

The Rule of Four
There are 4 equivalent descriptions of a Function:

Narrative	Data Set	Graph	Equation
$\stackrel{2 \pi+9}{\bar{\sum}}$	x y 1 -7 2 5 3 2 4 5 5 1		$\begin{gathered} y=f(x) \\ y=\frac{a x+b}{c x-d} \end{gathered}$

To be or not to be a Function

Let x (input) $=$ ID Number and y (output) $=$ date of birth (DOB). Although 2 different people can have the same $D O B$, this is a function because each person (x) has exactly one $D O B(y)$. The Domain $=$ \{all ID numbers $\}$

Let x (input) $=$ ID Number and y (output) $=$ GPA. At this exact moment, this would be a function. However, over time, this would not be a function because a single person (x) could have multiple GPA's (y).

Let x (input) $=$ License plate number and y (output) $=$ VIN. We would expect this is a function because each vehicle (x) has exactly one VIN(y). Domain = \{all License Plate numbers\}

Let x (input) $=$ License plate number and y (output) $=$ odometer reading. We would expect this is not a function because a vehicle (x) could have different readings (y) once driving occurred.

Let x (input) $=$ time during today and y (output) = temperature at a specific location. We would expect this is a function because at each point in time, there should be exactly one temperature reading (y). Domain $=\{$ all times: 0:00 $\leq x<24: 00\}$

Let x (input) $=s q-f t$ of room painted and y (output) = amount of paint used. This should be a function because each sq-ft (x) should require the same amount of paint (y). Domain: $\{0 \leq x \leq$ room's total sq-ft\}

Data Set			Data Set		
\times	y	This data set is a function because for each x, there is exactly one y. It's OK that for $x=2,3$ the y 's are the same.	\times	y	This data set is not a function because for $x=4$, there are two different y-values.
1	9.36		1	9.36	
2	4.81		2	6.40	
3	4.81		3	4.81	
1	9.36		4	9.36	
5	8.70		4	8.70	

Equation

$5 y=3 x+4$	This is a function because it can be legitimately entered into the form $y=f(x)$.
$5 y^{2}=3 x+4$	This is $\frac{\text { not } a}{} \underline{\text { function because it when solved for ' } y \text { ' we get the form }}$
$y= \pm \sqrt{\frac{3 x+4}{5}}$. Hence there are two y-values for many x-values.	

