1) (a) Find the slope and y-intercept then give the equation for each line shown.

Line Slope y-intercept \quad Equation		
A		
B		
C		

(b) Graph and label each equation.

D

$$
\begin{aligned}
& y=(5 / 2) x-6 \\
& y=\frac{-2 x-9}{3}
\end{aligned}
$$

E

$$
-9 x+8 y=72
$$

2) Give the slope and y-intercept of each line.
(a) $y=\frac{-3 x}{5}+6$
(b) $y=\frac{5 x-12}{2}$
(c) $y=4-x$
(d) $3 y-4 x=24$
3) Convert to Slope-Intercept form:(a) $4 x+3 y=12$
(b) $7 x-5 y=25$
4) Convert to Standard-Integer form:
(a) $y=\left(\frac{3}{4}\right) x+8$
(b) $y=\left(-\frac{5}{8}\right) x-12$
5) Find both intercepts:
(a) $4 x+3 y=24$
(b) $y=\left(\frac{5}{8}\right) x-20$
6) Give the equations for the vertical and horizontal lines that cross at $(5,7)$.
7) Show that $x+y=0$ and $x-y=0$ intersect perpendicularly at the origin.

Determine equations for the following cases. Write your answers in Slope-Intercept form.
8) A line passing through $(2.4,1.9) \&(-5.6,9.5)$.
9) A line passing through $(236,726) \&(-504,911)$.
10) A line crossing the x-axis at -12 and the y-axis at -6 .
11) A line passing through $(-10,12)$ and parallel to $8 x-12 y=15$.
12) A line passing through $(-6,2)$ and perpendicular to $y=(2 / 3) x+6$.
13) Determine the x-scale and y-scale then graph each equation in its proscribed region.

Find the equation representing these lines in Slope Intercept form.

1) (a) Find the slope and y-intercept then give the equation for each line shown.

Line	Slope	y-intercept	Equation
A	$1 / 3$	1	$y=(1 / 3) x+1$
B	$-1 / 2$	0	$y=(-1 / 2) x$
C	0	$15 / 2$	$y=15 / 2$

(b) Graph and label each equation.
D

$$
y=(5 / 2) x-6
$$

E
$y=\frac{-2 x-9}{3}$
F
$-9 x+8 y=72$

2) Give the slope and y-intercept of each line.
(a) $y=\frac{-3 x}{5}+6$
(b) $y=\frac{5 x-12}{2}$
$m=-3 / 5, b=6$
$m=5 / 2, b=-6$
(c) $y=4-x$
(d) $3 y-4 x=24$
$m=-1, b=4$
$m=4 / 3, b=8$
3) Convert to Slope-Intercept form:
(a) $4 x+3 y=12$
(b) $7 x-5 y=25$

$$
y=(-4 / 3) x+4
$$

$$
y=(7 / 5) x-5
$$

4) Convert to Standard-Integer form:
(a) $y=\left(\frac{3}{4}\right) x+8$
(b) $y=\left(-\frac{5}{8}\right) x-12$
$3 x-4 y=-32$
$5 x+8 y=-96$
5) Find both intercepts:
(a) $4 x+3 y=24$
(b) $y=\left(\frac{5}{8}\right) x-20$
$(6,0),(0,8)$
$(32,0),(0,-20)$
6) Give the equations for the vertical and horizontal lines that cross at $(5,7)$.

Vertical line: $x=5$, Horizontal line: $y=7$
7) Show that $x+y=0$ and $x-y=0$ intersect perpendicularly at the origin.

$$
y_{1}=-x \rightarrow m_{1}=-1, y_{2}=x \rightarrow m_{2}=1 .\left(m_{1}\right)\left(m_{2}\right)=-1 \text { so } y_{1} \& y_{2} \text { are perpendicular. }
$$

Determine equations for the following cases. Write your answers in Slope-Intercept form.
8) A line passing through $(2.4,1.9) \&(-5.6,9.5)$.

$$
y=(-19 / 20) x+209 / 50 \text { or } y=-0.95 x+4.18
$$

9) A line passing through $(236,726) \&(-504,911)$.

$$
y=(-1 / 4) x+785
$$

10) A line crossing the x-axis at -12 and the y-axis at -6 .

$$
y=(-1 / 2) x-6
$$

11) A line passing through $(-10,12)$ and parallel to $8 x-12 y=15$.

$$
y=(2 / 3) x+56 / 3
$$

12) A line passing through $(-6,2)$ and perpendicular to $y=(2 / 3) x+6$.

$$
y=(-3 / 2) x-7
$$

13) Determine the x-scale and y-scale then graph each equation in its proscribed region.

Find the equation representing these lines in Slope Intercept form.

pts: $(90,96),(190,80)$

$$
y=(-4 / 25) x+552 / 5
$$

18)

pts: $(70,88),(190,80)$
$y=(-1 / 15) x+278 / 3$
19)

pts: $(220,-30),(330,50)$ $y=(8 / 11) x-190$

