You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

1) Give the equation of the line through ($2,-2$) \& $(-13,23)$
2) Solve for x using algebraic manipulation: $15-7 \frac{x-1}{2}=\frac{x}{4}+3$
3) Solve for x using algebraic manipulation: $(x-5)(x+2)=4(3 x+11)$
4) Solve for y : $\quad 10-\frac{5 x-y}{3}=\frac{3 y-2 x+4}{5}$
5) Solve for y : $a x+b y=3 x-2 y+8$
6) Solve for x : $4 e^{a x+b}-5=11$
7) Solve for x : $\frac{\ln (a x+b)}{2}+7=6$
8) Solve using the TI: $e^{-x / 2}=2+\ln x$. Give the answer with 4 significant digits.
9) An insect population was 600 on May 1. 5 days later the population had increased to 1,430 . Use $P(t)=P_{0} e^{r t}$ with May 1 corresponding to $t=0$. Determine r.
10) $P(t)=P_{0} e^{-k t}$ models radioactive decay. Suppose you start with 200 grams of radioactive Silicon (Si) with a half-life of 140 yrs .
(a) What is the value for P_{0} ?
(b) How much Silicon will be left in 500 yrs ?
(c) How many years until the Silicon decays to 10 gms?
11) The mosquito population for Swamp Camp can be modeled by $M(t)=500+e^{-0.12 t}$ Where $t=0$ on June 1 .
(a) What is the maximum mosquito population? Hint: Graph it.
(b) How many days until the mosquito population drops below 1 of the nasty little buggers?
12) Function ' f ' represents the number of bugs counted (N) at time of day (T) with time in minutes starting at midnight for the next 24 hrs .
(a) Give the independent variable \qquad
(b) What does $f(7)=8$ mean in terms of this function? \qquad

(c) Which of these correctly describes this relationship? (Circle one)
(i) $N=f(T)$
(ii) $y=f(x)$
(iii) $T=f(N)$
(iv) $N=f(x)$
(v) $N=3 T^{2}+4$
(d) Give the domain of this function.
13) Use the graph to answer the following:
(a) $f(-2)=$
(b) $f(5)=$
(c) $g(f(2))=$
(d) How many roots does $f(x)$ have and what are they?
(e) What is the domain of $f(x)$?
(f) Give all x-values for which $g(x)=5 . x=$

(g) Circle the correct version of $g(x)$ as a translated version of $f(x)$.

$$
g(x)=f(x+2)+7
$$

$$
g(x)=f(x-2)+7
$$

$$
g(x)=f(2)+7
$$

$$
g(x)=2+f(x)+7
$$

(h) Find the average rate of change of $f(x)$ from $x_{1}=-4$ to $x_{2}=2$
14)
(a) Simplify to a single term.
$\ln (a x)+\ln (b)=$
(d) Simplify to a single term.
$2 \ln x-\ln x=$
(g) Simplify to positive exponents. $a^{3} a^{5} b^{-4}=$
(b) Simplify to a single term. $\ln a x-\ln b x=$

(e) Simplify.

$\ln e^{4 x}=$
(h) Simplify to positive exponents. $\left(2 x^{2}\right)^{3}=$
(c) Simplify to an integer. $\log _{3} 405-\log _{3} 5=$
(f) Simplify. $e^{\ln 3 x}=$
(i) Simplify to positive exponents. $\sqrt{x^{9}}=$
15) $f(x)=\sqrt{x-1} \quad g(x)=x^{2}+1 \quad$ Simplify the following:
(a) $f(x+1)=$
(b) $g\left(x^{-1}\right)=$
(c) $f(g(x)))=$
(d) $f^{2}(x)=$
(e) $10-5 g(x)=$
(f) $g(g(x))$
16) Find the inverse of $y=\frac{2}{x+1}$
17) $N(t)=9.62 t e^{-0.035 t}$ models natural gas production in a gas field ($\dagger=$ days). $t=0$ corresponds to the field coming on line.
(a) Draw the graph of $N(t)$.
(b) How many days after the field comes on line does the production peak? Round your answer to the nearest day.
(c^{\star}) The investors stop production when it drops to 10 . How many days is that?
 Round your answer to the nearest day.

An Oil Field supply is declining exponentially. Let $t=$ years with $t=0$ being 2000. Supply is given in millions of barrels (bbl).

t	0	1	2	3	4	5
bbl	50	42	36	30	25	24

(a) Run exponential regression on this data to determine the function which closely matches the data. Convert it to the form $y=A e^{k+}$
(b) What will the oil supply be in $2010(t=10)$?
(c) When will the oil supply drop to $1,000,000 \mathrm{bbl}$ (bbl $=1$ in above chart)?

You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

1) Give the equation of the line through $(2,-2) \&(-13,23)$

$$
\begin{array}{ll}
m=-5 / 3 \\
b=4 / 3 & y=\frac{-5}{3} x+\frac{4}{3}
\end{array}
$$

2) Solve for x using algebraic manipulation: $15-7 \frac{x-1}{2}=\frac{x}{4}+3$

$$
\begin{gathered}
60-14 x+14=x+12 \\
15 x=62 \\
x=62 / 15
\end{gathered}
$$

3) Solve for x using algebraic manipulation: $(x-5)(x+2)=4(3 x+11)$

$$
\begin{aligned}
& x^{2}-3 x-10=12 x+44 \\
& x^{2}-15 x-54=0 \\
& (x-18)(x+3)=0
\end{aligned}
$$

$$
\begin{array}{ll}
150+25 x-5 y & =9 y-6 x+12 \\
138+31 x & =14 y
\end{array} \quad y=\frac{31 x+138}{14}
$$

5) Solve for y : $a x+b y=3 x-2 y+8$

$$
\begin{aligned}
b y+2 y=(b+2) y & =3 x-a x+8 \\
y & =\frac{3 x-a x+8}{b+2}
\end{aligned}
$$

6) Solve for x : $4 e^{a x+b}-5=11$
$e^{a x+b}=4$

$$
\ln e^{a x+b}=\ln 4
$$

$$
x=(\ln 4)-6
$$

$$
a
$$

7) Solve for x : $\frac{\ln (a x+b)}{2}+7=6$

4 pts .
$\ln (a x+b)=-2$
e
$x=\frac{e^{-2}-b}{a}$
8) Solve using the TI: $e^{-x / 2}=2+\ln x$. Give the answer with 4 significant digits.

2 pts

$$
x \sim 0.3176
$$

9*) An insect population was 600 on May 1. 5 days later the population had increased to 1,430. Use $P(t)=P_{0} e^{r t}$ with May 1 corresponding to $t=0$. Determine r. 3 pts

$$
1430=600 e^{5 r} \quad r=\ln \left(\frac{1430}{600}\right) / 5 \sim 0.1737
$$

10) $P(t)=P_{0} e^{-k t}$ models radioactive decay. Suppose you start with 200 grams of radioactive Silicon (Si) with a half-life of 140 yrs .
(a) What is the value for P_{0} ? 2 pts 200 gms
(b) How much Silicon will be left in 500 yrs ? 2 pts

$$
K=\ln 2 / 140 \quad 16.8 \mathrm{gms}
$$

(c) How many years until the Silicon decays to 10 gms ? 2 pts 605.1 yrs
$10=200 e^{-k t}$
11) The mosquito population for Swamp Camp can be modeled by $M(t)=500+e^{-0.12 t}$ Where $t=0$ on June 1 .
(a) What is the maximum mosquito population? Hint: Graph it. 2 pts
$1 / 533$
(b) How many days until the mosquito population drops below 1 of the nasty little buggers? 2 pts

$$
\sim 89 \text { days }
$$

12) Function ' f ' represents the number of bugs counted (N) at time of day (T) with time in
minutes starting at midnight for the next 24 hrs .
(a) Give the independent variable. $T=$ time of day minutes
(b*) What does $f(7)=8$ mean in terms of this function? \qquad were 8 bugs
(c) Which of these correctly describes this relationship? (Circle one)

(i) $N=f(T)$
(ii) $y=f(x)$
(iii) $T=f(N)$
(iv) $N=f(x)$
(v) $N=3 T^{2}+4$
(d) Give the domain of this function.

$$
t \in[0,1440]
$$

13) Use the graph to answer the following: 1 pt each
(a) $f(-2)=-1$
(b) $f(5)=\varnothing$
(c) $g(f(2))=g(-2)=8$
(d) How many roots does $f(x)$ have and what are they?

$$
1 \theta \quad x=-3
$$

(e) What is the domain of $f(x)$?

$$
x \in[-4,0] \cup[2,5)
$$

(f) Give all x-values for which $g(x)=5 . x=1,4$
(g^{*}) Circle the correct version of $g(x)$ as a translated version of $f(x)$.

$$
g(x)=f(x+2)+7 \quad g(x)=f(x-2)+7 \quad g(x)=f(2)+7 \quad g(x)=2+f(x)+7
$$

(h) Find the average rate of change of $f(x)$ from $x_{1}=-4$ to $x_{2}=2$
14)

$$
\begin{aligned}
& y_{1}=f(-4)=1 \\
& y_{2}=f(2)=-2
\end{aligned} \quad m=-1 / 2
$$

(a) Simplify to a single term. $\ln (a x)+\ln (b)=$ $\ln (a b x)$
(b) Simplify to a single term.
$\ln a x-\ln b x=$ $\ln (a / b)$
(d) Simplify to a single term. $2 \ln x-\ln x=$
$\ln x$
(e) Simplify.
$\ln e^{4 x}=$ $4 x$
(f) Simplify.
(f) $e^{\ln 3 x}=$
$3 x$

2 pts each
(c) Simplify to an integer.

$$
0
$$

$\log _{3} 405-\log _{3} 5=\log _{3} 81=$
4
(g) Simplify to positive exponents. $a^{3} a^{5} b^{-4}=$
a^{8} / b^{4}
(h) Simplify to positive exponents. $\left(2 x^{2}\right)^{3}=$
$2^{3} x^{6}$
(i) Simplify to positive exponents. $\sqrt{x^{9}}=$

$$
x^{9 / 2}
$$

15) $f(x)=\sqrt{x-1} \quad g(x)=x^{2}+1 \quad$ Simplify the following: 3 pts each
(a) $f(x+1)=\sqrt{(x+1)-1}=\sqrt{x}$
(b) $g\left(x^{-1}\right)=x^{-2}+1=\frac{1}{x^{2}}+1$
(c) $f(g(x)))=\sqrt{\left(x^{2}+1\right)-1}=x$
(d) $f^{2}(x)=\sqrt{x-1}^{2}=x-1$
(e) $10-5 g(x)=10-5\left(x^{2}+1\right)=5-5 x^{2}$
16) Find the inverse of $y=\frac{2}{x+1} 5$ pts

$$
x=\frac{2}{y+1} \quad y^{-1}=\frac{2}{x}-1 \text { or } \frac{2-x}{x}
$$

17) $N(t)=9.62 t e^{-0.035 t}$ models natural gas production in a gas field ($t=$ days). $t=0$ corresponds to the field coming on line. 1 pt each
(a) Draw the graph of $\mathrm{N}(\mathrm{t})$.
(b) How many days after the field comes on line does the production peak? Round your answer to the nearest day.

$$
28.6 \sim 29 \text { days }
$$

$\left(c^{\star}\right)$ The investors stop production when it drops to 10 . How many days is that? Round your answer to the nearest day.

v 140 days
BONUS

t	0	1	2	3	4	5
bbl	50	42	36	30	25	24

(a) Run exponential regression on this data to determine the function which closely matches the data. Convert it to the form $y=A e^{k t} \quad y=48.99(0.857)^{t} \rightarrow y=48.99 e^{-0.1545 t}$
(b) What will the oil supply be in $2010(t=10) ? 10.45 \mathrm{Mb6l}$
(c) When will the oil supply drop to $1,000,000 \mathrm{bbl}(\mathrm{bbl}=1$ in above chart)?

$$
\approx 25.2 \text { y } \mathrm{cs}
$$

