Mth 111 Practice for Exam 2

Franz Helfenstein Name

You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

- 1) Give the equation of the line through (2, -2) & (-13, 23)
- Solve for x using algebraic manipulation: $15 7 \frac{x-1}{2} = \frac{x}{4} + 3$ 2)
- Solve for x using algebraic manipulation: (x 5)(x + 2) = 4(3x + 11)3)

4) Solve for y: 10 -
$$\frac{5x - y}{3} = \frac{3y - 2x + 4}{5}$$

- Solve for y: ax + by = 3x 2y + 85)
- Solve for x: $4e^{ax+b} 5 = 11$ 6)
- Solve for x: $\frac{\ln(ax+b)}{2} + 7 = 6$ 7)
- Solve <u>using the TI</u>: $e^{-x/2} = 2 + \ln x$. Give the answer with 4 significant digits. 8)
- 9) An insect population was 600 on May 1. 5 days later the population had increased to 1,430. Use $P(t) = P_0 e^{rt}$ with May 1 corresponding to t = 0. Determine r.
- $P(t) = P_0 e^{-kt}$ models radioactive decay. Suppose you start with 200 grams of radioactive Silicon (Si) with a 10) half-life of 140 yrs.
 - (a) What is the value for P_0 ?
 - (b) How much Silicon will be left in 500 yrs?
 - (c) How many years until the Silicon decays to 10 gms?
- The mosquito population for Swamp Camp can be modeled by $M(t) = 500 t e^{-0.12t}$ Where t = 0 on June 1. 11)
 - (a) What is the maximum mosquito population? Hint: Graph it.
 - (b) How many days until the mosquito population drops below 1 of the nasty little buggers?
- 12) Function 'f' represents the number of bugs counted (N) at time of day (T) with time in minutes starting at midnight for the next 24 hrs.
 - (a) Give the independent variable _____
 - (b) What does f(7) = 8 mean in terms of this function?
 - (c) Which of these correctly describes this relationship? (Circle one)

(iv) N = f(x) (v) N = $3T^2 + 4$ (i) N = f(T)(iii) T = f(N)(ii) y = f(x)

(d) Give the domain of this function.

13)	Use the graph to answer the fol	lowing	:			
	(a) f(-2) = (b) f(5) =		(c) g(f(2)) =		5 4 4 9(x)	
	(d) How many roots does f(x) have and <u>what are they</u> ?					
	(e) What is the <u>domain</u> of f(x)?				-4 -3 -2 -1 -1 -2 -3 -4 -5 -6 -7 - 6 -7 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	
	 (f) Give all x-values for which g(x) = 5. x = (g) Circle the correct version of g(x) as a translated version of f(x). 					
	g(x) = f(x + 2) + 7 $g(x) = f(x - 2) + 7$ $g(x) = f(2) + 7$				g(x) = 2 + f(x) + 7	
	(h) Find the average rate of change of $f(x)$ from $x_1 = -4$ to $x_2 = 2$					
14) (a)	Simplify to a single term. In (ax) + In (b) =	(b)	Simplify to a single term. In ax - In bx =	(c)	Simplify to an <u>integer</u> . log ₃ 405 – log ₃ 5 =	
(d)	Simplify to a single term. 2ln x – ln x =	(e)	Simplify. In e ^{4×} =	(f)	Simplify. e ^{ln 3x} =	
(g)	Simplify to positive exponents. a ³ a ⁵ b ⁻⁴ =	(h)	Simplify to positive exponents. (2x²)³ =	(i)	Simplify to positive exponents. $\sqrt{x^9}$ =	
15)	$f(x) = \sqrt{x-1} \qquad \qquad g(x) = x$	x² + 1	Simplify the following:			
	(a) f(x + 1) =		(b) g(x ⁻¹) =			
	(c) f(g(x))) =		(d) f ² (x) =			
	(e) 10 - 5g(x) =		(f) g(g(×))			
16)	Find the inverse of y = $\frac{2}{x+1}$					
17)) N(t) = 9.62te ^{-0.035t} models natural gas production in a gas field (t = days). t = 0 corresponds to the <u>field coming on line</u> .					
	(a) Draw the graph of N(t).					
	(b) How many days after the field comes on line does the production peak? Round your answer to the nearest day.					
	(c*) The investors stop production when it drops to 10. How many days is that? 000 50 100 150* Round your answer to the nearest day.					
An Oil Field supply is declining exponentially. Let t = years with t = 0t012345being 2000. Supply is given in millionsof barrels (bbl).bbl504236302524						
(a)	Run exponential regression on this data to determine the function which closely matches the data. Convert it to the form y = Ae ^{kt}					
(b)	•					

(c) When will the oil supply drop to 1,000,000 bbl (bbl = 1 in above chart)?

Mth 111 Exam 2 Franz Helfenstein Name You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts. 1) Give the equation of the line through (2, -2) & (-13, 23)4 pts M= -5/3 y= 5 x + 43 6-4/3 2) Solve for x using algebraic manipulation: $15 - 7\frac{x-1}{2} = \frac{x}{4} + 3$ 5 pts 60 - 14X + 14 = X + 1215x = 62x= 62/15 Solve for x using algebraic manipulation: (x - 5)(x + 2) = 4(3x + 11)3) 5 pts $x^{2} - 3x - 10 = 12x + 44$ X= -3,18 $x^{2} - 15x - 54 = 0$ (x-18)(x+3) = 04) Solve for y: $10 + \frac{5x - y}{3} = \frac{3y - 2x + 4}{5}$ *LCD = 15* 5 pts 150 + 25x - 5y = 9y - 6x + 12 $y = \frac{31X + 138}{14}$ 138 + 31× = 144 5) Solve for y: ax + by = 3x - 2y + 85 pts by + 2y = (b+2)y = 3x - ax + 8 $y = \frac{3x - ax + 8}{b + 2}$ pg 1

pg 3

Solve for x: $4e^{ax+b} - 5 = 11$ 6) 4 pts pax+6= 4 X = (ln 4) - blneax+b = ln4 7) Solve for x: $\frac{\ln(ax+b)}{2} + 7 = 6$ 4 pts ln(ax+b) = -2Solve using the TI: $e^{-x/2} = 2 + \ln x$. Give the answer with 4 significant digits. 8) 2 pts X~ 0.3176 9*) An insect population was 600 on May 1. 5 days later the population had increased to 1,430. Use $P(t) = P_0 e^{rt}$ with May 1 corresponding to t = 0. Determine r. 3 pts r= lu(1430) /5 ~ 0.1737 1430 = 600 e 5r 10) $P(t) = P_0 e^{-kt}$ models radioactive decay. Suppose you start with 200 grams of radioactive Silicon (Si) with a half-life of 140 yrs. (a) What is the value for Po? 2 pts 200 gms (b) How much Silicon will be left in 500 yrs? 2 pts 16.8 gms K= lu2/140 (c) How many years until the Silicon decays to 10 gms? 2 pts 605.1 yrs $10 = 200 \text{ e}^{-kt}$ 11) The mosquito population for Swamp Camp can be modeled by $M(t) = 500 t e^{-0.12t}$ Where t = 0 on June 1. (a) What is the maximum mosquito population? Hint: Graph it. 2 pts N 1533 (b) How many days until the mosquito population drops below 1 of the nasty little buggers? 2 pts ~ 89 days pg 2

pg 4

12) Function 'f' represents the number of bugs counted (N) at time of day (T) with time in minutes starting at midnight for the next 24 hrs. 4 pts (a) Give the independent variable <u>T = time of day minutes</u> (b*) What does f(7) = 8 mean in terms of this function? 7 am there were 8 bugs (c) Which of these correctly describes this relationship? (Circle one) (i) N = f(T)(v) N = $3T^2 + 4$ (ii) y = f(x)(iii) T = f(N)(iv) N = f(x)(d) Give the domain of this function. $t \in [0, 1440]$ 13) Use the graph to answer the following: 1 pt each (a) f(-2) = -1 (b) $f(5) = \phi$ (c) g(f(2)) = g(-2) = 8g(x)(d) How many roots does f(x) have and what are they? 1 @ X=-3 (e) What is the <u>domain</u> of f(x)? x E [-4,0] U [2,5) (f) Give all x-values for which g(x) = 5. x = 7, 4f(x) (g*) Circle the correct version of g(x) as a translated version of f(x). g(x) = f(x + 2) + 7 (g(x) = f(x - 2) + 7) q(x) = f(2) + 7g(x) = 2 + f(x) + 7(h) Find the average rate of change of f(x) from $x_1 = -4$ to $x_2 = 2$ $y_1 = f(-4) = 1$ M= -1/2 $y_2 = f(z) = -2$ 14) 2 pts each (a) Simplify to a single term. (b) Simplify to a single term. (c) Simplify to an integer. ln (ax) + ln (b) = log3 405 - log3 5 = 109 - 813 In ax - In bx = lu/a/6 lu(abx) (d) Simplify to a single term. (e) Simplify. (f) Simplify. $2\ln x - \ln x =$ $\ln e^{4x} =$ $e^{\ln 3x} =$ lu x (g) Simplify to positive exponents. Simplify to positive exponents. (i) Simplify to positive exponents. (h) $a^3 a^5 b^{-4} =$ $(2x^2)^3 =$ $\sqrt{x^9} =$ × 9/2 a8/64 23×6 pg 3

15)
$$f(x) = \sqrt{x - 1}$$
 $g(x) = x^{2} + 1$ Simplify the following:
(a) $f(x + 1) = \sqrt{(x + 1)} - 1 = \sqrt{x}$
(b) $g(x^{-1}) = x^{-2} + 1 = \frac{1}{x^{2}} + 1$
(c) $f(g(x))) = \sqrt{(x^{2} + 1)} - 1 = x$
(d) $f^{2}(x) = \sqrt{x - 1}^{2} = x - 1$
(e) $10 - 5g(x) = 10 - 5(x^{2} + 1) = 5 - 5x^{2}$

16) Find the inverse of
$$y = \frac{L}{x+1}$$

$$X = \frac{2}{y+1}$$
 $y' = \frac{2}{x} - 1$ or $\frac{2-1}{x}$

N(t) = 9.62te^{-0.035t} models natural gas production in a gas field (t = days).
 t = 0 corresponds to the field coming on line.
 1 pt each

(a) Draw the graph of N(t).

BONUS

(b) How many days after the field comes on line does the production peak? Round your answer to the nearest day.

(c*) The investors stop production when it drops to 10. How many days is that? Round your answer to the nearest day.

An Oil Field supply is declining exponentially. Let t = years with t = 0 being 2000. Supply is given in <u>millions</u> of barrels (bbl). 2 pts each

(a) Run exponential regression on this data to determine the function which closely matches the data. Convert it to the form $y = Ae^{kt}$ $y = 48.99 (0.857)^{t} \rightarrow y = 48.99 e^{-0.1545t}$

+ 0 1 2 3 4

bbl

50 42

36 30

(b) What will the oil supply be in 2010 (t = 10)? 10,45 Mbbl

(c) When will the oil supply drop to 1,000,000 bbl (bbl = 1 in above chart)?

~25.2 yrs

5

25 24

5 pts

3 pts each