112
for real solutions, 143
numerically, 117
symbolically, 114
inequations, 112
for real solutions, 143
symbolically, 114
integer equations, 126
linear system, 126, 173
modular integer equations, 126
ODEs, 121
PDEs, 125
recurrence relation, 127
transcendental equations, 116
solve command, 114, 340
finding all solutions, 116
finding parametric solutions, 117
real solutions, 143
solving procedures, 117
sort
lists, 358
polynomials, 152, 358
sort command, 152, 358
plex option, 153
spacing format, 286
Special Functions Assistant, 37
spellcheck, 332
American spelling, 332
dictionary, 334
sqrfree command, 158
Standard Document Interface, xiii
starting, 3
Standard Units environment, 132
Standard Worksheet Interface, xiii
Startup Code, 388
startup code, 10
statements
multiple lines, 384
Statistics package, 197
continuous distributions, 193
description, 86
discrete distributions, 193
plots, 195
strings, 347
StringTools package, 347
Student
package description, 87
Student Help Center, 60
Student package, 181, 198, 199
calculus subpackages, 187
LinearAlgebra subpackage, 174
Maplets, 198

Tutors, 198
student resources, 211
students
portal for, 198
study guides, 199
style set management, 294
subscripts
entering, 7
format, 284
substitute, 359
sum command, 381
superscript format, 284
Sylvester matrix, 173
symbol completion, 7
symbolic
computation, 102
objects, 103
symbols
entering, 29
names, 29
system of units, 129
controlling, 133
systeme international (SI), 75, 129

\section*{T}

Tab
icon, 88
inserting, 88
key, 88
Tab icon, 10
table of contents
help system, 56
tables, 342
alignment, 311
and Classic worksheet, 315
appearance, 310
borders, 310
contents, 306
execution order, 315
physical dimensions, 310
printing, 315
using, 306
visibility of cell content, 314

Task Browser, 91
task template, 41
task templates, \(91,106,128,159,175\)
taylor command, 182
Taylor series, 182
tcoeff command, 156
Teacher Resource Center, 60
teachers
portal for, 198
teaching with Maple, 211
Technical Support
access, 61
temperature conversion, 130
Text Area component, 391
text field
embedding, 329
Text mode, 20
text regions, 93
tilde, 116, 144, 363
to clause, 374
excluding, 374
Toggle Button component, 391
Tolerances package, 139
toolboxes
Global Optimization, 188
Tools menu
assistants, 33
Assistants and Tutors, 91
Tasks, 91
topic search, 56
Torsion command, 187
total degree, 153
transparency
of 3-D plots, 267
transpose
matrices and vectors, 171
true, 370
Tutorials, 58
tutorials
help system, 56
Tutors, 198, 199, 201
Derivatives, 199
Differentiation Methods, 200

Directional Derivative, 180
Gradient, 201
tutors
accessing, 38
Linear System Solving, 76
using, 37
type command, 349
types, 144, 348
converting, 356
series, 183
testing, 348
subexpressions, 349
typesetting rule assistant, 299

\section*{U}
unapply command, 120
unassign command, 95
unassigning names, 95, 368
uncertainty, 139
quantities with, 139
underline format, 284
unevaluation quotes, 96,366
union
of sets, 339
Unit Converter Assistant, 356
Units
package description, 87
units, \(75,128,356\)
adding to expressions, 75
applying to expression, 131
computing with, 132
context, 129
converting between, 129
environment, 132
evaluating with, 75
in 1-D Math, 132
inserting, 131
overview, 128
prefixes, 132
system of controlling, 133
systems of, 129
Units Calculator, 129

Units Calculator Assistant, 37
Units package, 128
environments, 132
extensibility, 134
UseSystem command, 134
UsingSystem command, 133
Units palettes, 75, 131
universal gravitational constant, 135
UNIX
command complete, 7
context menus, 39
unwith command, 85
URL adding hyperlink to, 325

\section*{V}
variables, 65
variance, 141
VariationalCalculus package, 187
Vector
constructor
vectorfield attribute, 186
data structure, 159
vector fields, 186
vector spaces
basis, 173
VectorCalculus
package description, 87
VectorCalculus package, 186
Student version, 187
vectors, 343
arithmetic, 169
column, 162
context menus, 171
cross product, 171
data type, 165
defining, 161
efficiency, 164
filling, 165
large, 163
multiplication, 169
row, 162, 165
scalar multiplication, 170
selecting entries, 166
shape, 165
transpose, 171
View menu in help system, 57
markers, 52
Volume Gauge component, 391

\section*{W}

Web page
adding hyperlink to, 325
Web site
access to Maple help pages, 61
Application Center, 60, 198
MaplePrimes, 61
Student Center, 199
Student Help Center, 60
Teacher Resource Center, 60
Technical Support, 61
Training, 60
Welcome Center, 60
Welcome Center, 60
while loops, 376
Windows
command complete, 7
context menus, 39
with command, 84
worksheet
adding hyperlink to, 325
Worksheet Environment, 3
Worksheet Migration Assistant, 37
Worksheet mode, 63, 79
worksheets
running, 9
write
to files, 413

\section*{X}
xor operator, 370

\section*{Z}
zero recognition, 357```

