Name

Understanding functions and function notation is crucial to understanding much of mathematics. This activity should help you with an initial understanding of functions.

1) Explain how one of these could represent a function while the other would not. Be explicit.



2) Which of these represent a function and which do not. Explain your answer. Be explicit.

| ID# (x) | D    | ОВ (У1) | )  | Allergies (Y <sub>2</sub> ) |     | 55N (Y <sub>3</sub> ) |      | Meds (Y4) |    | .)   |     |    |
|---------|------|---------|----|-----------------------------|-----|-----------------------|------|-----------|----|------|-----|----|
| 101     | Fcn: | Yes     | No | Fcn:                        | Yes | No                    | Fcn: | Yes       | No | Fcn: | Yes | No |
| 102     |      |         |    |                             |     |                       |      |           |    |      |     |    |
| 103     |      |         |    |                             |     |                       |      |           |    |      |     |    |
| 104     |      |         |    |                             |     |                       |      |           |    |      |     |    |
| 105     |      |         |    |                             |     |                       |      |           |    |      |     |    |
| 106     |      |         |    |                             |     |                       |      |           |    |      |     |    |

3) Which of these represent a function and which do not. Explain your answer. Be explicit.

| y = mx + b  | $x^{2} + y^{2} = 1$ | y = ax <sup>2</sup> + bx + c | $y = 2 \pm \sqrt{3x}$ |
|-------------|---------------------|------------------------------|-----------------------|
| Fcn: Yes No | Fcn: Yes No         | Fcn: Yes No                  | Fcn: Yes No           |
|             |                     |                              |                       |
|             |                     |                              |                       |
|             |                     |                              |                       |
|             |                     |                              |                       |

4) Which of these represent a function and which do not.

| x: race time        | x: Bib#      | x: gross income    | x: age          |
|---------------------|--------------|--------------------|-----------------|
| y: Bib #            | y: race time | y: Fed tax in 2010 | y: hair color   |
| Fcn: Yes No         | Fcn: Yes No  | Fcn: Yes No        | Fcn: Yes No     |
| x: MD's age         | x: Name      | x: DOB             | x: Fed tax paid |
| y: office wait time | y: DOB       | y: age 1/1/2012    | y: Gross Income |
| Fcn: Yes No         | Fcn: Yes No  | Fcn: Yes No        | Fcn: Yes No     |



- 6)  $f(x) = 3x^2 2$  g(x) = x + 1  $p(x) = \frac{x + 1}{x}$ (a) f(-2) = (b) f(0) = (c) p(0) =(d) (f + g)(5) = (e) f(t) = (f) g(a + b) =
  - (g) p(x-1) = (h) f(x) + 2 = (i)  $g^2(x) =$

7) You are tasked with collecting and organizing data then finding a function that corresponds to that data. First you must organize the data into independent vs dependent (x vs y). Fill in the indicated variables. Write 'unrelated' if the variables are unrelated.

|    | Elevation & 10K Race Time  | x-var: |       |       |         |          | y-var:             |         |         |   |
|----|----------------------------|--------|-------|-------|---------|----------|--------------------|---------|---------|---|
|    | Age & 10K Race Time        | x-var: |       |       |         |          | _ y-var:           |         |         |   |
|    | Hair Color & 10K Race Time | x-var: |       |       |         |          | _ y-var:           |         |         |   |
| 8) | Consider this data set:    |        |       |       |         |          |                    |         | 1       | 1 |
|    |                            | -      |       | ×     | 1       | 2        | 3                  | 4       | 5       |   |
|    |                            |        |       | У     | 5       | 8        | 7,9,11,13,15       | 14      | 17      | ] |
|    |                            |        | Does  | the c | lata re | presen   | t a function?      |         |         |   |
|    |                            |        | If yo | u run | Linear  | Regre    | ssion (try it if y | ou can) | you get | F |
|    | <u> </u>                   | -4     |       |       | У       | = 3x + 2 | 2 which is a fund  | ction.  |         |   |

Do you think your regression function/equation is a good descriptor for this data? Why/why not?

Franz Helfenstein

Name

ANSWER KEY

Understanding functions and function notation is crucial to understanding much of mathematics. This activity should help you with an initial understanding of functions.

1) Explain how one of these could represent a function while the other would not. Be explicit.





Fred could both elope with Beth <u>and</u> have an affair with Sally so this is not a function

Fred takes one unique path through his life. This is a function.

2) Which of these represent a function and which do not. Explain your answer. Be explicit.

| ID# (x) | DOB (Y <sub>1</sub> )                        | Allergies (Y <sub>2</sub> ) | 55N (Y <sub>3</sub> )         | Meds (Y4)                             |  |
|---------|----------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|--|
| 101     | Fcn: <u>Yes</u> No                           | Fcn: Yes <u>No</u>          | Fcn: <u>Yes</u> No            | Fcn: Yes <u>No</u>                    |  |
| 102     | ID is a unique                               | A person may have           | Legally, each person          | A person may be                       |  |
| 103     | identifier and each                          | multiple allergies.         | should have one               | taking multiple                       |  |
| 104     | person can have only<br>one DOB. However, if | Hence not a function.       | unique SSN. Hence a function. | medications. Hence<br>not a function. |  |
| 105     | 'Born Again' were                            |                             |                               |                                       |  |
| 106     | included then it's not<br>a function         |                             |                               |                                       |  |

3) Which of these represent a function and which do not. Explain your answer. Be explicit.

| y = mx + b                                                                                                                    | $x^{2} + y^{2} = 1$                                                                                                                            | y = ax <sup>2</sup> + bx + c                                     | $y = 2 \pm \sqrt{3x}$                                                                                                              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fcn: <u>Yes</u> No                                                                                                            | Fcn: Yes <u>No</u>                                                                                                                             | Fcn: <u>Yes</u> No                                               | Fcn: Yes <u>No</u>                                                                                                                 |  |  |
| The only line that is not<br>a function is a vertical<br>line. Since y = mx + b<br>cannot be vertical, this<br>is a function. | This is a circle which<br>does not pass the VLT.<br>Also, y = ±√1 - x <sup>2</sup> which<br>has 2 outputs for each<br>x≠±1. e.g. x = 0, y = ±1 | This is a parabola which<br>passes the VLT. Hence a<br>function. | This is a parabola turned<br>sideways which does not<br>pass the VLT. Hence not<br>a function. Specifically,<br>x = 3, y = -1 or 5 |  |  |

4) Which of these represent a function and which do not.

| x: race time<br>y: Bib #                                                                    | x: Bib#<br>y: race time                                        | x: gross income<br>y: Fed tax in 2010                                                                                 | x: age<br>y: hair color                           |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| Fcn: Yes <u>No</u>                                                                          | Fcn: <u>Yes</u> No                                             | Fcn: Yes <u>No</u>                                                                                                    | Fcn: Yes <u>No</u>                                |  |
| Two or more racers<br>could cross finish line at<br>the same time. Hence<br>not a function. | Each racer has one<br>unique finish time.<br>Hence a function. | 2 Taxpayers with same<br>gross income may have<br>different deductions /<br>tax liabilities. Hence not<br>a function. | Variables are unrelated.<br>Hence not a function. |  |

| x: MD's age<br>y: office wait time                               | x: Name<br>y: DOB                                                                                                             | x: DOB<br>y: age 1/1/2012                                       | x: Fed tax paid<br>y: Gross Income                                                         |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Fcn: Yes <u>No</u>                                               | Fcn: <u>Yes</u> No                                                                                                            | Fcn: <u>Yes</u> No                                              | Fcn: Yes <u>No</u>                                                                         |  |  |
| These variables should<br>be unrelated. Hence not<br>a function. | Assuming Name is a<br>unique identifier this is a<br>function. If Name =<br>First Name only, this<br>would not be a function. | Age = 1/1/2012 - DOB is<br>a unique value. Hence a<br>function. | People who pay no tax<br>could have a wide variety<br>of incomes. Hence not a<br>function. |  |  |

- 5) (a) f(-3) = 1 (b) f(2) = 1
  - (c) f(10) = DNE (d) (f + g)(2) = 10
  - (e) (f + g)(10) = DNE (f) f(6) g(10) = (6)(9) = 54
  - (g) (f/g)(0) = 0/8 = 0 (h) 2 f(4) + 5 = 9

Domain of f(x):  $-4 \le x \le 10$  or  $x \in [-4, 10)$ 

Range of f(x):  $-3 \le y \le 6$  or  $y \in [-3, 6]$ 



| 6) | $f(x) = 3x^2 - 2$ $g(x) = x + 1$                     | $p(x) = \frac{x+1}{x}$            |                                          |
|----|------------------------------------------------------|-----------------------------------|------------------------------------------|
|    | (a) f(-2) = 10                                       | (b) f(0) = -2                     | (c) p(0) = DNE                           |
|    | (d) (f + g)(5) = <mark>79</mark>                     | (e) $f(t) = 3t^2 - 2$             | (f) $g(a + b) = (a + b) + 1 = a + b + 1$ |
|    | (g) $p(x-1) = \frac{(x-1)+1}{(x-1)} = \frac{x}{x-1}$ | (h) f(x) + 2 = (3x2 - 2) + 2 = 3x | (i) $g^2(x) = (x + 1)^2$                 |

7) You are tasked with collecting and organizing data then finding a function that corresponds to that data. First you must organize the data into independent vs dependent (x vs y). Fill in the indicated variables. Write 'unrelated' if the variables are unrelated.

| Elevation & 10K Race Time  | x-var: <u>Elevation</u> | y-var: <u>Racetime</u> |
|----------------------------|-------------------------|------------------------|
| Age & 10K Race Time        | x-var: <u>Age</u>       | y-var: <u>Racetime</u> |
| Hair Color & 10K Race Time | x-var: <u>Unrelated</u> | y-var:                 |



Do you think your regression function/equation is a good descriptor for this data? Why/why not?

No. The function y = 3x + 2 does not do a good job of representing the variation associated with x = 3.