Franz Helfenstein Name

You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

1)	Give the equation of the line through (1, -2) & (-13, 19)	4 pts
2)	Solve for x <u>using algebraic manipulation</u> : $12 - 7 \frac{5x - 2}{3} = \frac{x}{4} + 5$	5 pts
3)	Solve for x using algebraic manipulation: $(2x - 5)(x + 2) = 2(3x + 1) + 27$	5 pt <i>s</i>
4)	Solve for y: $7 + \frac{5x - y}{2} = \frac{5y - 7x + 4}{3}$	5 pts
5)	Solve for y: 5x + 3y = ax - by + c	5 pts
6)	Solve for x: $3e^{mx+b} - 5 = 16$	4 pts
7)	Solve for x: $\frac{\ln(mx + b)}{2} + 8 = 11$	4 pts
8)	Solve <u>using the TI</u> : $5e^{-x^2} = x$. Give the answer with 3 significant digits.	2 pts
9*)	A starfish population was initially 723. 25 days later the population had decreased to 515. Using P(t) = P_0e^{rt} , determine r. 3 pts	
10)	$P(t) = P_0 e^{-rt}$ models radioactive decay. You start with 100 grams of radioactive X with a half-life (a) What is the value for P_0 ? 1 pts (b) What is the value for r? 1 pts (c) How much X will be left in 1 hour (60 min)? 2 pts (d) How many minutes until X decays to 10 gms? 2 pts	e of 14 min.
11)	The May fly hatch can be modeled by $M(t) = 430 t e^{-0.23t}$ Where $t = 0$ on June 1.	
	(a) What is the maximum population? Hint: Graph it. 2 pts	
	(b) How many days until the population drops to 50? 2 pts	
12) 	Function 'f' represents the number of people a dog has contacted (P) vs the number of minutes (T) the dog was in a park. The dog was in the park for 20 min. 4 pts	2 22-
	(a) Give the independent variable	
	(b*) What does f(7) = 8 mean in terms of this function?	Z
((c) Which of these correctly describes this relationship? (Circle one)	
	(i) $T = f(N)$ (ii) $y = f(x)$ (iii) $P = f(T)$ (iv) $P = f(x)$ (v)	P = g(†)

(d) Give the domain of this function.

13)	Use the graph to answer the fol	lowing	: 1 pt each					7 Y		
	(a) f(1) = (b) f(5) =		(c) f(g(-3)) =					5-		•
	(d) g(g(-1)) =							^⁴ f(x)		
	(e) What is the <u>domain</u> of f(x)?				_			-1		
	(f) Give all x-values for which f	(x) = 5	. x =		-7	-6 -5 -4	-3 -2 -	1 1	2 3 4	5 6 7
	(g*) Circle the correct version of	of g(x)	as a translated version o	of f(x).			\searrow	-3-		/
	g = f(x + 2) - 8 g = f(x - 2) - 8	s g =	f(2) - 8 g = 2 + 2f(x) -	4				-5-~~~ 9 -6	(×)	
	(h) Find the average rate of ch	ange o	f f(x) from $x_1 = -7$ to $x_2 =$	= 5				-7		
14a)	Simplify to a single term. In (ab) + In (c) =	(b)	Simplify to a single terr In ax ² - In bx =	n.	(c)	Simplit Log _i	fy to a ₅ 800 ·	n <u>inte</u> - log ₅ :	<u>ger</u> . 32 =	
(d)	Simplify to a single term. 3ln 2x – ln x =	(e)	Simplify. In e ^{6x + 1} =		(f)	Simplif e ^{ln 4x - 7}	fy. =			
(g)	Simplify to positive exponents. $a^7 a^5 b^3 b^{-8} =$	(h)	Simplify to positive exp (5x ³) ⁴ =	onents	. (i)	Simplif x²√x ⁷	fy to p =	ositive	е ехрог	nents.
15)	$f(x) = \sqrt{x+4} \qquad g(x) = x$	x² - 5	Simplify the fo	ollowing	j :			3 pts	each	
	(a) f(x + 6) =	(b) g	(x ⁻¹) =				(0	c) f(g((x)) =	
	(d) g(x + h) =	(e) f	²(x) - 2g(x) =							
16)	Find the inverse of y = $\frac{5}{3x+2}$							ł	5 pts	
17)	N(t) = 95te ^{-0.06†} models the unco t = days since the lightning strik	ontaine ke that	d acreage of a forest fir started the fire.	re with 1 pt	each	750	Unco	ontaine	d Acre	eage
	(a) Draw the graph of N(t).									
	 (b) How many days after the lightning strike does the uncontained acreage peak? Round your answer to the nearest day. 					500				
	(c*) The USFS switches to mop drops to 50 ac. How many nearest day.	-up op days is	erations when uncontaine that? Round your answe	ed acrea er to th	age Ne	250- 0-		50	100	150
18)	Spawning Salmon are declining e t = 0 being 2000. Coguille River	xpone popula	ntially. Let t = years with ition is given. 2 pts ea	h	t Salmon	0 753	1 623	2 546	3 450	4 371

- Run exponential regression on this data to determine the function which best matches the data. Convert it (a) to the form $y = Ae^{kt}$. Write both forms here.
- (b) Predict the Salmon spawning population in 2010 (t = 10).
- Predict when the Salmon spawning population will drop to just 50. (c)

150

Mth 111 Exam 2
Yean Hilf examt in process not merely the answer to receive full credit, Write in a next and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.
1) Give the equation of the line through
$$(1, -2) \leq (-13, 19)$$

$$m = \frac{(4--2)}{(-15+1)} = \frac{21}{(-14)} = \frac{3}{2}$$

$$y = -\frac{3}{2} \times -\frac{1}{2}$$
2) Solve for x using algebraic manipulation: $12 - 7\frac{5x-2}{3} = \frac{x}{4} + 5$

$$y = -\frac{3}{2} \times -\frac{1}{2}$$
3) Solve for x using algebraic manipulation: $(2x - 5)(x + 2) = 2(3x + 1) + 27$

$$y = -\frac{140}{(14)}$$
3) Solve for x using algebraic manipulation: $(2x - 5)(x + 2) = 2(3x + 1) + 27$

$$y = -\frac{140}{(14)}$$
4) The solution of the line through $(1, -2) \leq (-13, 19)$

$$(x - 140) \times + 50 = 3x + 60$$

$$(-140) \times + 200 = 3x + 60$$

pg 3

6) Solve for x:
$$3e^{mx+b} - 5 = 16+5$$

 $M \in MX+b = 10.7$
 $MX+b = 10.7$
 $MX+b = 10.7$
7) Solve for x: $\frac{\ln(mx+b)}{2} + 8 = (11-5)^2$
 $e^{M}(MX+b) = e^{6}$
 $MX+b = e^{6}$
8) Solve using the TI: $5e^{x^2} = x^2$. Give the answer with 3 significant digits. 2 pts
 $X \stackrel{N}{=} \pm 1.15$
 $5e^{-x^2} = X^{\frac{1}{2}}$
 $5e^{-x^2} = x^{\frac{1}{2}}$
 $X = 1.196$
9*) A starfish population was initially 723. 25 days later the population had decreased to 515.
Using P(t) = Poe^{rt}, determine r. 3 pts
 $515 = 723 e^{5 \cdot 25}$
 $MX = 102 e^{405}$

(b) What is the value for r? 1 pts $lw2/l4 \sim 0.0495$

- (b) How much X will be left in 1 hour? 2 pts $P = 100 e^{-R \cdot 60} \cong 5.13 \text{ gms}$
- (c) How many minutes until X decays to 5 gms? 2 pts $5 = 100 e^{-Rt} \pm w 60.5 \text{ Min}$

to 10 9 ~ 47 min

N23 days

11) The May fly hatch can be modeled by $M(t) = 430 t e^{-0.23t}$ Where t = 0 on June 1.

- (a) What is the maximum population? Hint: Graph it. 2 pts ~688
- (b) How many days until the population drops to 50? 2 pts

12) Function 'f' represents the number of people a dog contacted (P) vs the number of minutes (T) the dog was in the park. The dog was in the park for 20 min. 4 pts Give the independent variable (a) minula (b*) What does f(7) = 8 mean in terms of this function?_ h.dA. pend (c) Which of these correctly describes this relationship? (Circle one) (iii) P = f(T)(iv) P = f(x)(v) P = q(t)(i) T = f(N)(ii) y = f(x)Give the domain of this function. 0,20 min (d) 13) Use the graph to answer the following: 1 pt each (a) f(1) = D V E (b) f(5) = 5 (c) f(q(-3)) = 4(d) g(g(-1)) = -2,5(e) What is the domain of f(x)? $\left[-7, -1\right) \cup \left(2, 5\right]$ o g(x) (f) Give all x-values for which f(x) = 5. x = -5, 5 (q^*) Circle the correct version of q(x) as a translated version of f(x). g(x) = f(x - 2) - 8q(x) = f(x - 2) - 8g(x) = f(2) - 8q(x) = 2 + f(x) 27(h) Find the average rate of change of f(x) from $x_1 = -7$ to $x_2 = 5$ $M = \frac{5-6}{5--7} = \frac{-1}{12}$ 2 pts each 14) (b) Simplify to a single term. Simplify to an integer. Simplify to a single term. (c) (a) $\ln ax^2 - \ln bx =$ In (ab) + In (c) = Log₅ 800 - log₅ 32 = en(abc) $\begin{pmatrix} ax \\ b \end{pmatrix}$ $log_5 25 = 2$ ILL ax (f) Simplify. $e^{\ln 4x-7} = 4\chi - 7$ Simplify (d) Simplify to a single term. (e) $\ln e^{6x+1} =$ $3\ln 2x - \ln x =$ $lu(2X)^{3} = lu 2^{3}X$ (g) Simplify to positive exponents. (h) Simplify to positive exponents. (i) Simplify to positive exponents. $(5x^3)^4 = 54 \chi^{12}$ $a^7 a^5 b^3 b^{-8} =$ $x^2\sqrt{x^7} =$ a12/65 x "/2 pg 3

15)	$f(x) = \sqrt{x+4}$	$g(x) = x^2 - 5$ Simplify the following:	3 pts each
	(a) $f(x + 6) = \sqrt{(x + 6)}$	$\overline{+6}+4 = \sqrt{\times+10}$	
	(b) g(x ⁻¹) = X	$x^{-2}-5 = \frac{1}{x^2} - 5$	
	(c) f(g(x))) =	$x^{2}-5+4 = \sqrt{x^{2}-1}$	
	(d) g(x + h) =	$(x+h)^2 - 5$	
	(e) f ² (x) - 2g(x) =	$x+4-Z(x^{2}-5) = -Zx^{2}+X+$	19 State patter scheme in Statementer installe
16)	Find the inverse of	$f y = \frac{5}{3x+2}$	5 pts
	$X = \frac{5}{3y+2}$	$y = \frac{5}{x} - 2$ $-\frac{1}{y} = \frac{5}{3}$	$\frac{-2}{3}$ or $y = \frac{5-2}{3x}$
	3y+2 = 5x	5	
17)	N(t) = 95te ^{-0.06t} m t = days since the	odels the uncontained acreage of a forest fire with lightning strike that started the fire. 1 pt ea	Uncontained Acreage
	(a) Draw the gra	ph of N(t).	500
	(b) How many day peak? Round	is after the lightning strike does the uncontained acr your answer to the nearest day. \mathcal{M} if days	250 250
	(c*) The USFS sw drops to 50 a nearest day.	itches to mop-up operations when uncontained acreag c. How many days is that? Round your answer to the $ m N85~dram S$	je 0.00000000000000000000000000000000000
BON	US	2	
Spaw being	vning Salmon are de g 2000. Coquille Riv	clining exponentially. Let t = years with t = 0	t 0 1 2 3 4 Salmon 753 623 546 450 371
(a)	Run exponential re to the form y = Ae	gression on this data to determine the function which $y = 754 e^{Kt}$	h best matches the data. Convert it $f = lin(0,840) \sim -174$
(b)	What will the span	whing Salmon population be in 2010 (t = 10)? \sim [3]	32
(c)	When will the spa	wning Salmon population drop to 50? ~ 2015	-2016
			pg