Worksheet 1 Working with Angles Name

Standard Angle (θ) & Principle Angle

We commonly use θ (theta) to denote an arbitrary missing angle. In particular, we use θ to denote an angle relative to the x+ axis with the counter clockwise orientation as positive and clockwise orientation as negative. This is called the *standard angle*. e.g. $\theta = +90^{\circ}$ is the same direction as $\theta = -270^{\circ}$. $\theta = 10^{\circ}$ is the equivalent direction as $\theta = 370^{\circ}$. When θ is simplified to its equivalent angle between 0° and 360° ($0^{\circ} \le \theta < 360^{\circ}$) we call this the *principle angle*.

However, there are times when final direction is not the only concern. The dial for a radio tuner or winding a spring are good examples where \pm rotation is crucial.

Winding a spring $2\frac{1}{4}$ turns clockwise could be denoted by $\theta = -810^{\circ}$. Although this θ as a direction is equivalent to $\theta = 270^{\circ}$ it should be obvious that using $\theta = -810^{\circ}$ makes more sense here. Generally speaking, the context should clarify whether or not to simplify θ to its primary angle.

Standard Angles, Azimuth, Bearing and Back Angles

Standard Angle is measured from the positive x-axis (East) with counterclockwise being positive. The standard angle is usually denoted by θ . In mechanical drawings, engineering diagrams and mathematics standard angle is the most common choice.

Azimuth (abbreviated *azi*) is a compass heading measured from **due** North with clockwise being positive. e.g. 135° azi = due SE.

Bearing is by compass quadrants. It's measured from **due North** or **due South** whichever is closer. e.g. N 45° E = due NE.

Both azimuth and bearing are common where angle orientation is key.

In a *Cartesian Coordinate System* each (x,y) point may be associated with an angle. Using Cartesian points is convenient when the reference system is primarily horizontal and vertical shifts such as programming in a milling machine layout or architectural drawing.

V

Label the following on the unit circle (r = 1)

Standard Angles in Degrees: 0°, 30°, 45°, 60°, 90°, 135°, 180°, 270°, -30°, 900°, -585°

Standard Angles in Radians: 0, $\pi/6$, $\pi/3$, $\pi/4$, $\pi/2$, π , $-\pi/4$, 15π , -23.25π

Bearings: SW, S 30° W, N 30° W Azimuths: 150° azi, 210° azi, 300° azi

Coordinate Points: (1, 0); $(\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}}); (\frac{1}{2}, -\sqrt{\frac{3}{4}}); (\sqrt{\frac{3}{4}}, \frac{1}{2}); (0, -1)$

10) Find the principle angle (degrees) of 1240° _____. Find the principle angle (radians) of 37.25π ______.