Properties of Exponential Functions

Exponential functions tend to exhibit explosive growth and/or gradual decay.

They tend to exhibit asymptotic behavior: That is f(x) becomes nearly linear. The asymptotes are the <u>lines</u>.

Our basic exponential function has the form: $y = Ab^{x} + C$, b > 0

<u>Exponential functions</u> arise when increase/decrease is due to a <u>percentage</u> of the population reproducing/dying. Linear functions are associated with a constant increase/decrease (m). For example:

- (a) Suppose you start a fish farm with 500 fish and each week you harvest 10 fish. Then the fish population would be given by F(t) = 500 10t
- (b) Suppose you start a fish farm with 500 fish and each week 5% reproduce. This results in exponential growth and the fish population would be given by $F(t) = 500 (1 + 5\%)^{t}$
- (c) Suppose you start a fish farm with 500 fish and each week 5% reproduce but you harvest 10% of the fish. This would result in overall exponential decline and the fish population would be given by $F(t) = 500 (1 + 5\% 10\%)^t$

Consider the above models of the form $\underline{P(t) = P_0 a^t}$. Then, $P_0 = initial$ 'population'. The base 'a' should be written as $a = 1 \pm r$. 'r' should be thought of as a percent. Then 'r' represents the rate of growth/decay. That is, r = percentage of the population that reproduces (r > 0) or dies (r < 0).

- (a) $P = 2000 (1.07)^t = 2000 (1 + 7\%)^t$ indicates that the population began at t = 0 with 2000 and experiences a 7% growth rate each cycle.
- (b) $P = 800 (0.95)^t = 800 (1 5\%)^t$ indicates that the population began at t = 0 with 800 and experiences a 5% reduction rate each cycle.

Exponential Functions of Note

$y = Ab^{x} + C, \ b > 0$	y = C is the asymptote, $A + C = y$ -intercept.
$P(t) = P_0 a^{t}$	P_0 = initial population. 0 < a < 1 decay, a > 1 growth
$P(t) = P_0 \left(1 \pm r \right)^{t}$	No compounding during a single cycle. $\pm r = \text{growth/decline rate}$
$P(t) = P_0 (1 + APR/n)^{nt}$	Compounding 'n' times per year
$P(t) = P_0 \; e^{rt}$	Base 'e' represents Continuous growth/decay
$P(t) = \frac{A}{1 + C b^{x}}$	S-shaped Logistic Function. When mortality increases w/ pop growth.
$N(t) = N_0 e^{-rt}$	Radioactive Decay. $(r)(HL) = \ln 2$