This lab is intended to review some of the things we have done so far. You are encouraged to work together. As necessary, attach additional paper but put your final answer on this paper. Your work will be graded on completeness, neatness, accuracy and punctuality. You must show your work!

1) Solve for $x: \quad 15-5 \frac{2 x-4}{3}=12-\frac{5 x-3}{2}$
2) (a) Use your calculator to solve $8-x / 4=5 x e^{-x / 5}$. Find all solutions to 3 significant digits.
(b) Use Algebra to solve $2 e^{3 x+1}=20$
3) $f(x)=x^{2}+1$, Simplify $y=4 f(2 x+1)+3$
4) Compute and simplify the difference quotient for $f(x)=2 x^{2}+5$

5a) Find the exponential function $y=a b^{x}$ whose graph is given. Use the given window settings to determine the y-intercept and the right end point. Use that to determine a \& b. Tes \dagger your answer by graphing.
\square

5b) Find the exponential function $y=a b^{x}$ whose graph is given. Use the given window settings to determine the y-intercept and the left end point. Use that to determine a \& b. Test your answer by graphing.
\square

6) Find the equation of the form $y=A\left(b^{x}\right)+C$ given: an asymptote at $y=-3$, $a y$-intercept at $(0,5)$ and $y(-3)=-2$.
7) Smalltown's population is given by $P(t)=250(1.04)^{\dagger}$ where \dagger is the number of years since 2000.
(a) What was the initial population in 2000?
(b) What does $P(5)=304$ mean?
(c) What was the population in 2007?
(d) When will the population reach 500 . That is, solve $P(t)=500$.
8) The population of Chub in Phish Lake is given by the "logistic model": $P(t)=\frac{1200}{1+11 e^{-t / 5}}$

Assume ' t ' is measured in years and the fish were introduced into the lake at $\dagger=0$.
(a) What does $\mathrm{P}(0)=100$ mean?
(b) Graph $P(t)$ in $[0,60] \times[0,1200]$. Summarize the overall growth of the Chub population for $\dagger>50$.
9) Use the definition (not your calculator) to fill in the following tables.
(a)
(b)

$x=$	1	100	1000	0.001	1 billion
$\log _{10} x$					
$x=$	1	4	64	$1 / 16$	0.125
$\log _{2} x$					

10)

(a) Solve for $x: y=2+K e^{a x+b}$
(b) Solve for $x: y=K \ln (m x+b)-2$

BONUS

$P(t)=P_{0} e^{-k t}$ gives the amount of Naffzium after t minutes. Assume you start with 100 grams of Naffzium ($P_{0}=100$) and after 90 minutes you only have 60 grams left. To find the value for ' k ' we must plug in the values we know and solve for k : $60=100 e^{-k 90}$
(a) Find ' k ' exactly (not a decimal approximation) and store in ' K ' $\mathrm{K}=$ \square
(b) Find the half-life of Naffzium? That is, using your recently determined value for ' k ', solve

$$
\frac{1}{2}=e^{-k t} \text {. half-life } \approx
$$

