1) Label the triangle then list the following relationships using <u>your</u> labels: Pythagorean Theorem, slope the three standard trigonometric ratios (sine, cosine, tangent) and their inverses and the three co-functions (cotangent, secant, cosecant) and their inverses.

2) Label these <u>similar triangles</u> and list <u>some</u> proportions.

3) Label this mitered triangle. Then label the 3 separate triangles that make up this mitered triangle using the same labels.

Show why they are all similar

List <u>some</u> proportions, Pythagorean relationships and trigonometric ratios

Is the Pythagorean Identity valid? Why/why not?

- Label the diagram with x_i, y_i, r_i, s_i and θ_i for each point. Then give the trigonometric ratios and their inverses in terms of x, y, r, and θ.
 - $\sin \theta = \qquad \qquad \theta = \sin^{-1}$ $\cos \theta = \qquad \qquad \theta = \cos^{-1}$ $\tan \theta = \qquad \qquad \theta = \tan^{-1}$ $x = \qquad \qquad y =$ $x^{2} + y^{2} = \qquad \qquad \cos^{2} \theta + \sin^{2} \theta =$ slope (m) =
- 4) The radius of the <u>Unit Circle</u> is 1. Label the angles in Radians. (include π) Label their Coordinate Points: (1, 0); $(\sqrt{34}, \frac{1}{2})$; $(\sqrt{12}, \sqrt{12})$; $(\frac{1}{2}, \sqrt{34})$; (0, 1) <u>With r = 1 solve for:</u> x =_____ y =____ slope (m) = _____

Trigonometric Relations in the Unit Circle

Use the above reference diagrams to compute the following <u>WITHOUT</u> using a calculator.

6)	sin 0° =	cos 0° =	$\tan 0^\circ =$	sin 90° =	cos 90° =	tan 90° =
7)	sin 30° =	cos 30° =	tan 30° =	sin 45° =	$\cos 45^\circ =$	$\tan 45^\circ =$
8)	$\sin(\pi/2) =$	$\sin\left(\pi/3\right) =$	$\sin(\pi/4) =$	sin (π/6) =	$\cos(\pi/6) =$	$\tan(\pi/6) =$
9)	$\sin^{-1} 0 =$	$\cos^{-1} 0 =$	$\tan^{-1} 0 =$	$\sin^{-1} 1 =$	$\cos^{-1} 1 =$	$\tan^{-1} 1 =$
10)	sin ⁻¹ (½) =	$\cos^{-1}\sqrt{3/4} =$	$\tan^{-1}\sqrt{3} =$	$\tan^{-1}(1/\sqrt{3}) =$	$\sin^{-1}\sqrt{1/2} =$	$\cos^{-1}(\frac{1}{2}) =$