1) Use the indicated points to find the equation of this line in slope-intercept form.
2) Solve for x : $3-\frac{\mathrm{x}-1}{2}=\frac{x}{4}$
3) Solve for $\mathrm{x}: \frac{3-\mathrm{x}}{2}+\frac{2}{3}=1-\frac{3 \cdot(2 \mathrm{x}-5)}{2}$
4) Solve for $\mathrm{x}: \frac{3 \mathrm{x}^{2}}{2}-\frac{5}{4}=\frac{\mathrm{x}+3}{4} \quad$ 5) \quad Solve for $\mathrm{b} \quad \frac{\mathrm{a}-\mathrm{b}+\mathrm{c}}{4 \mathrm{~b}}=10 \mathrm{a}$

5) Use the polynomial, $P(x)=2 x(x-3)^{2}(x+2)^{3}$ to answer the following.
(a) What is the degree of $P(x)$?
(b) What are the roots for $\mathrm{P}(\mathrm{x})$?
6) Give the general form of this polynomial
7) For $f(x)=1-3 x^{2}$, compute and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$
8) $\operatorname{For} f(t)=t^{2}$, simplify $4 f(2 x-1)+10$

9) $\mathrm{P}(\mathrm{t})=\mathrm{P}_{0} \mathrm{e}^{-\mathrm{kt}}$ models radioactive decay. Suppose you start with 22 grams of radioactive Iodine with a half-life of 5 days.
(a) What is the value for P_{0} ?
(b) Determine the value for k . Write k to 4 decimal accuracy.
10) $\mathrm{P}(\mathrm{t})=435 \mathrm{e}^{-0.26 \mathrm{t}}$ models the decline of a coyote population with t in yrs.
(a) What will the coyote population be in 23 yrs?
(b) How many years until the coyote population is reduced to 180 ?
11) Graph $y=-0.1 x^{3}-3 x^{2}-27.5 x-65$ and adjust the viewing window to see all roots, y-intercepts and local extrema. Then give the type of critical point and its value.

Type of Critical Point				
Value				

13) $f(x)=e^{(2 x)}+x$
(a) $f(3 t)=$
(b) $f(a+b)=$
14) Solve for x :
(a) $4 \mathrm{e}^{a \mathrm{x}}-5=\mathrm{b}$
(a)
(a) $10 \ln (a x+b)+90=100$
(b) $\mathrm{e}^{2 \mathrm{x}} \mathrm{e}^{3 \mathrm{x}+\mathrm{b}}=\mathrm{c}$
(c) $\mathrm{e}^{\mathrm{x}} \mathrm{e}^{2 \mathrm{x}+1}=\mathrm{a}$
15) Solve for x :
(b) $\ln (x+4)+\ln (x-2)=\ln 7$
(c) $\ln (a x+b)=-24$
16) A bacteria population at 12:00 was 116,600. 5 hours later the population had increased to 143,053 .
a) Using $\mathrm{P}(\mathrm{t})=\mathrm{P}_{0} \mathrm{e}^{\mathrm{kt}}$ with $12: 00$ corresponding to $\mathrm{t}=0$, determine P_{0}.
b) Determine k accurate to 4 significant digits.
c) Using your model what will be the population in 15 hours?
d) In how many hours will the population reach 250,000 ?
17) The number of students (P) who got x problems correct out of 30 total is given by $\mathrm{P}(\mathrm{x})=50 \mathrm{e}^{-0.01(\mathrm{x}-15)^{2} \text {. }}$
(a) Draw the graph of $\mathrm{P}(\mathrm{x})$.
(b) How many students got a perfect score?
(b) How many students got a 0 ?

18) Mathematics often requires solving complex equations where algebraic methods are insufficient. e.g. This equation would be rather difficult to solve algebraically: $\mathrm{xe}^{\mathrm{x}}=2 \mathrm{x}^{3}(\mathrm{x}+1)$

Outline a procedure for solving such equations, then solve the equation!
19) Simplify to an equivalent expression.
(a) Combine factors and convert to all positive exponents.
$\frac{\left(a^{2} x^{-3}\right)^{3}\left(a x^{4}\right)^{2}}{\left(a^{-4} x^{0}\right)^{2}}$
(b) Simplify to a single term
$2 \mathrm{x}+\ln \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}}+\ln \mathrm{x}$
(c) Simplify to a single number
$\log _{2} 160-\log _{2} 10$
20)
(a) $\log _{5} 625=$
(b) $\log _{2} 256=$
(c) $\log _{3}(1 / 27)=$
(d) $\log _{1.5} 2.25=$
21) Rewrite in an alternative form and simplify where obvious. (a) $\ln x e^{x}=$
(b) $\log _{2} \mathrm{~A}+5 \log _{2} \mathrm{~B}=$
(c) $\ln 1-2 \ln (1 / \mathrm{e})=$
(d) $\ln 1+2 \ln 1+3 \ln 1+\ldots 100 \ln 1=$
(e) $\log 3 x+\log 4 x-\log 12 x$
22) Pollution is dissipating naturally.

t	0	1	2	3	4	5
ppb	5000	4750	4500	4275	4000	3800

(a) Run exponential regression on this data to determine the exponential function which closely matches the data.
(b) Convert it to the form $\mathrm{y}=\mathrm{Ae}^{\mathrm{kt}}$
(c) What will the pollution level be when $\mathrm{t}=10$?
(d) When will the pollution level reach 10 ppb ?
23) $f(x)=3 x^{2}-7 x, g(t)=\sqrt{t+1}, h(w)=w^{3}$
(a) Compute $f(g(x))$
(b) Compute $2 \mathrm{~h}(\mathrm{~g}(\mathrm{x}))-\mathrm{g}(\mathrm{f}(-5))$
24) Translate $f(x)$ as indicated:

25) Give the Domain for (a) $y=\frac{2+3 x}{2 x-4}+1$
(b) $y=\sqrt{x^{2}+1}-1$
(c) $y=\frac{1+x}{1-x^{2}}$
(d) $y=\frac{x+1}{x \sqrt{x-1}}$
26) If they exist, find the inverses of the following functions: (a) $y=\ln \sqrt{x-1}$
(b) $y=\frac{x+1}{x-1}$
(c) $\mathrm{f}(\mathrm{x})=12$
(d) $f(x)=(-3 / 4) x+24$
(e) $f(x)=\frac{12 x-7}{5}$
(f) $y=1-\ln (x-1)$
27) A 4 " $\times 8$ " plate loses weight by drilling 6 holes in it. Write the plate's weight as a function of the holes' diameter.
28) The half-life of carbon-14 is $\approx 5700 \mathrm{yrs}$. If a gram of an old relic gives off 12% as much radiation as 1 gram of a similar contemporary piece of the same material how old is the radiation?
29) The half-life of $\mathrm{Pu}-239$, the most common isotope of Plutonium is about 24,000 years. If a site contaminated with Pu-239 must lose 99% of its current radiation level to be considered safe, how long until that site is considered "safe".
30) Assume that with a $\$ 0.25 / \mathrm{gal}$ gas tax the typical driver will buy $20 \mathrm{gal} / \mathrm{wk}$. At $\$ 0.35 / \mathrm{gal}$ tax the typical driver will buy 19 $\mathrm{gal} / \mathrm{wk}$, at $\$ 0.60 / \mathrm{gal}$ tax the typical driver will buy $15 \mathrm{gal} / \mathrm{wk}$ and at $\$ 1.00 / \mathrm{gal}$ tax the typical driver will buy $10 \mathrm{gal} / \mathrm{wk}$. (a) Assuming an exponential model, what is the function for gal/wk in terms of tax? (b) At what tax rate will the typical driver purchase only $5 \mathrm{gal} / \mathrm{wk}$? (c) What would the typical purchase be at $\$ 5.00 / \mathrm{gal}$ tax?

Pre Exam 3 Answers

1) $\mathrm{m}=-15, \mathrm{~b}=220 ; \mathrm{y}=-15 \mathrm{x}+220$
2) $x=14 / 3$
3) $x=38 / 15$
4)

$6 x^{2}-x-x=0 ; x=$
(b) $\frac{3 x^{2}}{2}-\frac{5}{4}=\frac{11 x+5}{4} ; 6 x^{2}-11 x-10=0=(2 x-5)(3 x+2) ; x=5 / 2,2 / 3$
5) $\quad \mathrm{b}=\frac{\mathrm{a}+\mathrm{c}}{40 \mathrm{a}+1}$
6) (a) $6^{\text {th }}$ degree
(b) $x=-2,0,3$
7) $y=-a x^{2}(x+6)(x-2)(x-5)^{3}$
8) $m=-6 x-3 h$
9) $\quad 4 f(2 x-1)+10=4(2 x-1)^{2}+10=16 x^{2}-16 x+14$
10)
(a) $\mathrm{P}_{0}=22$
(b) $\mathrm{k}=\ln (2) / 5 \approx 0.1386$
11)
(a) $\mathrm{P}(23) \approx 1$ coyote \quad (b) 3.39 yrs

y-int	$\operatorname{root}(1)$	local min	local max
$y=-65$	$x \approx-3.62$	$y \approx 5.19$	$y \approx 14.81$

13)

(a) $f(3 t)=e^{6 t}+3 t$
(b) $f(a+b)=e^{2 a+2 b}+a+b$
14)
(a) $x=\frac{\ln [(b+5) / 4]}{a}$
(b) $x=\frac{\ln (c)-b}{5}$ (c) $x=\frac{\ln (a)-1}{3}$
(a) $x=\frac{e-b}{a}$
(b) $x^{2}+2 x-15=0 ; x=3$ only
(c) no solution, $\ln (\mathrm{ax}+\mathrm{b}) \geq 0$
17)

(d) 18.65 hrs
(b) $\mathrm{P}(30)=5$
(c) $\mathrm{P}(0)=5$
(a) Enter LHS in Y_{1}
(b) Enter RHS in Y_{2}
(c) Graph
18)
that x-values at intersections solve original equation.
19)
(a) $\mathrm{a}^{16} / \mathrm{x}$ (b) $3 \mathrm{x} \quad$ (c) 4
(a) 4
(b) 8
(c) -3
(d) 2
21)
(a) $\ln \left(\mathrm{xe}^{\mathrm{x}}\right)=\mathrm{x}+\ln \mathrm{x}$
(b) $\log \mathrm{A}+5 \log \mathrm{~B}=\log \left(\mathrm{AB}^{5}\right)$
(c) 2
(d) 0
(e) $\log x$
22)
23)
(a) $\begin{aligned} & a=5016,798246 \\ & b=.946 \mathrm{i} .8648\end{aligned}$
(b) $\mathrm{A}=\mathrm{a}, \mathrm{b}=\ln \mathrm{b} \approx-0.05540$
(c) $\mathrm{y}(10)=2883$ (d) $\mathrm{t}=112$
(a) $f(g(x))=3(x+1)-7 \sqrt{x+1}$
(b) $2(x+1)^{3 / 2}-\sqrt{111}$
(c) $g(f(-3))=7$
(a) left 3, down 2(b) y-stretch $\times 2$, down 4
(c) y-compression $\times 1 / 2$, x-compression $\times 1 / 2$
30)
(a) $y=\frac{2+3 x}{2 x-4}+\ln x ; x>0, x \neq 2$ (b) $x=$ all reals
(c) $x \neq \pm 1$
(d) $x>1$
(a) $y^{-1}=1+e^{2 x} \quad$ (b) $y^{-1}==\frac{x+1}{x-1}$
(c) y^{-1} does not exist
(d) $y^{-1}=(-4 / 3) x+8$
(e) $y^{-1}=\frac{5 x+7}{12}$
(f) $\mathrm{y}^{-1}=1+\mathrm{e}^{1-\mathrm{x}}$
$\mathrm{W}(\mathrm{d})=\mathrm{k}\left[32-6 \pi(\mathrm{~d} / 2)^{2}\right], 0<\mathrm{d}<2$
$0.12=\mathrm{e}^{-\mathrm{kt}} \mathrm{k}=5700 / \ln 2 ; 17,436 \mathrm{yrs}$ old
$\mathrm{k}=24000 / \ln 2 ; \quad 159,454 \mathrm{yrs}$
(a)

(b) $\$ 1.75 \operatorname{tax}$
(c) $\mathrm{y}(\$ 5)=0.23 \mathrm{gal}$

