TRIGONOMETRIC FUNCTIONS

Note: All these formats are interchangeable: $\sin ^{-1} t=i n v \sin t=\arcsin t$

The $\sin (t)$ and $\sin ^{-1}(t)$ functions	The cos (t) and $\cos ^{-1}(t)$ functions	The $\tan (t)$ and $\tan ^{-1}(t)$ functions

Table of Domain and Range for Basic Trig functions.

Function	$\mathrm{y}=\sin \mathrm{t}$	$\mathrm{y}=\cos \mathrm{t}$	$\mathrm{y}=\tan \mathrm{t}$		$\sin \theta$	$\cos \theta$	$\tan \theta$
Domain	$(-\infty, \infty)$	$(-\infty, \infty)$	$\mathrm{t} \neq \pm \pi / 2 \pm 2 \mathrm{n} \pi$		$[-1,1]$	$[-1,1]$	$(-\infty, \infty)$
Range	$[-1,1]$	$[-1,1]$	$(-\infty, \infty)$		$[-\pi / 2, \pi / 2]$	$[0, \pi]$	$(-\pi / 2, \pi / 2)$

For Geometric uses of trigonometric functions

| y is a ratio of sides
 y is non-dimensional
 i.e. y is always unitless | $\mathrm{y}=\sin \mathrm{t}$
 $\mathrm{y}=\cos \mathrm{t}$
 $\mathrm{y}=\tan \mathrm{t}$ | t is an "angle"
 t is in either
 deg or radians |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad| y is an "angle" |
| :---: |
| y is either |
| deg or radians | | $\mathrm{y}=\sin ^{-1} \mathrm{t}$ |
| :---: |
| $\mathrm{y}=\cos ^{-1} \mathrm{t}$ |
| $\mathrm{y}=\tan ^{-1} \mathrm{t}$ |\quad| y is non-dimensional |
| :---: |
| i.e. y is unitless |

GRAPHING BASICS
 Notation for $y=A \sin [b(t-h)]+k$

One Period $(\mathrm{p})=$ One Wavelength $(\lambda)=$ Time of One Cycle (T)
Frequency (f) = cycles/sec $=\operatorname{Hertz}(\mathrm{Hz}) . \mathrm{f}=1 / \mathrm{T}=\mathrm{b} /(2 \pi)$
$\mathrm{A}=$ amplitude. $\mathrm{Max} / \mathrm{min}$ displacement from equilibrium

$\mathrm{b}=$ the number of cycles in 2π.
Sometimes you can easily count 'b'.
In this example, $\mathrm{b}=5$.
Sometimes you must compute b.
To compute b, measure one or more waves to compute T . Then $\mathrm{b}=$ $2 \pi / T$.

Here $T=40 / 5=8 . \quad b=2 \pi / 8=\pi / 4$

For $\mathrm{y}=\mathrm{f}(\mathrm{x}) \sin (\mathrm{bx}), \mathrm{f}(\mathrm{x})$ acts as the amplitude for $\sin (\mathrm{bx})$
Here, $\mathrm{f}(\mathrm{x})$ is a linear function of the form mx. To find m , use any local max data
point.

