Mth 112 Geometry, Algebra and Functions Franz Helfenstein Name
The purpose of this assignment is to review geometry, algebra and functions. You may work on separate paper but write your answers on this page. Answers must be boxed or circled and clearly legible. Where possible write answers as an exact value otherwise use two decimal accuracy. Leave π in answers where applicable. Units required.

Usually we recall the area of a circle as a function of the radius given by $A(r)=\pi r^{2}$.

1) Give the circumference as a function of the radius. $C(r)=$ \qquad
2) Give the area as a function of the diameter. $A(d)=$ \qquad
3) Give the area as a function of the circumference. $A(c)=$ \qquad
4) Angular velocity is often represented by w (little omega). Appropriate units might be rpm, $\mathrm{deg} / \mathrm{sec}, \mathrm{rad} / \mathrm{sec}$, etc. For a disk spinning at $\omega \mathrm{rpm}$ convert the angular velocity to:
(a) $60 \mathrm{rpm}=$ \qquad deg/sec
(b) $480 \mathrm{rpm}=$ \qquad $\mathrm{rad} / \mathrm{sec}$

A disk of radius R spins at ω rpm. Let (r, θ) be a point on the disk as shown. This is called a polar coordinate as opposed to a rectangular (x, y) coordinate.
The point's linear velocity (v) is given by $v=\frac{\text { distance }}{\text { time }}=\frac{\text { circumference }}{\text { time of } 1 \mathrm{rev}}$

5) Give the linear velocity (fps) 1 ft from the center @ $480 \mathrm{rpm} . \mathrm{v}=$ \qquad Note: If an object let loose from this spot its velocity would be v.
6) Give v as a function of r @ $480 \mathrm{rpm} . v(r)=$ \qquad
7) At 480 rpm give elapsed θ (degrees) after $20 \mathrm{sec} . \theta=$ \qquad
8) Give θ as a function of time @ $480 \mathrm{rpm} . \theta(\dagger)=$ \qquad
9) 's' (lower case) is commonly used to represent arc length. As a direct proportion we have:
$\frac{\text { part of circle degrees }}{\text { all of circle degrees }}=\frac{\text { part of circle circumference }}{\text { all of circle circumference }} \rightarrow \frac{\theta^{\circ}}{360^{\circ}}=\frac{s}{C}$. Replace C by $C(r)$ (see \#1) and solve for ' s ' to obtain ' s ' as a function of r and θ°.
$s\left(r, \theta^{\circ}\right)=$ \qquad Note: This formula requires θ be in degrees!
10) Give s as a function of r and θ when θ is in radians. $s(r, \theta)=$ \qquad

BONUS

A drinking cup or ice cream cone can be made from the sector of a circle. See diagram. Clearly, the volume of the resulting cone depends on (is a function of) the radius of the original disk (R) and the degrees of the sector (θ).

The volume of the cone is $V=(1 / 3) \pi r^{2} h$.

Find $V(R, \theta)=$

What is the maximum volume of an ice cream cone when $R=6$ "?

