In a linear equation

- Constant terms are possible.
- All variable terms reduce to (coefficient) × (variable).
- All variables are to the first power.
- No mixed products of variables are allowed.
- No division by variables are allowed.

Examples of Terms

3	2.54	π	$\sqrt{2}$	10 ⁻⁴	۵	b	are typical <u>constant</u> terms
3x	2.7x	ax	$\sqrt{2}x$	(a + b)x	(5+ a)x	a² x	are typical <u>linear</u> terms
5x²	$3\frac{1}{x}$	6√x	ху	<u>5х</u> 6у	3x (x + 1)	$\frac{x}{x+1}$	are typical <u>non-linear</u> terms

General Process

Linear equations use a routine step-by-step solution process. Any adjustment to the equation is legitimate as long as it occurs equally on <u>both sides</u> of the equation. As you might expect, some adjustments are more beneficial than others. That is, there is a preferred sequence of manipulations and <u>if we follow the preferred steps</u>, the equation simplifies nicely to x = "solution". This x-value (solution) must make our original equation true. The solution should be substituted into the original equation to double check the solution.

An Efficient Scheme for Solving Linear Equations

- (1) Change Subtractions to Additions. e.g. 10 2x = 10 + (-2x)
- (2) Remove all parentheses. (apply Distributive Property)
- (3) Mark each Term with a bracket. e.g. [term] + [term]
- (4) Remove all fractions. (multiply all terms by LCD then cancel and simplify)
- (5) Shift variable term(s) to one side by adding or subtracting terms.
- (6) Shift everything else to the other side by adding or subtracting terms.
- (7) If necessary write variable term(s) as (coefficient) · (variable). (Distributive Law)

i.e.
$$\sqrt{2} \times + 4x = (\sqrt{2} + 4)x$$
 or $\pi \times + ax = (\pi + a)x$

- (8) Divide both sides by the variable's coefficient.
- (9) Check the answer by substituting solution into the <u>original</u> equation.

Example 1	: Solve $2x - 4\frac{(3x - 5)}{3} = \frac{4x}{5} + \frac{41}{3}$						
(1)	$2x + (-4)\frac{(3x + (-5))}{3} = \frac{4x}{5} + \frac{41}{3}$	change subtraction to addition					
(2)	$2x + \frac{(-12x) + 20}{3} = \frac{4x}{5} + \frac{41}{3}$	distribute					
(3)	$\left[2x\right] + \left[\frac{(-12x)+20}{3}\right] = \left[\frac{4x}{5}\right] + \left[\frac{41}{3}\right]$	bracket each term					
(4)	$15[2x] + \frac{15}{1}\left[\frac{(-12x) + 20}{3}\right] = \frac{15}{1}\left[\frac{4x}{5}\right] + \frac{15}{1}\left[\frac{41}{3}\right]$	multiply every term by LCD					
(4)	15[2x] + 5[(-12x) + 20] = 3[4x] + 5[41]	cancel					
(4)	30x + (-60x) + 100 = 12x + 205	simplify					
	-30x + 100 = 12x + 205	simplify					
(5)	<u>+30x = +30x</u>	shift variable terms to one side					
	100 = 42x + 205						
(6)	<u>-205 = -205</u>	shift non-variables to other side					
	-105 = 42x						
(8)	$x = \frac{-105}{42} = \frac{-5}{2}$	divide out x's coefficient					
(9)	Check by TI 🗸	so, x = -2.5					
Example 2	Example 2: Solve $\frac{ax+1}{bx+1} = 1$						
(3)	$\left[\frac{ax+1}{bx+1}\right] = \left[2\right]$	bracket terms					
(4)	$\left[\frac{bx+1}{1}\right]\left[\frac{ax+1}{bx+1}\right] = \left[\frac{bx+1}{1}\right]\left[2\right]$	multiply every term by LCD					
(4)	ax + 1 = [bx + 1][2]	cancel					
(4)	ax + 1 = 2bx + 2	simplify					
(5)	<u>-2bx = -2bx</u>	shift variable terms to one side					
	ax - 2bx + 1 = 2						
(6)	<u>-1 = -1</u>	shift non-variables to other side					
	ax - 2bx = 1						
(7)	(a - 2b)x = 1	write as (coefficient) × (variable)					
(8)	$x = \frac{1}{a - 2b}$	divide out x's coefficient					
(9)	Checking by substitution is difficult	$So_r = \frac{1}{a - 2b}$					

Solve for x:

1) 3(5x + 4) - 15 = 2x - 32) 4x - 3(3x + 2) = 7 - 5x

3)
$$4x + 2(3x + 2) = 2(7 + 5x) - 10$$

4) $3(ax + b) = 7ax - c$

5)
$$\frac{2x}{3} + \frac{3}{4} = \frac{5x}{2} + 3$$

6) $\frac{3-x}{2} + \frac{3}{4} = 2x - 5\frac{2x-5}{6}$

7)
$$7 - \frac{3(x-5)}{2} = 5x - \frac{6x-5}{3}$$

8) $\frac{x+y}{x-y} = 2y-1$

9)
$$\frac{3-x}{4} + \frac{2}{3} = 4 - \frac{3 \cdot (2x-5)}{2}$$
 10) $\frac{2x}{3} - 3 \cdot \frac{5-3x}{2} = \frac{2x}{5} + 5$