For those times when a numeric approximation to the solution of a quadratic equation will suffice, using a programmable calculator to automatically compute and simplify the quadratic formula is rather convenient. Since we shall expand upon the programmable features of the TI-83/84 throughout the course this is a good starting point. $\langle y=$ ENTER

COMMAND

COMMENTS

Press PRGM	Brings up the Program Menu: EXEC EDIT NEW
Select NEW \leftrightarrow	Use EDIT to edit an existing program
Name $=$ QF \langle	Names the program QF. Other names will also suffice.
:ClrHome $\langle\stackrel{y}{ }$	PRGM $\rightarrow I / O \rightarrow 8$. Clears the home screen.
: $\mathrm{a}+\mathrm{b} i \leqslant^{\text {¢ }}$	MODE $\rightarrow a+$ bi. Sets the TI-83+ to Complex mode.
:Disp "SOLVES Ax ${ }^{2}+\mathrm{Bx}+\mathrm{C}=0 " \leftrightarrow$	PRGM $\rightarrow I / O \rightarrow 3$. Displays message on the screen.
:Prompt A,B,C \langle	PRGM $\rightarrow I / O \rightarrow 2$. Will prompt the user for A, B and C
$:\left(\mathrm{B}^{2}-4 \mathrm{AC}\right) \rightarrow \mathrm{D}$	Calculates the Discriminant
$:(-\mathrm{B}+\sqrt{ }(\mathrm{D})) /(2 \mathrm{~A}) \rightarrow \mathrm{P} 山^{\text {d }}$	Calculates the first root
$:(-\mathrm{B}-\sqrt{ }(\mathrm{D})) /(2 \mathrm{~A}) \rightarrow \mathrm{Q} \diamond$	Calculates the second root.
:Disp "ROOTS", P FFrac , Q Prac \langle	PRGM $\rightarrow I / O \rightarrow 3$. Displays the two roots.

Now let's run the program. Use PGRM \rightarrow EXEC \rightarrow Select Program \leftrightarrow. Note: For these examples, MODE was preset to FLOAT accuracy.

Example 1 Solve $2 \mathrm{x}^{2}=9(\mathrm{x}+2)$
Rewrite in Standard Form: $2 \mathrm{x}^{2}-9 \mathrm{x}-18=0$
We identify $\mathrm{A}=2, \mathrm{~B}=-9$ and $\mathrm{C}=-18$
PGRM \rightarrow EXEC $\rightarrow Q F\langle$

Note: Pressing ENTER at the conclusion of a program will rerun a fresh version of the program.
Example 2 Solve $x^{2}+2=2 x$

Extra Credit: Use algebra to write the equation in standard quadratic form ($a x^{2}+b x+c=0$). Then use the Quadratic Formula program to solve the equation.

1. $x^{2}+x=42$
2. $x^{2}+10=11 x$
3. $t^{2}+8=4 t$
4. $2 x(x-5)=12$
5. $2 x^{2}+3=2\left(x-x^{2}\right)+10$
6. $\frac{5 x}{x^{2}+1}=2$
7. $(x+3)(3 x+5)=7$
8. $(x+3)(x-2)=50$
9. $9 x^{2}=\frac{5(x+1)}{2}+2 x$
10. $x^{2}=4 x-53$
11. $\sqrt{x+4}=x-2$
12. $\sqrt{x+7}=x+1$
13. $2+\sqrt{2 x-1}=x$
14. $4+\sqrt{2 x^{2}-8}=0$
15. $4 x(x-1)+1=0$
16. $1+\sqrt{x^{2}-2 x+1}=x$
