Mth 111 Lab #4 Franz Helfenstein NAME

This lab is intended to review some of the things we have done so far. You are encouraged to work together. As necessary, attach additional paper but <u>put your final answer on this paper</u>. Your work will be graded on <u>completeness</u>, <u>neatness</u>, <u>accuracy and punctuality</u>. You must show your work! (10 pts)

1) Find the equation of the line that passes through (12, -8) and is <u>perpendicular</u> to 16x - 32y = -4. Check your answer by graphing both lines in a squared window.

2) Solve for y:
$$\frac{2x-5y}{3} + 2 = 12 - \frac{3y-8x}{2}$$

Write the algebraic form for h(x).
 Be sure to include the domain restrictions.

15
10

$$5$$

 0
 -5
 0
 5
 0
 5
 0
 5
 0
 5
 0
 5
 0
 5
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

4) Give the domain for each function:

(a)
$$y = \frac{x+1}{x-1}$$
 (b) $y = \sqrt{x+1}$ (c) $y = ax^2 + bx + c$ (d) $y = \sqrt{x^2+1}$

.

5)
$$f(x) = \sqrt{x+6}$$
; $g(x) = x^2 + 1$; $h(x) = \frac{1}{x} + 1$ Simplify the following:
(a) $f(x-2) =$ (b) $g(f(3)) =$ (c) $(g-h)(x) =$ (d) $f^2(x) + 4 =$ $4f(2x-3) + 5$


6)
$$f(x) = 5 + 3 \cdot 2^{3x+2}$$
 (a) $f(0) =$

Find the function $y = A b^{x} + C_{...}$

8)

(b) f(-2) = (c) f(x - 1) =

7a) Find the exponential function $y = a b^x$ whose graph is given. Use the given window settings to determine the y-intercept and the right end point. Use that to determine a & b. Test your answer by graphing.

5

7b) Find the exponential function $y = a b^x$ whose graph is given. Use the given window settings to determine the y-intercept and the left end point. Use that to determine a & b. Test your answer by graphing.

- Check your answer by graphing!
- (a) With a horizontal asymptote at y = -4, a y-intercept of 8 and passing through (2, -1)
- (b) With a horizontal asymptote at y = 36, a y-intercept of 4 and passing through (5, 35)
- 9) Combine factors and simplify to exponential form (w/o radicals) and with just positive exponents. (b) $\frac{(2x^3)^2}{2^5x^4} =$ (c) $\sqrt{64x^7}$ = (a) a³ b⁴ a⁵ b⁻⁶ =
- 10) Use the definition (not your calculator) to fill in the following tables.

(a)	log 10 1	log 10 100	log ₁₀ 0.01	log 10 (10 ^{7.3})	log 10 (-10)	\log_{10} (ten billion)
(b)	log ₂ 1	log ₂ 0	log 2 64	log 2 (1/16)	log 2 0.125	log ₂ (2 ^π)
	log ₇ 49	log ₃ 81	و log	log ₂₅ (0.2)	$\log_{\pi}(\pi^2)$	$\log_2 \sqrt{2}$

BONUS: Compute and simplify the difference quotient for $f(x) = \frac{x}{x-1}$