You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

1) Give the equation of the line through $(1,-2) \&(-13,19) 4$ pts
2) Solve for x using algebraic manipulation: $12-7 \frac{5 x-2}{3}=\frac{x}{4}+5$ pts
3) Solve for x using algebraic manipulation: $(2 x-5)(x+2)=2(3 x+1)+27 \quad 5$ pts
4) Solve for y : $7+\frac{5 x-y}{2}=\frac{5 y-7 x+4}{3} \quad 5$ pts
5) Solve for y : $5 x+3 y=a x-b y+c \quad 5$ pts
6) Solve for $x: 3 e^{m x+b}-5=16 \quad 4$ pts
7) Solve for $x: \frac{\ln (m x+b)}{2}+8=11 \quad 4$ pts
8) Solve using the TI: $5 e^{-x^{2}}=x$. Give the answer with 3 significant digits. 2 pts

9*) A starfish population was initially 723. 25 days later the population had decreased to 515 . Using $P(t)=P_{0} e^{r t}$, determine r. 3 pts
10) $P(t)=P_{0} e^{-r t}$ models radioactive decay. You start with 100 grams of radioactive X with a half-life of 14 min .
(a) What is the value for P_{0} ? 1 pts
(b) What is the value for r ? 1 pts
(c) How much X will be left in 1 hour (60 min)? 2 pts
(d) How many minutes until X decays to 10 gms? 2 pts
11) The May fly hatch can be modeled by $M(t)=430 t e^{-0.23 t}$ Where $t=0$ on June 1 .
(a) What is the maximum population? Hint: Graph it. 2 pts
(b) How many days until the population drops to 50? 2 pts
12) Function ' f ' represents the number of people a dog has contacted (P) vs the number of minutes (T) the dog was in a park. The dog was in the park for 20 min .

4 pts
(a) Give the independent variable
(b*) What does $f(7)=8$ mean in terms of this function? \qquad

(c) Which of these correctly describes this relationship? (Circle one)
(i) $T=f(N)$
(ii) $y=f(x)$
(iii) $P=f(T)$
(iv) $P=f(x)$
(v) $P=g(t)$
(d) Give the domain of this function.
13) Use the graph to answer the following: 1 pt each
(a) $f(1)=$
(b) $f(5)=$
(c) $f(g(-3))=$
(d) $g(g(-1))=$
(e) What is the domain of $f(x)$?
(f) Give all x-values for which $f(x)=5 . x=$
(g^{*}) Circle the correct version of $g(x)$ as a translated version of $f(x)$.

$$
g=f(x+2)-8 \quad g=f(x-2)-8 \quad g=f(2)-8 \quad g=2+2 f(x)-4
$$

(h) Find the average rate of change of $f(x)$ from $x_{1}=-7$ to $x_{2}=5$

14a) Simplify to a single term.
(b) Simplify to a single term. $\ln a x^{2}-\ln b x=$
(c) Simplify to an integer. $\log _{5} 800-\log _{5} 32=$
(d) Simplify to a single term. $3 \ln 2 x-\ln x=$
(e) Simplify.
$\ln e^{6 x+1}=$
(f) Simplify.

$$
e^{\ln 4 x-7}=
$$

(g) Simplify to positive exponents.
(h) Simplify to positive exponents. $\left(5 x^{3}\right)^{4}=$
(i) Simplify to positive exponents. $x^{2} \sqrt{x^{7}}=$
15) $f(x)=\sqrt{x+4}$
$g(x)=x^{2}-5$
Simplify the following:
(a) $f(x+6)=$
(b) $g\left(x^{-1}\right)=$
(d) $9(x+h)=$
(e) $f^{2}(x)-2 g(x)=$
16) Find the inverse of $y=\frac{5}{3 x+2}$

5 pts
17) $\quad N(t)=95 t e^{-0.06 t}$ models the uncontained acreage of a forest fire with $t=$ days since the lightning strike that started the fire.

1 pt each
(a) Draw the graph of $N(t)$.
(b) How many days after the lightning strike does the uncontained acreage peak? Round your answer to the nearest day.
(c^{*}) The USFS switches to mop-up operations when uncontained acreage drops to 50 ac. How many days is that? Round your answer to the nearest day.

18) Spawning Salmon are declining exponentially. Let $\dagger=$ years with $t=0$ being 2000. Coquille River population is given. 2 pts ea

t	0	1	2	3	4
Salmon	753	623	546	450	371

(a) Run exponential regression on this data to determine the function which best matches the data. Convert it to the form $y=A e^{k t}$. Write both forms here.
(b) Predict the Salmon spawning population in $2010(t=10)$.
(c) Predict when the Salmon spawning population will drop to just 50.

You must show the solution process not merely the answer to receive full credit. Write in a neat and organized fashion. Circle or box-in your answers. Simplify and write exact values where possible. 100 pts.

1) Give the equation of the line through ($1,-2) \&(-13,19)$

$$
\begin{aligned}
& m=\frac{19--2}{-13-1}=\frac{21}{-14}=\frac{-3}{2} \\
& b=19-\frac{-3}{2}(-13)=-1 / 2
\end{aligned}
$$

$$
y=\frac{-3}{2} x-\frac{1}{2}
$$

2) Solve for x using algebraic manipulation: $12-7 \frac{5 x-2}{3}=\frac{x}{4}+5$

$$
\begin{aligned}
12[12]+\frac{4}{1}\left[\frac{-35 x+14}{3}\right] & =\frac{3}{1}\left[\frac{x}{4}\right]+12[5] \\
144+-140 x+56 & =3 x+60 \\
-140 x+200 & =3 x+60 \\
140 & =143 x
\end{aligned}
$$

3) Solve for x using algebraic manipulation: $(2 x-5)(x+2)=2(3 x+1)+27$

$$
\begin{aligned}
& 2 x^{2}-x-10=6 x+2+27 \\
& 2 x^{2}-7 x-39=0 \\
& (2 x-13)(x+3)=0
\end{aligned}
$$

4) Solve for y : $6[7]^{3}+\left[\frac{5 x-y}{2}\right]=\left[\frac{5 y-7 x+4}{3}\right]$

$$
\begin{aligned}
42+15 x-3 y & =10 y-14 x+8 \\
34+29 x & =13 y
\end{aligned}
$$

$$
y=\frac{29 x+34}{13}
$$

5) Solve for y : $5 x+3 y=a x-b y+c$

$$
3 y+b y=a x-5 x+c
$$

$$
y=\frac{a x-5 x+c}{b+3}
$$

6) Solve for $x: 3 e^{m x+b}-5=\frac{16+5}{3}$ $\ln e^{m x+6}=\ln 7$

4 pts

$$
m x+b=\ln 7
$$

7) Solve for $x: \frac{\ln (m x+b)}{2}+8=(11-8)^{2}$

4 pts
$e^{\ln (\ln x+b)}=e^{6}$

$$
a x+b=e^{6}
$$

8) Solve using the TI: $5 e^{-x^{2}}=x^{2}$. Give the answer with 3 significant digits. 2 pts

$$
x \stackrel{N}{-1.15} \quad 5 x^{-x^{2}}=x^{2} \quad x=1,196
$$

9*) A starfish population was initially 723. 25 days later the population had decreased to 515.
Using $P(t)=P_{0} e^{r t}$, determine r. 3 pts

$$
\begin{aligned}
& \operatorname{ng} P(t)=P_{0} e^{r t}, \text { determine r. } 3 \text { pts } \\
& 515=723 e^{r .25} \quad \frac{\ln \left(\frac{515}{723}\right)}{25}=r \mathrm{~N}-0.0136
\end{aligned}
$$

10) $P(t)=P_{0} e^{-r t}$ models radioactive decay. You start with 100 grams of radioactive X with a half-life of 14 min .
(a) What is the value for P_{0} ? 1 pts 100 goths
(b) What is the value for r ? 1 pts lur $2 / 14 \sim 0.0495$
(b) How much X will be left in 1 hour? 2 pts

$$
P=100 e^{-R \cdot 60} \stackrel{N}{=} 5,13 \text { guns }
$$

(c) How many minutes until X decays to 5 ms? 2 pts

$$
\begin{aligned}
& \text { How many minutes until X decays to } 5 \mathrm{gms} \text { ? } 2 \text { pts } \\
& 5=100 e^{-R t . N} 60.5 \mathrm{miN} \quad \text { to } 10 \mathrm{~g} 247 \mathrm{~min}
\end{aligned}
$$

11) The May fly hatch can be modeled by $M(t)=430 t e^{-0.23 t}$ Where $t=0$ on June 1 .
(a) What is the maximum population? Hint: Graph it. 2 pts
(b) How many days until the population drops to 50? 2 pts
v23 days
12) Function ' f ' represents the number of people a dog contacted (P) vs the number of minutes (T) the dog was in the park. The dog was in the park for 20 min .
(a) Give the independent variable \qquad 1
(b*) What does $f(7)=8$ mean in terms of this function?
 the dor had contacted 8 people.

- 1
(c) Which af these correctly describes this relationship? (Circle one)
(i) $T=f(N)$
(ii) $y=f(x)$
(iii) $P=f(T)$
(iv) $P=f(x)$
(v) $P=g(t)$
(d) Give the domain of this function.

$$
[0,20 \mathrm{~min}]
$$

13) Use the graph to answer the following: 1 pt each
(a) $f(1)=$ DIE
(b) $f(5)=5$
(c) $f(g(-3))=4$
(d) $g(g(-1))=-2,5$
(e) What is the domain of $f(x)$? $[-7,-1) \cup(2,5]$
(f) Give all x-values for which $f(x)=5 . x=-5,5$

(g^{\star}) Circle the correct version of $g(x)$ as a translated version of $f(x)$.
$g(x)=f(x-2)-8$
$g(x)=f(x-2)-8$
$g(x)=f(2)-8$
$g(x)=2+f(x) 27$
(h) Find the average rate of change of $f(x)$ from $x_{1}=-7$ to $x_{2}=5$

$$
M=\frac{5-6}{5--7}=\frac{-1}{12}
$$

14)

(a) Simplify to a single term.
$\ln (a b)+\ln (c)=$

$$
\ln (a b c)
$$

(b) Simplify to a single term. $\ln a x^{2}-\ln b x=$ $\ln \frac{a x^{2}}{b x}=\ln \left(\frac{a x}{10}\right)$
(c) Simplify to an integer.
(d) Simplify to a single term.
(e) Simplify. $\ln e^{6 x+1}=6 x+1$
(f) Simplify.
$e^{\ln 4 x-7}=4 x-7$

$$
\ln \frac{(2 x)^{3}}{x}=\ln 2^{3} x^{2}
$$

(g) Simplify to positive exponents. $a^{7} a^{5} b^{3} b^{-8}=$
(h) Simplify to positive exponents. $\left(5 x^{3}\right)^{4}=$ $5^{4} x^{12}$
(i) Simplify to positive exponents. $x^{2} \sqrt{x^{7}}=$ $x^{11 / 2}$

15) $f(x)=\sqrt{x+4} \quad g(x)=x^{2}-5 \quad$ Simplify the following: 3 pts each
(a) $f(x+6)=\sqrt{(x+6)+4}=\sqrt{x+10}$
(b) $g\left(x^{-1}\right)=x^{-2}-5=\frac{1}{x^{2}}-5$
(c) $f(g(x)))=\sqrt{x^{2}-5+4}=\sqrt{x^{2}-1}$
(d) $g(x+h)=(x+h)^{2}-5$
(e) $f^{2}(x)-2 g(x)=x+4-2\left(x^{2}-5\right)=-2 x^{2}+x+14$
16) Find the inverse of $y=\frac{5}{3 x+2} \quad 5$ pts

$$
\begin{aligned}
& x=\frac{5}{3 y+2} \quad y=\frac{\frac{5}{x}-2}{3} \quad y^{-1}=\frac{5}{3 x}-\frac{2}{3} \quad \text { or } y^{-1}=\frac{5-2 x}{3 x} \\
& 3 y+2=\frac{5}{x}
\end{aligned}
$$

17) $N(t)=95 t e^{-0.06 t}$ models the uncontained acreage of a forest fire with $t=$ days since the lightning strike that started the fire. 1 pt each
(a) Draw the graph of $N(t)$.
(b) How many days after the lightning strike does the uncontained acreage peak? Round your answer to the nearest day.

$$
17 \text { days }
$$

(c^{*}) The USFS switches to mop-up operations when uncontained acreage drops to 50 ac. How many days is that? Round your answer to the
 nearest day.

$$
\text { n } 85 \text { days }
$$

BONUS
Spawning Salmon are declining exponentially. Let $t=$ years with $t=0$ being 2000. Coquille River population is given. 2 pts ea

t	0	1	2	3	4
Salmon	753	623	546	450	371

(a) Run exponential regression on this data to determine the function which best matches the data. Convert it to the form $y=A e^{k t}$

$$
y=754 e^{k t}
$$

$$
k=\ln (0,840) \sim-.174
$$

(b) What will the spawning Salmon population be in $2010(t=10)$? $\sim / 32$
(c) When will the spawning Salmon population drop to 50?

$$
\sim 2015-2016
$$

