Standard Angle (e) \& Principle Angle

We commonly use θ (theta) to denote an arbitrary missing angle. In particular, we use θ to denote an angle relative to the $\mathrm{x}+$ axis with the counter clockwise orientation as positive and clockwise orientation as negative. This is called the standard angle. e.g. $\theta=+90^{\circ}$ is the same direction as $\theta=-270^{\circ} . \theta=10^{\circ}$ is the equivalent direction as $\theta=370^{\circ}$. When θ is simplified to its equivalent angle between 0° and $360^{\circ}\left(0^{\circ} \leq \theta<360^{\circ}\right)$ we call this the principle angle.

However, there are times when final direction is not the only concern. The dial for a radio tuner or winding a spring are good examples where \pm rotation is crucial.

Principle vs. Standard Angle

Winding a spring $21 / 4$ turns clockwise could be denoted by $\theta=-810^{\circ}$. Although this θ as a direction is equivalent to $\theta=270^{\circ}$ it should be obvious that using $\theta=-810^{\circ}$ makes more sense here. Generally speaking, the context should clarify whether or not to simplify θ to its primary angle.

Standard Angles, Azimuth, Bearing and Back Angles

Standard Angle is measured from the positive x -axis (East) with counterclockwise being positive. The standard angle is usually denoted by θ. In mechanical drawings, engineering diagrams and mathematics standard angle is the most common choice.

Azimuth (abbreviated azi) is a compass heading measured from due North with clockwise being positive. e.g. 135° azi $=$ due SE.

Bearing is by compass quadrants. It's measured from due North or due South whichever is closer. e.g. $\mathrm{N} 45^{\circ} \mathrm{E}=$ due NE.

Both azimuth and bearing are common where angle orientation is key.

In a Cartesian Coordinate System each (x,y) point may be associated with an angle. Using Cartesian points is convenient when the reference system is primarily horizontal and vertical shifts such as programming in a milling machine layout or architectural drawing.

$\underline{\text { Label the following on the unit circle }(r=1)}$
Standard Angles in Degrees: $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 270^{\circ},-30^{\circ}, 900^{\circ},-585^{\circ}$
Standard Angles in Radians: $0, \pi / 6, \pi / 3, \pi / 4, \pi / 2, \pi,-\pi / 4,15 \pi,-23.25 \pi$
Bearings: SW, S $30^{\circ} \mathrm{W}$, N $30^{\circ} \mathrm{W}$
Azimuths: 150° azi, 210° azi, 300° azi
Coordinate Points: $(1,0) ;(\sqrt{1 / 2},-\sqrt{1 / 2}) ;(1 / 2,-\sqrt{3 / 4}) ;(\sqrt{3 / 4}, 1 / 2) ;(0,-1)$

The Critical Angles of the Unit Circle

5) Convert 100° azi to its equivalent bearing \qquad and positive standard degree angle \qquad .
6) Convert $\mathrm{S} 55^{\circ} \mathrm{E}$ to its equivalent azimuth \qquad and negative standard degree angle \qquad .
7) Convert $\theta=70^{\circ}$ to its equivalent bearing \qquad and negative radian angle \qquad .
8) Convert -1.4π radians to its equivalent bearing \qquad and positive standard radian angle \qquad .
9) Find the back angle in positive degrees for 0.2π radians \qquad .
10) Find the principle angle (degrees) of 1240° \qquad . Find the principle angle (radians) of 37.25π \qquad

