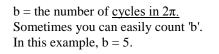

TRIGONOMETRIC FUNCTIONS

Table of Domain and Range for Basic Trig functions.	Function	y = sin t	$y = \cos t$	y = tan t	sin θ	$\cos \theta$	tan θ
	Domain	$(-\infty,\infty)$	$(-\infty,\infty)$	$t \neq \pm \pi/2 \pm 2n\pi$	[-1, 1]	[-1,1]	$(-\infty,\infty)$
	Range	[-1, 1]	[-1,1]	$(-\infty,\infty)$	$[-\pi/2, \pi/2]$	[0, π]	$(-\pi/2, \pi/2)$

For Geometric uses of trigonometric functions

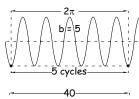
y is a ratio of sides y is non-dimensional	-	U	y is an "angle" y is either		y is non-dimensional
i.e. y is always unitless	2		deg or radians	· 1	i.e. y is unitless

GRAPHING BASICS

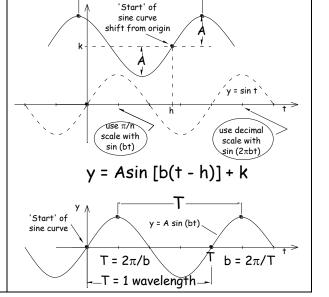

Notation for $y = A \sin[b(t - h)] + k$

One Period (p) = One Wavelength (λ) = Time of One Cycle (T)

Frequency (f) = cycles/sec = Hertz (Hz). $f = 1/T = b/(2\pi)$


A = amplitude. Max/min displacement from equilibrium

h = horizontal shift ('-' shift right), k = vertical shift ('+' shift up)



Sometimes you must compute b. To compute b, measure one or more waves to compute T. Then $b = 2\pi/T$.

Here T = 40/5 = 8. b = $2\pi/8 = \pi/4$

5 cvcles

T

Note: All these formats are interchangeable: $sin^{-1}t = invsin t = arcsin t$

For $y = f(x) \sin (bx)$, f(x) acts as the amplitude for $\sin (bx)$ Here, f(x) is a linear function of the form mx. To find m, use any local max data point.