Programming the Quadratic Formula into the TI-83/84 Name

For those times when a numeric approximation to the solution of a quadratic equation will suffice, using a programmable calculator to automatically compute and simplify the quadratic formula is rather convenient. Since we shall expand upon the programmable features of the TI-83/84 throughout the course this is a good starting point. \checkmark = ENTER

COMMAND	COMMENTS	
Press PRGM	Brings up the Program Menu: EXEC EDIT NEW	
Select NEW 🖑	Use EDIT to edit an existing program	
Name = QF $\not\in$	Names the program QF. Other names will also suffice.	
:ClrHome &	$\underline{PRGM} \rightarrow I/O \rightarrow 8$. Clears the home screen.	
:a+bi &	$MODE \rightarrow a+bi$. Sets the TI-83+ to Complex mode.	
:Disp "SOLVES $Ax^2 + Bx + C = 0$ " \notin	$PRGM \rightarrow I/O \rightarrow 3$. Displays message on the screen.	
:Prompt A,B,C &	$\underline{PRGM} \rightarrow I/O \rightarrow 2$. Will prompt the user for A, B and C	
:(B ² -4AC) →D ¢ [#]	Calculates the Discriminant	
:(-B+√(D))/(2A)→P 🖑	Calculates the first root	
:(-B-√(D))/(2A)→Q &	Calculates the second root.	
:Disp "ROOTS",P ▶Frac ,Q ▶Frac &	$\underline{PRGM} \rightarrow I/O \rightarrow 3$. Displays the two roots.	

Now let's run the program. Use PGRM \rightarrow EXEC \rightarrow *Select Program* $\not\in$. Note: For these examples, MODE was preset to FLOAT accuracy.

Example 1 Solve $2x^2 = 9(x + 2)$

Rewrite in Standard Form: $2x^2 - 9x - 18 = 0$	SOLVES AX≥+BX+C… 8=22	8=?2 8=?-9 C=2-18	
We identify $A = 2$, $B = -9$ and $C = -18$	B=? ⁺ 9 C=?-18∎	ROOTS	.7 .6
$PGRM \to EXEC \to QF \notin$		∎	lone

Note: Pressing ENTER at the conclusion of a program will rerun a fresh version of the program.

Example 2Solve $x^2 + 2 = 2x$ Rewrite in Standard Form: $x^2 - 2x + 2 = 0$ SOLVES $AX^2 + BX + C...$ B = ? - 2B = ? - 2We identify A = 1, B = -2 and C = 2B = ? - 2

$PGRM \rightarrow EXEC \rightarrow OE A$	
10 KW $^{\prime}$ LALC $^{\prime}$ $^{\prime}$ $^{\prime}$	

2x + 2 = 0 = 2	SOLVES AX²+BX+C… A=?1 B=?-2 C=?2∎	A=?1 B=?-2 C=?2 ROOTS	1+i 1-i Done

Extra Credit: Use <u>algebra</u> to write the equation in standard quadratic form $(ax^2 + bx + c = 0)$. Then use the Quadratic Formula program to solve the equation.

16. $1 + \sqrt{x^2 - 2x + 1} = x$

1.
$$x^2 + x = 42$$
2. $x^2 + 10 = 11x$

3. $t^2 + 8 = 4t$
4. $2x(x-5) = 12$

5. $2x^2 + 3 = 2(x - x^2) + 10$
6. $\frac{5x}{x^2 + 1} = 2$

7. $(x + 3)(3x + 5) = 7$
8. $(x + 3)(x - 2) = 50$

9. $9x^2 = \frac{5(x + 1)}{2} + 2x$
10. $x^2 = 4x - 53$

11. $\sqrt{x + 4} = x - 2$
12. $\sqrt{x + 7} = x + 1$

13. $2 + \sqrt{2x - 1} = x$
14. $4 + \sqrt{2x^2 - 8} = 0$

15. 4x(x-1)+1=0