
Mathematical Methods for Physics using Maple

c© 1993 Dr Francis J. Wright – CBPF, Rio de Janeiro

July 10, 2003

Introduction

Contents

1 About the course 2

2 Worked examples from elementary mechanics 3
2.1 Starting the ball rolling! . 4
2.2 The motion of a sliding ladder 9

3 About Maple and its use 16
3.1 Maple documentation . 16
3.2 The DOS-Maple user interface 17

3.2.1 Starting and running Maple 17
3.2.2 Stopping Maple . 18
3.2.3 Online help . 18
3.2.4 Session review . 18
3.2.5 The help and session review browser 19
3.2.6 Command line input 19
3.2.7 Expression editing . 20
3.2.8 Using files . 20
3.2.9 The graphics display drivers 22

3.3 Maple on other systems . 23

4 The Maple language 24
4.1 Maple input format . 25
4.2 Identifiers, names and strings 26
4.3 Statements and expressions 26

1

4.4 Variables, assignment and unassignment 27
4.5 Constants and number format 27
4.6 Names . 28

4.6.1 Labels . 29

5 Maple expressions 29
5.1 Operators . 29
5.2 Structured data . 32
5.3 Simplification, evaluation and unevaluated expressions 33

6 Procedures and functions 34

7 Maple control structures 37
7.1 Selection statement . 38
7.2 Repetition statement . 38

7.2.1 Loop termination . 39

8 Data types and type testing 40
8.1 Data types . 40
8.2 Manipulating data structures 41
8.3 Type testing . 42

9 Arrays and tables 44

10 Some Maple library functions 44

11 Exercises 46

1 About the course

One mathematical technique that is becoming increasingly important is the
use of computers to perform algebraic calculations. This course will present
some of the main mathematical techniques required in theoretical physics
and explain how to apply them using the mathematical computation system
Maple, which provides algebraic, symbolic, numerical and graphical facili-
ties. It will also include some physical applications. It will therefore not be
possible to give as much mathematical rigour or background as would be
usual in a course on mathematical methods but instead there will be a sig-
nificant practical component and you will be expected to use Maple yourself
to solve problems, guided by the examples discussed during the lectures.

2

Some experience with computers and with programming in a language
such as Pascal or C will be an advantage, but is not essential.

This week consists of a general introduction to Maple. In subsequent
weeks I will focus on a particular mathematical topic and discuss in more
detail the relevant Maple facilities. The mathematics will be based mainly on
“Methods of Mathematical Physics” by Jeffreys and Jeffreys (Cambridge,
1956) and “Mathematical Methods of Physics” by Mathews and Walker
(Benjamin, 1965), but some specialized topics (such as differential geometry
and distribution theory) will also use other sources. The idea is that the
presentation of computer algebra will be driven by the mathematics, but
I will also briefly include some of the main mathematical background that
does not relate to direct computation.

The next section of these notes consists of two worked examples to show
Maple in action. The rest provides a brief introduction to Maple, in a way
that I hope will be useful for later reference. I have tried to focus on the basic
aspects, beyond which one can begin to use Maple’s online help facility. It is
in order to make these notes easier to use for reference that I have included
a table of contents.

At the end of each set of notes will be some suggested exercises, and it is
essential that you work through at least some of them using Maple. You can
use any Maple system to which you have access, at any time, but versions
of Maple earlier than version V may not be adequate for all the examples.
We intend to provide access to Maple, and a supervised practical session, for
those who wish to use it. There will be some informal continuous assessment
of the exercises, although it is difficult to continuously assess such a course
in a formal way. The main assessment will consist of one or two written
examinations which will test your understanding of the mathematics and
physics, and require you to write short programs in Maple, based on the
weekly exercises. This should encourage you to take the exercises seriously!

2 Worked examples from elementary mechanics

The following examples involve only very simple physics and mathematics,
so that we can concentrate on the use of Maple.

The Maple output that I will show in the notes will be in the standard
text mode used by the Maple editor from within the review browser, which
has the advantage that it can be imported into a text processor as text
rather than graphics. The actual screen display on many systems (includ-

3

ing MS-DOS/MS-Windows) is prettier than Maple’s textual simulation of
mathematical notation as shown here. I will also reduce the screen width
used by Maple (from 79 to 59 characters) so as to fit the text width of the
notes. Text in “typewriter” font shows actual Maple input, preceded by the
Maple prompt “>”, and followed by the output that it produced. Rather
than import screen images of plots into the notes, I will instead print (some)
plots independently and include them as unnumbered pages.

I will explain more of the details as the course progresses. However, in
the following examples I use equations (denoted by the equal sign “=”) quite
a lot, and an equation is treated by Maple as a particular kind of algebraic
expression. A statement of the form “name := expression” is an assignment
and not an equation; it means “in future, use the name to represent the
expression”, where the expression named might in fact be an equation. I
find it a useful technique in computer algebra to work with such “named
equations”. The symbol " in Maple represents the last value computed, ""
represents the one before last and """ the one before that.

2.1 Starting the ball rolling!

Let us consider the following problem. A cylinder of mass M and radius r
rolls without slipping down a plane slope making an angle θ to the horizontal,
as shown in the figure below. Find the distance d that it has travelled, its
velocity v and acceleration a at a time t after it has been released from rest,
and plot a graph of them.

&%
'$

������������)

θ

d

��1r

M

�����������������������

I will solve this problem by using conservation of energy. The linear
kinetic energy is

> LKE := 1/2*M*v^2;
2

LKE := 1/2 M v

4

and the angular kinetic energy is

> AKE := 1/2*MI*w^2;
2

AKE := 1/2 MI w

where MI is the moment of inertia, and w (representing ω) is the angular
velocity, which is given by

> w := v/r;
w := v/r

With this value for ω, the angular kinetic energy is

> AKE;
2

MI v
1/2 -----

2
r

The gravitational potential energy is

> PE := M*g*h;
PE := M g h

where g represents the gravitational acceleration and h the height of the
cylinder. Then, starting from rest at height h = h0, conservation of energy
leads to the equation

> Energy_eqn := PE + LKE + AKE = subs(h=h0, PE);
2

2 MI v
Energy_eqn := M g h + 1/2 M v + 1/2 ----- = M g h0

2
r

In terms of the distance d as a function of time t, represented by the Maple
function d(t):

> h := h0 - d(t)*sin(theta);
h := h0 - d(t) sin(theta)

5

> v := diff(d(t), t);
d

v := ---- d(t)
dt

> Energy_eqn := Energy_eqn;
Energy_eqn := M g (h0 - d(t) sin(theta))

/ d \2
MI |---- d(t)|

/ d \2 \ dt /
+ 1/2 M |---- d(t)| + 1/2 --------------- = M g h0

\ dt / 2
r

Note that Maple does not automatically simplify this expression by collect-
ing like terms. Before doing so explicitly, let us first compute the moment
of inertia.

The moment of inertia of a tube of mass density m per unit cross-sectional
area, radius x and thickness dx is

> (2*Pi*x * dx * m) * x^2;
3

2 Pi x dx m

Hence the moment of inertia of a solid cylinder of radius r is

> MI := Int(2*Pi*m*x**3, x = 0..r);
r
/
| 3

MI := | 2 Pi m x dx
|
/
0

I have chosen an “inert” form of integral that remains symbolic in order to
check it, so now I will load the value function to evaluate inert forms, and
apply it to get

> with(student, value):

6

> MI := value(MI);
4

MI := 1/2 Pi m r

Similarly, the total mass of the cylinder is

> M = Int(2*Pi*m*x, x = 0..r);
r
/
|

M = | 2 Pi m x dx
|

/
0

> value(");
2

M = Pi m r

Note that I have expressed this as an equation, rather than an assignment,
so that I can express m in terms of M by solving the equation:

> m := solve(", m);
M

m := -----
2

Pi r

Re-evaluating MI to substitute the new value for m gives the final result:

> MI := MI;
2

MI := 1/2 M r

Now let us simplify the ODE (the energy equation) to see what it looks
like, using all the new values for the quantities on which it depends:

> Energy_eqn := simplify(Energy_eqn);
Energy_eqn :=

/ d \2
M g h0 - M g d(t) sin(theta) + 3/4 M |---- d(t)| = M g h0

\ dt /

7

and solve it, with the initial condition, to give the solution in explicit form:

> dsolve({Energy_eqn, d(0)=0}, d(t), explicit);
2

d(t) = 1/3 t g sin(theta)

It is convenient to assign the solution to a simple variable ready to plot
it:

> d := rhs(");
2

d := 1/3 t g sin(theta)

We also need the velocity and acceleration:

> v := diff(d, t);
v := 2/3 t g sin(theta)

> a := diff(v, t);
a := 2/3 g sin(theta)

Finally, let us try to plot these functions:

> plot({d, v, a}, t=0..3);
Error, (in plot) too many indeterminates in functions, {
theta, t, g}

This complaint is not really surprising! We need to assign numerical values
to the parameters:

> theta := convert(30*degrees, radians);
theta := 1/6 Pi

I have done it this way just to illustrate a use of the convert function. Also,
the approximate value of the gravitational acceleration in m/s/s is

> g := 10:

Now let us try again, this time also giving the plot a title:

> plot({d, v, a}, t=0..3, title =
> ‘Distance, velocity and acceleration of rolling cylinder‘);

8

After a brief pause, the effect of this instruction is to display a set of super-
imposed graphs on the screen. You may need to change the palette to get a
visible plot, but this can only be done interactively. (Under MS-DOS, press
function key F10 and then press P to cycle the screen colours until the plot
is clearly visible. The plot can also be interactively printed or saved to a file
by using the Output menu.) When you have finished admiring the graphs,
press Esc to return to Maple itself.

2.2 The motion of a sliding ladder

This is a slightly less straightforward example.
Suppose that a ladder (or beam) of uniform mass m has its bottom end

resting on a horizontal floor, its top end resting against a vertical wall, and
that both its ends slide smoothly with no friction. It the ladder is placed
in any position other than exactly vertical it will slide down to the ground.
Find and plot the locus of its midpoint as it slides. Find the equation of
motion of its midpoint as a function of time, and plot its motion (for some
choice of parameters).

u

y0

x0

l

l

(x, y) =
(1
2x0,

1
2y0)

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

u
l

l

(x, y)

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA

-

6

?
mg

Rv

Rh

θ

Let the cartesian coordinates of the midpoint be (x, y), which depend on
time if the ladder is moving and so are actually (x(t), y(t)). Let the length
of the ladder be 2l, and the coordinates of the bottom and top of the ladder

9

be (x0, 0) and (0, y0). Then the coordinates of the midpoint must satisfy
x = 1

2x0, y = 1
2y0. The geometry is shown in the first figure; the second

figure shows the forces causing the ladder to slide.
By Pythagoras’ theorem, the ladder must satisfy the equation

> x0^2 + y0^2 = (2*l)^2;
2 2 2

x0 + y0 = 4 l

together with the inequality 0 ≤ x0 ≤ 2l. Hence the equation of the mid-
point is

> subs(x0 = 2*x, y0 = 2*y, ");
2 2 2

4 x + 4 y = 4 l

> geom_eqn := "/4;
2 2 2

geom_eqn := x + y = l

constrained by the obvious inequality 0 ≤ x ≤ l. Solving the equation
explicitly and taking the positive solution gives

> solve(",y); y_x := "[1];
2 2 1/2 2 2 1/2

(- x + l) , - (- x + l)

2 2 1/2
y_x := (- x + l)

I have given names to the mid-point equation and the explicit form of y(x)
so that I can use them again later. It is of course obvious what this locus is,
but it is still nice to see it. The only contribution of the length parameter l
is to set the scale for the problem, so there is no loss of generality by setting
it to 1 (temporarily) for plotting graphs, as follows:

> l := 1:
> plot(y_x, x=0..l, y, title =
> ‘Locus of the Center of a Sliding Ladder‘);
> l := ’l’:

10

I will analyse the dynamics using forces and torques; the same analysis
using energy is left as an exercise. We must now regard x and y as functions
of time t, but an elegant feature of Maple allows us to leave the dependence
implicit initially and to use the operator notation D for differentiation. Ini-
tially I will keep the analysis as symmetrical as possible by regarding x and
y as independent variables, and only later impose the geometrical relation
expressed by geom eqn determined above.

There are three forces acting on the ladder: its weight mg acting down-
wards, where g is the gravitational acceleration; a reaction force Rv acting
upwards; and a reaction force Rh acting to the right. There is assumed to
be no friction, so the only forces at the ends of the ladder are the reactions
perpendicular to the surfaces on which the ladder rests.

The vertical and horizontal motions of the centre of mass of the ladder
are therefore governed by the following two equations:

> Down_force_eqn := m*g - Rv = -m*(D@@2)(y);
(2)

Down_force_eqn := m g - Rv = - m D (y)

> Right_force_eqn := Rh = m*(D@@2)(x);
(2)

Right_force_eqn := Rh = m D (x)

where D(2)(x) might more conventionally be written as ẍ, etc. The forces
also generate a torque about the centre of the ladder which causes an angular
acceleration governed by the following equation:

> Torque_eqn := x*Rv - y*Rh = MI*D(w);
Torque_eqn := x Rv - y Rh = MI D(w)

where MI represents the moment of inertia of the ladder about its centre,
and w represents the angular velocity (ω = θ̇) so that D(w) represents the
angular acceleration (ω̇ = θ̈).

Eliminating the vertical and horizontal forces leaves the torque equation
as the main dynamical equation:

> solve(Down_force_eqn, {Rv});
(2)

{Rv = m g + m D (y)}

> Torque_eqn := subs(", Right_force_eqn, Torque_eqn);

11

(2) (2)
Torque_eqn := x (m g + m D (y)) - y m D (x) = MI D(w)

The moment of inertia MI about the centre of a ladder of length 2l and
mass m is easily computed as in the previous example. Denoting the linear
mass density by ρ, we have

> MI := int(rho*x^2, x=-l..l);
3

MI := 2/3 rho l

> m = int(rho, x=-l..l);
m = 2 rho l

> solve({"}, rho);
{rho = 1/2 m/l}

> MI := subs(", MI);
2

MI := 1/3 m l

Using this value in the torque equation, dividing out the mass, and
simplifying the result, gives

> Torque_eqn := simplify(Torque_eqn/m);
(2) (2) 2

Torque_eqn := x g + x D (y) - y D (x) = 1/3 l D(w)

The next step is to compute the angle θ, angular velocity ω and acceler-
ation ω̇, all as functions (implicitly of time t). The composition operator in
Maple is @, but unfortunately I can find no easy way to make it distribute
over addition, hence the need for the slightly inelegant substitution below:

> tan @ theta = x/y;
tan@theta = x/y

> D(");
2 D(x) x D(y)

(1 + tan)@theta D(theta) = ---- - ------
y 2

y

12

> subs((1+tan^2)@theta=1+(x/y)^2, ");
/ 2 \
| x | D(x) x D(y)
|1 + ----| D(theta) = ---- - ------
| 2 | y 2
\ y / y

> simplify("*y^2);
2 2

(x + y) D(theta) = D(x) y - x D(y)

> subs(geom_eqn, ");
2

l D(theta) = D(x) y - x D(y)

> w := solve(", D(theta));
- D(x) y + x D(y)

w := - -----------------
2
l

The only parameters remaining in this problem are l and g, and we need
to define them to be constants (rather than functions):

> constants := constants, l, g;
constants :=

false, gamma, infinity, true, Catalan, E, Pi, l, g

Then with the above definition of the angular velocity, the torque equation
becomes

> Torque_eqn;
(2) (2) (2) (2)

x g + x D (y) - y D (x) = 1/3 y D (x) - 1/3 x D (y)

Collecting all terms on the left allows some simplification by cancellation to
give the final fairly symmetrical ODE:

> Torque_eqn := lhs(") - rhs(") = 0;
(2) (2)

Torque_eqn := x g + 4/3 x D (y) - 4/3 y D (x) = 0

13

Expressing y in terms of x gives a differential equation for x alone:

> y := y_x; Torque_eqn;
2 2 1/2

y := (- x + l)

x g + 4/3

/ (2) 2 2 2 \
| D (x) x D(x) D(x) x |

x |- -------------- - -------------- - --------------|
| 2 2 1/2 2 2 1/2 2 2 3/2|
\ (- x + l) (- x + l) (- x + l) /

2 2 1/2 (2)
- 4/3 (- x + l) D (x) = 0

Normalizing and discarding the common denominator gives

> numer(normal(lhs("))) = 0;
2 2 3/2 (2) 2 2 2 2

3 x g (- x + l) + 4 D (x) x l - 4 x D(x) l

(2) 4
- 4 D (x) l = 0

This equation looks better if the terms are collected with respect to the
first and second derivatives, although this is not necessary for subsequent
analysis:

> Torque_eqn := collect(", {(D@@2)(x), D(x)});
2 2 4 (2)

Torque_eqn := (4 x l - 4 l) D (x)

2 2 3/2 2 2
+ 3 x g (- x + l) - 4 x D(x) l = 0

This torque equation is actually an operator equation, and to proceed it
is necessary to make the dependence on t explicit:1

1g(t) should have simplified to just g because g has been declared constant, in the
same way that l(t) has simplified – this appears to be a bug in Maple V R1.1. It does
simplify when g is later given an explicit numerical value.

14

> Torque_eqn := Torque_eqn(t);
2 2 4 (2)

Torque_eqn := (4 x(t) l - 4 l) D (x)(t)

2 2 3/2 2 2
+ 3 x(t) g(t) (- x(t) + l) - 4 x(t) D(x)(t) l

= 0

The analytical solution given by

dsolve(Torque_eqn, x(t));

is horrible (try it for yourself), so instead let us solve the ODE numerically
and plot a graph of x(t). First we need to fix the parameters:

> l := 1: g := 10:

It is clear from the ODE that ẍ = 0 at x = 0, so that there is an
(unstable) equilibrium when the ladder is exactly vertical. Therefore, let us
start the ladder at rest at a small angle to vertical, i.e. with x having a value
that is a small fraction of its maximum value l (= 1).

> F := dsolve({Torque_eqn, x(0)=0.1, D(x)(0) = 0}, x(t),
> numeric);
F := proc(t) ‘dsolve/numeric/result2‘(t,1559200,[2]) end

The numerical solution of a DE in Maple is a procedure, which when called
with a particular value of the independent variable returns a sequence of val-
ues consisting of the independent variable followed by the dependent vari-
ables, in this case t, x(t), of which we only want x(t) to plot. One way
to plot the values returned by such a procedure is to embed it in another
(anonymous) procedure that extracts the second element returned by F,
thus:

> plot(proc(t) F(t)[2] end, t=0..1.4, x, title =
> ‘Horizontal Position of the Center of a Sliding Ladder‘);

Note that this plot takes a few minutes to produce. The plot command
could easily be extended so as to plot both x(t) and y(t) together (which
would, of course, take twice as long).

15

3 About Maple and its use

Maple is a system for mathematical computation designed and implemented
by the Symbolic Computation Group at the University of Waterloo in On-
tario, Canada. It is named after the Canadian national emblem. Maple
began development in 1980, and is now one of the major 6 such systems.
It runs on a wide range of computers including relatively cheap personal
micro-computers. I will refer to systems like Maple as “Computer Algebra
Systems” (CASs), even though they all do more than “just algebra”, be-
cause it is the algebraic and symbolic facilities that distinguish them from
other computational systems and languages.

Maple provides good facilities for algebraic or symbolic computation,
and fairly good facilities for numerical computation and graphics. It has a
good online help facility, which is particularly useful when one is learning
how to use it, and a fairly friendly user interface, which almost unavoidably
varies between different computing systems.

The current version of Maple is version V, and a second release of Maple
V is becoming available for various computing systems. To be specific, I will
describe Maple V Release 1.1 for 386/486-based micro-computers running
under MS-DOS Version 5.00. This runs satisfactorily on a 25MHz 386 with
4Mb of (conventional plus extended) main memory and a hard disk. The
installed system takes about 8Mb, and ideally Maple needs some free disk
space to use as “swap space” to provide “virtual memory” unless there is
a lot of physical main memory. Maple appears to be intended to drive
a colour screen. With a monochrome (black and white) screen (at least
with my LCD display) I found it a little tricky to make the user interface
and graphics fully useable. However, it is possible to get output that looks
quite similar to conventional printed mathematics, and useful well-defined
graphics. Most important aspects of Maple are independent of the particular
system on which it runs.

3.1 Maple documentation

Maple V is one of the better documented CASs. There are three books
about it written by the main Maple developers and published by Springer-
Verlag. The “Maple V Language Reference Manual” and the “Maple V
Library Reference Manual” were published in 1991, and “First Leaves: A
Tutorial Introduction To Maple V” was published in 1992. Most of Maple
consists of library routines, and these are all documented in the online help

16

system, i.e. the whole of the library reference manual is available within
Maple itself in an essentially identical format, so that other than for reading
in bed, on the beach, etc, there is little need for this manual.

For this course it should not be essential to refer to any documentation
other than the course notes, and I will give a summary of the Maple language
later. However, it is useful to read “First Leaves” to get a feel for how one
uses Maple, and the language reference manual is useful for details of the
language that are not available online. The language reference manual is
probably the most useful of the three books to actually buy.

I will also provide an introduction to Maple written by the UK National
Computer Algebra Support Officer while that project was running, which is
freely distributed.

The internal operation and theory of CASs is outside the scope of this
course but, for anyone interested, the most appropriate book to read in
the context of Maple, and the most recently published, is “Algorithms for
Computer Algebra” by K. O Geddes, S. R. Czapor and G. Labahn (Kluwer,
1992), but unfortunately this book is very expensive. A much cheaper book,
which does not relate specifically to Maple but is nevertheless very useful, is
“Computer Algebra: Systems and Algorithms for Algebraic Computation”
by J. H. Davenport, Y. Siret and E. Tournier (Academic Press, 1988 – second
edition available now or soon).

3.2 The DOS-Maple user interface

Much, but not all, of the information in this section is specific to the MS-
DOS implementation of Maple, whereas I hope that the rest of the notes
will be generally applicable. There is also a new version of Maple for Mi-
crosoft Windows, which should be fairly easy to use by anyone familiar with
Windows.2 Here I will describe primarily the MS-DOS version (which can
also be run under Windows in an MS-DOS window).

3.2.1 Starting and running Maple

To start Maple under MS-DOS type the command maple. (To start it under
Windows open the appropriate program group and then open the Maple
icon.)

2It looks similar to the X-Windows version described briefly below (which appears to
be the direction in which Maple development is heading), but it is not identical.

17

When Maple starts, it briefly displays an initial banner which then dis-
appears to leave a screen that is blank except for a triangular “prompt”
near the bottom left, and a “status line” along the bottom. At the right
end of the status line is a display of the amount of memory in kilobytes
that Maple is currently using, which increases and decreases while Maple
is running, and the total amount of time in seconds that Maple has spent
actually computing. As an alternative to typing commands, Maple provides
menus that operate in the conventional MS-DOS way: pressing the function
key F10 brings up a menu bar at the top of the screen, from which menus
and options can be selected either by using the cursor keys and the Return
key or by pressing a letter key, which usually corresponds to the first letter
of the menu entry.

3.2.2 Stopping Maple

To exit from Maple when it is waiting for input press function key F3 and
then acknowledge the query by pressing the Y key.

To interrupt a computation and return Maple to input mode press the
Ctrl, Alt and left Shift keys simultaneously. Alternatively, the usual ways of
killing an MS-DOS program should work, but are not recommended because
they may cause disk corruption.

3.2.3 Online help

Pressing function key F1 displays a menu of topics, for which subtopic menus
can be selected to at most two levels by pressing the right-arrow (→) key,
and help on the currently selected topic is provided when the Return key
is pressed. Pressing F2 causes Maple to search for help on the specified
topic. Alternatively, you can type a command of the form ?topic or just ?.
However the help system is invoked, once a suitable topic has been chosen
then help on it is displayed using the Maple “browser” facility, which is
explained further below.

3.2.4 Session review

Maple automatically keeps a “session log” – an internal record of its input
and output – which can be saved to disk from the Session menu or reviewed
interactively by pressing function key F5. The browser then allows previous
input to be selected and re-input, possibly after editing it. Maple output
in the session log looks slightly different from that originally shown on the

18

screen, because it uses only standard ASCII characters and not the enhanced
IBM character set, so that it is portable (machine independent) and also can
be edited using any standard text editor. Output of the session log directly
to a file (called “Capture”) can also be turned on and off from the Session
menu.

3.2.5 The help and session review browser

The browser allows scrolling up and down using the usual keys and searching
using function key F2. It also allows a block of lines to be selected and
either input to Maple or edited. To do this, move the highlight to the first
line of the block and press the Ins key, then move to the last line of the
block and press Ins again. Pressing Del cancels the block selection. When
a block is selected, pressing the Return key will read the whole block into
Maple, or pressing function key F5 will load the block into the Maple editor.
After editing, pressing F2 (save) and then F3 (quit) will return you to the
browser containing only the edited block which is automatically selected,
so that pressing Return will read the whole edited block into Maple. Note
that the session log itself is never changed and only a copy of (part of) it is
actually edited. This facility allows examples in the help documentation to
be input into Maple and executed “live”.

The Maple editor provides its own online help, which documents all of
its commands, by pressing function key F1. The same editor is used for all
(except command line) editing within Maple.

3.2.6 Command line input

Most interactive input to Maple is typed in response to the triangular
prompt symbol at the bottom left of the main screen area and appears
on the screen there. Maple does not process such input until the Return key
is pressed, and until that time it can be edited using the following keys:

→ or ← moves the cursor right or left one character without erasing;

Home or End moves the cursor to the beginning or end of the line;

Backspace (←−) or Del deletes the character before or at the cursor;

Esc deletes the whole line;

Ins turns insertion mode off and on – insertion is initially on.

19

Maple remembers the last 100 lines of interactive input, and the ↑ and ↓
cursor keys scroll through this list, from which a selected line can be edited
as above and then re-input. To search for a particular line, type the first
few characters of it and then press function key F2.

3.2.7 Expression editing

Any valid Maple expression can be edited in the Maple text editor by using
the Edit menu, or by giving an instruction of the form

xed(expression):

On saving and quitting from the editor, the expression is re-input to Maple.
If expression was actually a variable that evaluated to the expression being
edited then the edited expression is assigned back to the same variable.

3.2.8 Using files

The word “file” is the name given to a collection of information stored on
a secondary storage device such as a magnetic disk. Files are stored in
“directories” (sometimes called “folders”), which are essentially files with
a special structure. It will probably be necessary occasionally to use the
facilities provided by MS-DOS (or Windows) to manipulate files. If Maple
is run directly from MS-DOS then a new MS-DOS command processor can
be run from within Maple by pressing function key F4, and then when
the MS-DOS command exit is executed control will be returned to Maple,
exactly as it was immediately before MS-DOS was called. Alternatively,
a single MS-DOS command can be passed from within Maple to MS-DOS
for execution by preceding it with a exclamation mark, i.e. by executing a
Maple command of the form

!MS-DOS command

which will return to Maple immediately after executing the command. This
use of the “!” character to call MS-DOS is analogous to the use of “?” to
call the Maple help facility.

MS-DOS commands are not case sensitive. The most useful are prob-
ably those in the table below. Most of this list is an exact subset of the
output of the MS-DOS help command, which can be used to find all MS-
DOS commands or to find more information about any particular command.
Alternatively, invoking any MS-DOS command with the switch “/?” will
display help on the command, i.e. give to MS-DOS a command of the form

20

Table 1: Main MS-DOS commands

HELP Provides Help information for MS-DOS commands.
DIR Displays a list of files and subdirectories in a directory.
CD Displays the name of or changes the current directory.
X: Change to disk drive X.
COPY Copies one or more files to another location.
DEL Deletes one or more files.
REN Renames a file or files.
MD Creates a directory.
RD Removes a directory.
FORMAT Formats a disk for use with MS-DOS.
EXIT Quits the COMMAND.COM program (command interpreter).

command /?

It is also possible to run the Maple editor on a file outside Maple by
giving MS-DOS a command of the form

mapledit file

The main use of files with Maple (at least for this course) is to develop
Maple programs in files that can be read into Maple instead of typing in-
structions interactively. A file (or directory) in MS-DOS is identified by a
name consisting of up to 8 letters optionally followed by a point “.” and
an extension consisting of up to 3 letters. (In fact, digits and some other
characters are allowed in file and directory identifiers, but it is probably
safest to use letters.) The purpose of the extension is to indicate the type
of a file, and therefore it makes sense to use an extension such as “.map” for
Maple source files, but Maple itself does not enforce this. The only special
extension that Maple recognises is “.m”, which indicates a Maple binary file.
These files are not human-readable and there is no need to use them for this
course, so DO NOT USE THE EXTENSION “.M”. It is also reasonable to
use no extension at all, in which case the point (.) can also be omitted.

The best way to start developing a file of Maple code is to work inter-
actively and then save the interactive input. You can either save the whole
session, or edit it before saving, as described above. Either way, you can
then edit the saved file as described below. A file of Maple code is read into
Maple by giving a command of the form

21

read `Maple file identifier`;

Note that the quotes must actually be typed as show here,3 and that they are
both backquotes4 (which could alternatively be called left quotes or opening
quotes). The backquote is not the same as the forward quote (’) or the
double quote ("), which both have other meanings in Maple. Unfortunately,
the precise location of such symbols differs among different keyboards.

Maple defines a format for file identifiers5 that is the same on all sys-
tems, and hence not always the same as that used by the operating system.
In the case of MS-DOS the difference is that Maple uses forward slashes
“/” in place of the backslashes “\” used by MS-DOS to separate directory
components. However, for files in the current directory it suffices to specify
only the file name (and extension), so it is best to keep all your Maple files
in one directory and make this the (MS-DOS or Windows) current directory
before starting Maple. File identifiers in Maple should always be specified as
described here; when given as part of a command to the main input prompt
the backquotes should be used as shown above for the read command, but
when given to a prompt from a menu the backquotes should not be included.

By default, a Maple input file is not displayed or echoed to the screen
– only the output that it produces is displayed. To have the input also
displayed, the value of the interface variable echo must be increased to
at least 2, which can be done using the Interface menu or the interface
command. There is an inverse operation of read called save, and screen
output can also be re-directed to a file by using the commands writeto and
appendto – see the online help for details.

Files can be edited using the Maple editor from within Maple, most
easily via the Edit menu, or alternatively by using the commands fed or
fred.

3.2.9 The graphics display drivers

There are two drivers, for two- and three-dimensional plots, and online
help about the drivers is available through the commands ?2Dgraphics and
?3Dgraphics. After a plot has been displayed, pressing function key F10

3This is not strictly true, but it is always safest!
4Here, and in the rest of this set of notes, I will use the symbol ` for the backquote to

make it stand out and because it looks more like the symbol normally used on keyboards
and screens, but elsewhere I will use the symbol ‘, as I used in the introductory examples,
which is the true typewriter font backquote character.

5It is essentially the UNIX format.

22

produces a menu that allows various features of the plot to be changed inter-
actively and the plot optionally to be output. (However, you will probably
not have access to a suitable output device, and printed output will probably
not be required for this course.) This interactive facility can be particularly
useful to change things like the viewing direction for a 3D surface plot.

3.3 Maple on other systems

The “Maple V Language Reference Manual” describes the use of Maple un-
der UNIX and X Windows, which are both relevant to the SUN workstation
implementation, and under MS-DOS. (These are clearly seen as the main
systems on which Maple will be run!)

Under UNIX, online information about running Maple should be avail-
able by giving the UNIX command

man maple

and the standard version of Maple should be executed by giving the UNIX
command

maple

This version of Maple may not provide very good graphics.
Maple will read the initialization file .mapleinit in your home directory.

Maple should respond normally to the standard interrupt and suspend sig-
nals from the keyboard, and the system escape mechanism (! etc.) described
above under MS-DOS should also work. A double interrupt will stop Maple
completely (as will the keyboard quit signal).

X Windows is a portable windowed user interface that runs under UNIX,
and to run Maple under X Windows (which is probably advisable if possible)
use the command

xmaple

X-Maple provides a window onto a “worksheet”, which is divided into
“cells”, each containing one input statement and its output. Such worksheet
formatting can be controlled by options in the Utilities menu. A caret ^
indicates the text insertion point, which can be moved with the mouse or
cursor keys. Long lines can be entered without being read by Maple by
ending each line not with Return but with Newline, Enter or Control-J ,
which allows multi-line input to be reviewed and edited. To read the input

23

into Maple, select (highlight) it with the mouse and then press the Return
key; otherwise the effect of Return is to read in only the current line as
usual. This technique can also be used to re-read any text in the Maple
worksheet.

Text can be selected in various ways: double clicking the left mouse
button selects a word; triple clicking it selects a line; clicking the left button
at the start and the right button at the end selects a block, as does dragging.
Selected text is automatically copied to an internal buffer (the clipboard),
and can be inserted at the caret by clicking the middle mouse button.

You can initiate a search for particular text in the worksheet by pressing
Control-S (or Control-R to search backwards). There are buttons on the
window to interrupt, pause or quit Maple. Help can be accessed only via
the ? command, but the help appears in a separate window, in which the
text search and copying facilities can be used. Similarly, plots appear in
separate windows, and should be of good quality. There are boxes showing
the location of the mouse pointer within the graph.

On any other system, there is a good chance that the command maple
will run Maple if it is available, but it may require a little effort to configure
it to produce good graphics.

4 The Maple language

You have already seen Maple in action in the previous simple worked ex-
amples. The purpose of this section is to explain more carefully how Maple
works, and provide a reference. In most cases further details are available in
the online help system, and the important thing is to know what facilities
are available. Examples of the facilities outlined below will be given as the
course progresses, hence much of the following description will be very brief.

The Maple language is a modern high-level language, which unfortu-
nately is not very similar to any other programming language. It is gener-
ally “Algol-like”, and is perhaps closest to Algol 68. Among current popular
languages it has similarities to Pascal, but without any type declarations or
begin/end statements; statements are grouped into blocks automatically
where appropriate.

The Maple language is interpreted, as for example BASIC and LISP
usually are, rather than compiled, as for example Pascal and C usually are.
Maple source code is stored within Maple in a compressed binary form, and
it is possible to input and output it in this form, but it is not compiled.

24

Like most interpreted languages, Maple is intended to be used interactively,
meaning that the user types an instruction and then, depending on the result
that it produces, decides what to do next. However, sequences of instructions
identical to those that would be typed interactively can be entered from a
file. Variable type declarations are not very convenient to use interactively,
nor are they as relevant as in a compiled language, and it is common for an
interpreted language not to use type declarations. Even though variables do
not themselves have types, data do, and a variable inherits the type of the
datum assigned to it, so that variable typing is handled dynamically.

4.1 Maple input format

Maple is a free-format language like Pascal, meaning that the beginnings and
ends of lines of program text are of no significance (except for comments –
see below). Because statements are not terminated or separated by the
ends of lines it is necessary to use another character, and Maple uses both
the semicolon “;” (as do many languages) and also the colon “:” (as do
some versions of BASIC). The difference is that if “:” is used to terminate a
“top-level” statement input interactively then any output that it might have
produced is suppressed. I recommend normally using “;” except for top-
level statements that you specifically require to produce no output. Maple
allows an empty statement, so that it makes no difference if a statement
separator is included where none is required. (Pascal, for example, is much
more fussy about this!) Hence, if in doubt, include a separator.

When input is interactive, Maple reads each physical line when the Re-
turn key is pressed, but only executes those statements that have been ter-
minated within the line, and saves any final un-terminated statement to be
continued on the next line.

Maple is a case-sensitive language, which means that it regards the same
letter in upper case (e.g. “X”) and lower case (e.g. “x”) as two different
characters. This is like C and unlike Pascal. Hence care must be taken to
use the right case. Most words of the Maple language itself are in lower case,
but some library functions have the first letter only capitalized and a few
are written using all capitals. A few functions come in two forms, e.g. “int”
and “Int” as used in the worked examples, the second of which has the
first letter of its name capitalized and is an “inert” version that itself never
computes anything. Inert functions just provide data structures that are
understood by other functions including the normal Maple two-dimensional
output function (referred to as the “pretty-printer”).

25

When composing Maple instructions in a file it is a good idea to include
comments for the benefit of yourself and other human readers. The sharp
sign “#” and all characters following it up to the end of a physical line
are treated as a comment and ignored by Maple. (This is about the only
case where a physical end-of-line has any significance.) It is a good idea
to include plenty of comments when programming, but only use comments
that actually convey useful information. The comments should be written
at the same time as the code and not afterwards, and they should be treated
as equally important and kept up-to-date when the code is edited. Maple
allows completely blank lines, which are useful to separate logically distinct
segments of code.

4.2 Identifiers, names and strings

Ojects such as variables and functions are given names or identifiers by
which to refer to them, and a “string” is the name given in programming to
a sequence of characters that are to be manipulated literally, for example as
a title for a plot. In Maple, identifiers and strings are distinguished only by
the way that they are used, and any string can be used as an identifier. A
string can be up to 499 characters long. A letter followed by zero or more
letters or digits is automatically a string, and it is normally best to use only
such simple strings as identifiers. The underscore character counts as a letter
for this rule, but identifiers beginning with an underscore are used internally
by Maple and so should not be introduced by the user. More generally, a
string enclosed in backquotes can contain any characters, as described above
in the context of file identifiers.

4.3 Statements and expressions

A program consists of a sequence of instruction statements input from the
keyboard and/or files, which are executed by Maple in the order in which
they are input. However, this is strictly true only for “top-level” statements,
and for the statements within any group controlled by a selection or repeti-
tion statement, because (as language purists will be pleased to note) there
is no “go to” type of statement in Maple. In fact, the Maple language it-
self is extremely small, but it has a lot of operators and even more library
functions.

Much of the work of Maple is accomplished using expressions, and an
expression is a valid statement but not vice-versa. The only statements

26

that have a value associated with them are expressions. If an expression
is input at top level as a statement and terminated with a “;” then its
value is automatically output, so that it is not necessary to call the print
function explicitly – this is only necessary to output values from lower-level
expressions.

4.4 Variables, assignment and unassignment

Variables in mathematics are used in two way; sometimes they represent an
unspecified value and are called unknowns, and sometimes they represent
a specified value, when their meaning in an expression is that they are to
be replaced by the value that they represent. In a programming language,
a variable is given a specific value by an assignment statement, which in
Maple (as in Pascal) has the form

variable := expression .

In “conventional” programming languages, variables can be used only in
this second way – they can be used in expressions only after they have been
assigned a value. However, in Maple, a variable with no assigned value can
be used in an expression, in which case it represents an unknown and just
remains symbolic. If it is later assigned a value then any previously con-
structed expression that contained the symbolic variable will now evaluate
to the expression with the variable replaced by its value.

Assignment always transfers information “from right to left”, and the
asymmetric nature of the assignment operator serves as a useful reminder of
the asymmetry of the assignment process itself. A variable (on its own) on
the left of an assignment statement is not evaluated, so that a new value can
be assigned to a variable by simply executing a new assignment statement.

Any expression can be forced to remain symbolic, i.e. to evaluate to
itself, by enclosing it in single forward quotes. It is a special case of this
that allows a variable to be unassigned or cleared in Maple by an assignment
of the form

variable := ’variable’ .

4.5 Constants and number format

Numbers are always constants. Maple works with essentially three types of
number:

27

integers are input as arbitrarily long sequences of digits (only);

fractions are input in the form “integer / integer”;

floating-point numbers are input in either the form “integer . integer” or
the form “Float(mantissa, exponent)” (note the capital F), which
represents mantissa × 10exponent .

Any number can be made negative by preceding it with the (unary) minus
operator “-”. (This character is the same as the hyphen used when typing
text; do not confuse it with the underscore character which is often placed
on the same key and accessed with the Shift key.) A positive number can
optionally be preceded by the (unary) plus operator “+”. This can occa-
sionally be useful to emphasize that a number is positive, or to type a pair
of positive and negative numbers symmetrically.

The concept of a “symbolic constant” is also useful. Any unevaluated
variable can be regarded by the user as a symbolic constant but, to make
Maple recognise it as a constant, its name should be included in the se-
quence of constant names assigned to the reserved variable constants. The
symbolic constants that Maple recognises by default are

false, gamma, infinity, true, Catalan, E, Pi, I .

More generally, Maple recognises as a constant any expression that contains
only numbers and recognised symbolic constants.

In fact, the constant I is implemented as an alias for (-1)^(1/2) to
give it the properties of the imaginary number, rather than explicitly as
a symbolic constant. A form of symbolic constant is also provided by the
macro function.

4.6 Names

Simple names are strings, but composite names are also allowed, which can
either have a functional form

name(sequence)

or an indexed form

name[sequence]

where sequence is a sequence of one or more expressions. This construction
can be nested. Names can also be constructed using the catenation operator
“.” or the library function cat.

28

4.6.1 Labels

These have the form “%positive integer”. They are introduced automatically
by the pretty-printer, and their values can then be used as if they were
assigned variables.

5 Maple expressions

In general, expressions are constructed from constants, variables, operators
and functions. Operators take arguments called operands, the number of
which is determined by their arity : a nullary operator takes no operands
(and hence behaves like a variable or constant); a unary operator takes one
operand; a binary operator takes two operands. Unary operators are nor-
mally placed in front of their operand, and are called prefix operators. An
operator that is placed behind its operand is called postfix ; there is only one
in Maple, the factorial operator “!”. Binary operators are placed between
their two operands and are called infix. The only difference between oper-
ators and functions is their input and output format: functions are always
prefix and their arguments must be enclosed in parentheses and separated
by commas. Expressions can be either algebraic (which includes numeri-
cal) or Boolean (logical), and those containing relational operators can be
regarded as either, depending on the context.

5.1 Operators

The following tables, taken from the “Maple V Language Reference Man-
ual”, provide a useful summary of (nearly all) of the operators known to
Maple. The words (as opposed to special symbols) used to identify opera-
tors are reserved words, which means that they cannot be used for any other
purpose.

The recall operators (" etc.) recall the result or value of the previous
statement. If it was an assignment then the value assigned is recalled; if
it was a control statement then the result of the last statement executed is
recalled, and this applies also to nested control statements. However, only
the results of procedure calls, and not of any statements executed within
the procedures, are recalled, and null expression sequences and loop control
expressions are not recalled.

By default, any operator whose name begins with “&” is neutral or inert,
meaning that it performs no computation. However, most operators (includ-

29

Table 2: Nullary operators

Operator Meaning
" previous expression value
"" expression value two back
""" expression value three back

Table 3: Unary operators

Operator Meaning
+ unary plus (prefix)
- unary minus (prefix)
! factorial (postfix)
$ sequence operator (prefix)
not logical not (prefix)

&string neutral operator (prefix)
% label (prefix)

Table 4: Binary operators

Operator Meaning Operator Meaning
+ addition < less than
- subtraction <= less or equal
* multiplication > greater than
/ division >= greater or equal
** exponentiation = equal
^ exponentiation <> not equal
$ sequence operator -> arrow operator
@ composition mod modulo
@@ repeated composition union set union
&* noncommutative mult. minus set difference

&string neutral operator intersect set intersection
. concatenation; decimal and logical and
.. range or logical or
, expression separator := assignment

30

ing all user-defined ones) correspond internally to a call of a function with
the same name as the operator, and if such a function has been defined then
it is applied. Operators can also be given a small set of specific properties by
using the define function. Inert operators merely provide data structures
that can be interpreted by other functions. For example, the inert operator
“&*” is primarily used with matrices, to be described later in the course, and
is interpreted by the evalm function; the mod operator interprets various in-
ert operators not listed above. The functional composition operator “@” and
repeated composition operator “@@” work analogously to “*” and “**” for
multiplication and repeated multiplication (exponentiation) respectively.

The precedence and associativity of operators is designed to match their
usual mathematical usage, but parentheses “()” can always be used to force
a particular grouping of sub-expressions. It is generally better (and quicker)
to use parentheses than to look up the precise precedence and associativity
of operators. However, arithmetic operators have higher precedence than
relational operators, which have higher precedence than Boolean operators,
so that the use of parentheses in Boolean expressions is not compulsory in
the way that it is in Pascal.

The relational operators “=” etc. are used to compare the values of other
expressions, and they can be interpreted as algebraic expressions themselves,
or evaluated to give Boolean values, depending on the context. Usually, the
correct interpretation is automatic, but the function evalb can always be
applied to force Boolean evaluation. Maple supports arithmetic on relational
expressions in the obvious ways. When an “ordered comparison” using one
of the operators <,≤, >,≥ is evaluated to give a Boolean value, the differ-
ence of the operands must evaluate to a number so that the ordering can
be determined; otherwise, comparison of symbolic expressions is allowed.
However, no simplification is performed by default, so that mathematically
equal expressions may not be regarded as equal by Maple unless they are
both simplified into canonical form.

The Boolean operators “and” and “or” are what is sometimes called
“conditional”, because their first operand is always evaluated first, and their
second operand is not evaluated at all if the value of the first operand already
determines the value of the expression (as in C, Lisp and REDUCE). Hence,
the following code works as one (presumably) expects:

if type(a, numeric) and a < 0 then ...

(which it would not if “and” worked as in Pascal). Boolean algebra in Maple
uses a non-standard three-valued logic, in which the three constant values

31

are true, false and FAIL. FAIL is treated essentially the same as false,
but beware of the asymmetry caused by the fact that “not FAIL = FAIL”.

5.2 Structured data

In a sense any non-trivial algebraic expression is structured, but here I pri-
marily want to consider explicitly structured data types analogous to those
provided in conventional languages.

An unusual data type provided by Maple is the expression sequence (se-
quence for short), which is just a sequence of general expressions separated
by commas, without any kind of bracketing or other delimiters, of the form

expression1 , expression2 , ... , expressionn .

An expression sequence is always simplified to a single un-nested sequence.
An empty sequence is input as the reserved word NULL. The function seq
may be used to construct sequences in a way analogous to a for loop.
There is also a sequence operator “$”, which is generally less efficient than
seq but more convenient interactively, particularly for specifying multiple
derivatives, to be described later in the course.

More conventional data structures are sets and lists. A set in Maple is
represented as a sequence enclosed in braces thus

{ sequence }

as is normal in mathematics, and a list is represented as a sequence enclosed
in square brackets thus

[sequence]

(as in Prolog, for example). Both can be empty. A set is an unordered
collection of data in which no element may appear more than once, whereas
a list is an ordered collection of data in which any element may appear any
number of times. Maple therefore does not preserve the order of elements
of a set but re-orders them into the current system order and removes any
duplicate elements, whereas it preserves all the elements in a list exactly as
they are given. There is no operator to concatenate (join) two lists – this
is achieved by building a new list from the sequences contained within the
two old lists. (See the exercises.)

Another unconventional data type is the range, which has the form

expression .. expression .

32

This notation is as used in Pascal, except that ranges in Maple can be used
more generally, and two or more consecutive points are recognised as the
range operator. The range operator itself is inert, and it requires some
other operation to interpret its meaning. It can be used in the functions
int, Int, sum and Sum to express definite integration and summation. The
sequence operator “$” expands a range into a sequence, and the concatena-
tion operator “.” expands a range and concatenates onto each element of
the expansion sequence.

The most general structured data types in Maple are arrays and tables,
which will be described later.

Elements of data structures can be selected in Maple in very general
ways (reminiscent of the somewhat arcane language APL). The conventional
indexing notation

name[expression sequence]

(as used in Pascal and C) can be applied to an expression sequence, set,
list, array, table, or to an unevaluated name in which case the indexed name
remains symbolic, as described earlier. Elements of the indexing sequence
can be ranges, in which case a sequence rather than a single element is
extracted, and if the indexing sequence is empty then the whole structure is
extracted as a sequence. More general element selection can be performed
by the library function op.

The left and right operands of any relational or range operator can be
extracted by applying the library functions lhs and rhs respectively.

5.3 Simplification, evaluation and unevaluated expressions

Simplification is the process of converting algebraic data into a form that is
(in some sense) simpler, either for the user or (more usually) for the algebra
system. Some CASs, notably REDUCE, usually fully simplify expressions
at every stage of a calculation, but Maple does not. Maple always per-
forms some minimal simplifications that are always likely to be appropriate,
but otherwise the user must explicitly apply various simplification functions
(simplify and its relatives) in order to change the form of any data. The
default simplification is to perform all possible arithmetic, some elemen-
tary function evaluations, and to re-order expressions into the system order.
But by default Maple does not expand, factorize, or apply trigonometric
identities, for example.

33

Evaluation is the process of replacing a variable by its value, if it has
one. Usually, a chain of assignments is followed to its end. Evaluation of
any expression can be prevented by enclosing it in single (forward) quotes
(apostrophes), and this construction can be nested; the effect of evaluating
such an “unevaluated expression” is to remove one level of quotes. Even
though the variables within an unevaluated expression are not evaluated,
the expression nevertheless receives the usual default Maple simplification.
Particular forms of evaluation can be forced by using the family of library
functions with names beginning with eval. The main use of unevaluated
expressions is to assign to a variable its unevaluated name in order to clear
any assignment to it, or to explicitly use the unevaluated name of a variable
in order to ignore any assignment to it. Unassigned variables are necessary,
for example, as loop control variables, and when a procedure returns data
via its arguments – see below.

6 Procedures and functions

A procedure is a block of instructions that perform a well-defined task, and
information can be input to the procedure via arguments that can be used to
supply either data or control information. Some languages, such as Pascal,
make a distinction between a procedure that has a data value associated
with its name, which is then called a function, and one that does not, but
other languages including C and Maple do not make this distinction. A
Maple procedure can either return a value to be associated with its name
or not. The instructions within a procedure are called the procedure body.

The idea behind using procedures is that once defined they can be exe-
cuted or called from any point in a program, including from within a pro-
cedure, in order to perform their task as a service to the program at that
point. Procedures can call themselves, which is called recursion. When a
procedure is written it cannot be known exactly what the state of Maple
will be when the procedue is executed – in particular, what variables will
be in use and what their values will be. It is therefore essential, in order to
write reliable programs, that procedures have their own local variables that
are independent of variables used elsewhere in the program that might have
the same name. This is particularly important with recursive procedures.

Most modern programming languages by default treat procedure dummy
arguments as local variables that are initialized by the actual argument
values used when the procedure is called. This is called “call-by-value”,

34

and such dummy arguments can be used freely within a procedure without
having any affect outside it, and they never return any information to the
calling program. There is also usually a mechanism that allows procedure
arguments to pass information freely both into and out of a procedure, by
arranging that the dummy argument in some way “shadows” the actual ar-
gument (which must be a variable and not a more general expression) used
when the procedure is called. The usual mechanism is “call-by-reference”,
in which a pointer to the data rather than the data itself is passed to the
procedure. This is how “var” arguments in Pascal work (and how pro-
cedure arguments in versions of FORTRAN before FORTRAN 90 always
work). There is a different but related mechanism called “call-by-name”,
which was introduced in Algol 60, and it is essentially this which is the
only argument-passing mechanism provided in Maple. (Actually, it is “call-
by-evaluated-name”, because arguments are first fully evaluated and then
textually substituted into the procedure body.) Hence procedure arguments
cannot be treated as local variables (which necessitates a “FORTRAN style”
of programming) and they can be used to return information.

The final peculiarity of Maple procedures is that by default they are
anonymous, i.e. they have no name. Anonymous procedures are occasionally
useful, but usually they are given a name by simply assigning an anonymous
procedure definition to a variable. (This is quite an elegant mechanism once
one gets used to it.) A procedure definition takes the form

proc (nameseq) local nameseq; options nameseq; statseq end

Note that although the procedure definition ends with end there is no “be-
gin”, and the procedure body is essentially bracketed by the proc–end pair.
The local and options clauses are both optional. The local clause defines
a sequence of local variables,6 whose types are nevertheless not declared.
(An anonymous procedure applied to no argument provides a mechanism
for writing an anonymous block with local variables as available in RE-
DUCE and C.) The options clause accepts a number of keywords, among
which the most important is probably remember. If this is specified, it causes
Maple to remember the result of each call of the procedure, and when the
procedure is called again it takes the value from the remember table if pos-
sible rather than re-computing it. However, if the result can be affected by
global variables then remembering may not work correctly.

6This only applies to variables textually appearing in the procedure body, unlike with
Lisp-like languages.

35

The default value associated with (“returned by”) a procedure call is
the value of the last non-null statement in the procedure body, as would be
recalled by a " immediately before the end of the procedure. If it should be
necessary to prevent the procedure from returning a value then the return
value can be made explicitly NULL. If the function RETURN is executed in a
procedure body then execution of the procedure is terminated and the value
associated with the procedure call is the value of the argument of the RETURN
function. A rather more drastic way to terminate execution of a procedure
is to execute the ERROR function, which completely terminates the current
computation, returns control to the Maple prompt, and displays an error
message including the name of the procedure executed followed by the value
of the argument of the ERROR function, which will usually be a text string
(in backquotes).

In a CAS it is important for a procedure call to be able to remain uneval-
uated in situations where evaluation is not possible. A procedure apparently
remains unevaluated by returning the form of its call, and in Maple this is
most easily achieved by returning the expression

’procname(args)’

exactly as shown. The reserved identifiers procname and args within a
procedure evaluate respectively to the name of the current procedure and
its argument sequence, and the quotes are necessary to prevent it being
evaluated immediately and causing a recursive procedure call. The reserved
identifier args provides an alternative way to refer to procedure arguments
(and the number of actual arguments need not agree with the number of
dummy arguments). The reserved identifier nargs evaluates to the number
of arguments supplied when a procedure is called.

Procedures are normally called using the functional notation of mathe-
matics (whether or not they return a value) and hence provide one way to
write functions that perform computation rather than remaining symbolic.
They can also be called as operators if their names begin with “&”, in which
case the name must be backquoted when the procedure is defined. However,
there are two other ways to write anonymous functions (which can also be
assigned to variables). The arrow notation

(varseq) -> (resultseq)

is very close to the mapping notation of mathematics. The parentheses can
be omitted it either sequence has only one element. Sequences of variables

36

or results could be interpreted as vectors. If necessary, a local clause can
be included immediately after the arrow, as for procedure definitions, but
the body of an arrow-operator can be only a single expression (or sequence)
and not a statement. There is also an angle-bracket notation that looks
rather like the Dirac “bra-ket” notation used in quantum mechanics.

The function unapply is a convenient way of turning an expression into
a function; it is analogous to the lambda function in Lisp.

The functions trace and printlevel provide assistance in finding pro-
gramming errors in procedures.

7 Maple control structures

Statements in a computer program are executed in the textual order in
which they are read, except that statements within a control structure are
executed as determined by the control statement. There are essentially
two types of control statement. A selection or “if” statement determines
whether a particular sequence of statements is executed or not, and in its
general form can pick one out of several statement sequences to be executed.
A special case of selection is provided by the “case” statement of Pascal or
the “switch” statement of C, for example, but this is not provided in Maple.
A repetition or “loop” statement determines the order in which statements
are executed, by allowing a statement sequence to be repeated a number
of times that can be determined either in advance or while the sequence is
being executed. This facility is provided in most languages by respectively
“for” and “while/repeat” statements.

Some languages also provide a “goto” statement to transfer execution
to a specified labelled statement. However, this leads to “unstructured”
programs, and unstructured programs tend to contain errors. Moreover,
“goto” statements do not make much sense interactively, and there are nei-
ther “goto” statements nor statement labels in Maple. One reasonable use
for a “goto” statement is to provide additional control over the execution of
a loop, but Maple provides structured statements to terminate a loop early,
similar to those in C.

There are essentially only two control statements in Maple, which include
as special cases most of those provided by other languages, and provide all
the control that is ever necessary. Maple control structures automatically
group the statements that they control into groups or blocks, so that there
is no need for any specific block delimiters and none are provided in Maple.

37

Within control structures redundant statement separators/terminators are
ignored.

7.1 Selection statement

The general selection statement in Maple has the form

if expr then statseq elif expr then statseq else statseq fi

Note that the final delimiter of an “if” statement is “fi”, the reverse of “if”,
thereby giving a symmetrical bracketing. This idea comes from Algol 68.

The “else” clause can be omitted if its body statement sequence would
be empty, and any number of “elif–then” clauses can be used, including zero
if the body statement sequence would be empty. Hence this control state-
ment can be used to select for execution one statement sequence out of any
number of statement sequences, from one upwards. The interpretation of an
“elif–then” clause is as if it were “else if–then”, and indeed this latter form
is perfectly valid, but each explicit “if–then” nested within a selection state-
ment requires its own terminating “fi”, and it can be difficult to put them
in the right places, and hard to read. Therefore, only use explicitly nested
selection statements when it is necessary (as it sometimes is) to correctly
express the required program logic.

An expr appearing after an “if” or “elif” keyword is automatically eval-
uated as a Boolean or logic-valued expression. A statseq appearing after
a “then” or “else” keyword is a sequence of statements (all statements are
allowed) separated by statement separators – I recommend using “;” for
uniformity and compatibility with other languages. It is not necessary to
terminate the last statement in the sequence, but it is not an error to do so.

7.2 Repetition statement

The general repetition statement in Maple has one of the forms

for name from expr by expr to expr while expr do statseq od

or

for name in expr while expr do statseq od

All components of these statements are optional except “in expr” and “do
statseq od”, which on its own provides uncontrolled or “infinite” repetition.
Note that the final delimiter of a “do” statement is “od”, the reverse of

38

“do”. The meaning of expr after the “while” keyword and statseq are as
described above for selection statements.

An expr appearing after a “from”, “by” or “to” keyword should evaluate
to an integer, which specifies respectively the initial value, increment and
final value for a control variable that will be used to count (in a general
sense) the number of repetitions of the controlled statement sequence. If
the “from” or “by” components are omitted then the appropriate values
default to 1. If the “for” clause is included then name is used as the control
variable; otherwise an anonymous internal variable is used. The conditions
controlling repetition are checked on each iteration before the statement
sequence is executed, so that it is possible for the statement sequence not
to be executed at all.7

In the second form of repetition statement the (explicit or anonymous)
control variable takes the value of each top-level operand of the expression
specified after the “in” keyword, i.e. each element of the sequence op(expr),
or of expr if it is itself a sequence.

7.2.1 Loop termination

A repetition statement can be interrupted at any point within its controlled
statement sequence by selectively executing any of the following statements:

break terminates the loop and continues execution at the first statement
immediately following the repetition statement (exactly as in C);

next terminates the current execution of the loop by skipping to the end of
the statement sequence and then continuing with the test for the next
iteration (exactly as with continue in C);

RETURN terminates both the loop and also the procedure body in which the
loop must be contained;

quit, done, stop terminate both the loop and also Maple itself!

It is also worth repeating here that pressing the Ctrl, Alt and left Shift
keys together (under MS-DOS or MS-Windows) will stop the current com-
putation (including a loop) and return to the Maple prompt, without ter-
minating Maple itself.

7This is normal in modern languages, unlike the “DO” loop in FORTRAN 66.

39

8 Data types and type testing

Every expression in Maple is represented as a tree structure in which each
node (and leaf) has a particular data type. A terminal node or leaf corre-
sponds to a primitive data type, whereas a node that is itself a tree corre-
sponds to a derived data type consisting of an operator with operands. The
type of any node can be determined by the type function; the number of
branches from any node, which correspond to operands of the operator at
the node, can be determined by the nops function; the branches or operands
themselves are returned by the op function. The operands of most operators
are indexed starting from 1, but some types have a 0th operand. The type
identifiers described below are those recognised by the type function, which
include composite types that are sets of related types.

8.1 Data types

The primitive data types in Maple are integer and string, which are
treated as operators with only one operand. All other data types are repre-
sented in terms of some operator.

The type fraction is represented (in lowest terms) by an integer numer-
ator and a positive integer denominator; rational = {integer, fraction}.

The type float is represented by an integer mantissa and an integer
(restricted to machine word size) exponent of 10; numeric = {integer,
fraction, float}.

The type name = {string, indexed}, where an indexed name has the
form “name [seq]” and the 0th operand is the name.

Algebraic expressions can be of type `+`, `*` or `^` (or `**`) only, be-
cause a−b is represented as a+(−b) and a/b is represented as a∗(b(−1)). This
representation is called sum-of-products form. A negative term in a sum is
represented with a negative numerical coefficient. Type series corresponds
to generalized power series.

Relational expressions can have types `=` (or equation), `<>`, `<` or
`<=` only, because > and ≥ are always represented in terms of < and ≤;
relation = {`=`, `<>`, `<`, `<=`}. Boolean expressions can have types
`and`, `or` or `not`, and the general type boolean is the union of all these
types together with the names true, false and FAIL.

A range has type range or `..`. An expression sequence has type
exprseq; to apply the function op to an exprseq it should be first put into a

40

list to avoid a syntax error. Sets and lists have types set and list respec-
tively.

The array data type is a special case of the table data type. A pro-
cedure definition has type procedure. An (unevaluated) function form has
type function, a special case of which is type `!` for an unevaluated fac-
torial function; the 0th operand is the name of the function. Unevaluated or
inert operators are treated as function forms.

An unevaluated concatenation has type `.`, and an unevaluated expres-
sion has type uneval.

There is a composite type algebraic = {numeric, name, `+`, `*`, `^`,
series, function, `.`, uneval}.

8.2 Manipulating data structures

Data types can be tested using type, and their components can be accessed
using op and nops. The following functions allow data structures to be
changed, either by changing their components or their types.

The function map(function, expr, argseq) replaces each operand of expr
by the result of applying function to it as its first argument, passing the
optional argseq as subsequent arguments.

The function subs(eqns, expr) replaces sub-expressions within expr. If
eqns is a single equation then all occurrences of its lhs in expr are replaced
by its rhs; if eqns is a sequence of equations then they are substituted se-
quentially; if eqns is a set or list then they are substituted simultaneously
(i.e. “in parallel”). Note that subs actually only performs textual replace-
ment of explicit operands in the expression tree, and not of mathematical
sub-expressions; the latter more sophisticated operation requires the use of
the match function.

Values returned by subs may need to be explicitly re-evaluated (by ap-
plying eval), particularly to get substituted function forms re-evaluated; by
default returned values only receive the usual default Maple simplification.
The function subsop is similar to subs, but replaces operands via their in-
dex rather than their value, except that eqns can only be a sequence of (one
or more) equations, not a set or list, and that the substitution is always per-
formed simultaneously, and never sequentially (although subsop calls can,
of course, be nested).

41

8.3 Type testing

Maple is polymorphic, meaning that the Maple language itself does not
impose any restrictions on the type of data assigned to any variable, and
it is left to functions and procedures to decide (dynamically, i.e. when they
are executed) what type or types of data they will accept. Thus, whereas a
language like Pascal provides type declarations that take effect at compile
time, Maple provides type testing that takes effect at execution time (as do
most CASs).

Type testing is only relevant when writing procedures. The type of data
passed to procedure arguments can be tested for two purposes: to ensure
that it will not cause an error, or to decide what to do with it. The former
is mainly in order to provide a good user interface; it is good programming
practice and is essential in “professional quality” code, but it is not essential
for a first introduction to algebraic programming, and I will not stress it.
The latter is essential, but it will not be necessary very often in this course.
Therefore, this description of type testing facilities will be brief.

The type mechanism in Maple is quite sophisticated and elegant. There
are three type-testing functions: type(value, type) is a predicate that re-
turns true or false depending on whether value is of type type; the function
whattype(value) returns the top-level system type of value; the predicate
hastype(value, type) returns true if any sub-expression of value has type
type.

A type corresponds to a computational domain, and in Maple there is
an algebra of types that allows them to be manipulated like other algebraic
objects. A type can be a simple type identifier or a pattern that reflects a
structured type, which consists of types combined so as to match the struc-
ture of the type. In particular, when used as a type specifier, a constant of
a particular type indicates any constant of the same type. Most constructs
mean the same when used with types as they do otherwise, with the notable
exception of “{. . . }”, which when used with types means any one of the types
in the set. A hierarchical type specifier of the form “type1 (type2)” matches
any type1 expression all sub-expressions of which are type2. As a special
case, the type polynom(type2) indicates polynomials whose coefficients are
all type2.

The top-level type of a datum is called its surface type; a type that
includes information from deeper in the expression tree is called a nested
type. For example, type constant is a nested type, because it is necessary
to check a whole expression tree to ensure that it contains no non-constant

42

sub-expressions. Some additional pre-defined types are shown in the table
below, where the inclusions show how they relate to each other.

Table 5: Proper subsets of types

radical ⊂ `^`
polynom ⊂ ratpoly
ratpoly ⊂ algebraic

`!` ⊂ function
&+ ⊂ `+`
&* ⊂ `*`

numeric ⊂ constant
constant ⊂ algebraic

{relation, `and`, `or`, `not`} ⊂ boolean
set(...) ⊂ set
list(...) ⊂ list

array ⊂ table
{algebraic, boolean, set, list, table} ⊂ anything

Types are simplified by Maple in the same way that other algebraic
expressions are, but using also the special relations among types. However,
sometimes this can be undesirable, and care must be taken to express a
type in such a way that it will not be incorrectly simplified; often using
a hierarchical type (in functional form) rather than a type expression (in
operator form) will avoid the simplification.

Frequently, all the type testing that is required can be expressed by
constructing a list of all the arguments of a procedure by using “[args]”
and using the type function to compare that against a model of the required
argument number and types, also made into a list. For example, a suitable
argument type check for an integration function that can be used for either
indefinite or definite integration (as can int and Int provided in the Maple
library) would be

if not type([args],
[algebraic, {name, name=algebraic..algebraic}])

then ERROR(...)

which means that the first argument (the integrand) can be any algebraic
expression, and the second argument can be either a variable identifier (the
integration variable) or an equation with the integration variable on the

43

left and the integration range on the right – note the use of a set of types
to indicate that any element of the set is acceptable. This form of type
testing automatically tests the number of arguments – the wrong number of
arguments does not match the specified type structure. Only in complicated
cases, such as a variable number of arguments or arguments with types that
depend on each other, would more explicit type testing be required. There
are a few more ways of specifying types, especially of function forms – see
the online help or Maple manuals.

9 Arrays and tables

A table is a very general data structure in Maple (implemented as a hash
table), a special case of which is the array. Tables are mostly useful for
system programming tasks that will not be considered in this course. Arrays
are mostly used to represent vectors and matrices, and will be discussed later
in that context. Because of the representation used, sparse arrays can be
implemented easily and efficiently in Maple via an indexing function that is
part of the general table data structure.

10 Some Maple library functions

This section lists a few of the more useful but perhaps less obvious library
functions, all of which are described in the online help system:

assign convert equations into assignments;
binomial binomial coefficients;
coeff, coeffs extract polynomial coefficients;
collect collect coefficients of like powers;
combine combine terms into single terms;
convert convert an expression to a different form;
D, diff, Diff differentiation;
degree degree of a polynomial;
denom denominator of an expression;
discrim discriminant of a polynomial (multiple roots);
divide, Divide exact polynomial division;
dsolve differential equation solver;
edit structure-oriented expression editor;
eval, Eval evaluation functions;

44

expand, Expand expand an expression;
factor(s), Factor(s) multivariate polynomial factorizer;
frac fractional part of a number;
freeze, thaw replace an expression by a name;
fsolve floating-point equation solver;
gcd(ex), Gcd(ex) greatest common divisor (extended);
ifunction integer version of function;
indets indeterminates in an expression;
int, Int integration;
lcoeff leading coefficient of multivariate polynomial;
ldegree low degree or order of polynomial;
length length of an object;
limit limits of functions;
linalg linear algebra and matrix package;
member membership predicate for a set or list;
mtaylor multivariate Taylor series expansion;
normal, Normal normalize a rational expression;
numer numerator of an expression;
O order of a function;
order truncation order of a series;
orthopoly orthogonal polynomial package;
plot(3d), plots plotting packages;
powseries power series package;
product, Product repeated product;
Psi Ψ and polygamma functions;
quo, Quo, rem, Rem polynomial quotient and remainder;
radsimp simplify radicals;
resultant, Resultant resultant of two polynomials;
RootOf representation for roots of equations;
round round a number to an integer;
rsolve recurrence equation solver;
select select from a list, set, sum or product;
series generalized series expansion;
sign, signum sign determination;
simplify simplify an expression;
singular find singularities of an expression;
solve solve equations;
sort sort a list of values or a polynomial;

45

sqrt square root;
sum, Sum repeated sum;
taylor Taylor series expansion;
trace, untrace trace procedures for debugging;
trigsubs handle trigonometric identities;
trunc truncate a number to an integer;
type type-checking function;
unapply convert an expression into a function;
with use a library package.

11 Exercises

1. Work through the first worked example on your own, making sure that
you understand what is happening. Now really “start the ball rolling”
by repeating the whole calculation for a sphere rather than a cylinder.
All that you need to change is the computation of the moment of
inertia: imagine the sphere to be sliced into discs and use the formula
for the moment of inertia of a cylinder in terms of the mass density m
(a disc is a very short cylinder).

2. Repeat the computation of the motion of the ladder, but use energy
conservation (as used for the rolling cylinder and ball) instead of forces.
You should be able to reproduce the results in the worked example,
but this is harder than for the ball problem.

3. Experiment interactively with the problem of joining or appending
two lists. The trick is to use the sequences contained within the lists.
(Look up the descriptions of the library function op and the indexing
operator [].) Write a procedure to append lists, which should work
like this:

append([1, 2], [3, 4]) --> [1, 2, 3, 4]

Try to add error checking so that the procedure does not attempt to
append arguments that are not lists.

4. Experiment interactively with the problem of removing or deleting
an element from a list. (Note that you cannot reliably do this by
converting the list to a set and using the minus operator. Why not?
Consider a list such as [1, 2, 1].) The trick here is to append the

46

parts of the list before and after the element to be deleted. The library
function member determines where in a list an element appears, and
nops returns the total length of a list. Write a procedure to delete
(the first occurrence of) an element from a list, which should work like
this:

delete(3, [1, 2, 3, 4, 3]) --> [1, 2, 4, 3]
delete(5, [1, 2, 3, 4, 3]) --> [1, 2, 3, 4, 3]

Try to add error checking so that the procedure does not try to delete
an element from an argument that is not a list.

5. This question arose from an attempt to use Maple for my daughter’s
homework.

Write a set of functions that act as subset predicates, i.e. that return
Boolean values and implement the relations ⊂,⊆,⊃,⊇, assuming that
their arguments are both sets. Use function names that begin with
& so that the functions can be used as binary infix operators. For
example, they should behave like this:

> {1,2} &subset {1,2,3}
true

> {1,2} &subset {1,2}
false

The operations can be defined in terms of set intersection and equality.

Now generalize your definitions so that if either operand is manifestly
not a set then an error is reported, and if the operands are not both
explicit sets but could later evaluate to sets then the operators remain
symbolic. Try to do this without rewriting the same code several times.

47

