Answers must be clearly legible. They should be, simplified and boxed or circled. Unless otherwise stated write answer as an exact integer or fraction. For approximate answers use two decimal accuracy. 20 pts

1) Determine the exact value of $\sin 15^{\circ}$.
2) Determine the exact value of $\sin 22 \frac{1}{2}^{\circ}$.
3) Algebraically solve for x in radians: $\frac{3 \tan x+7}{2}=5-\frac{6 \tan x}{3}$
4) $\quad \sin y=\frac{3 x}{5}$ Give $\underline{\tan y}$ as a function of x.
5) Determine the exact value of $\tan 7 \pi / 12$.
6) Determine the exact value of $\tan 15^{\circ}$.
(a) label the triangle
(b) complete using Pythag. Thm.
(c) determin tan y

7) $\tan ^{-1} \frac{3 x+1}{2}=y$ Give $\underline{\cos y}$ as a function of x.
(a) label the triangle
(b) complete using Pythag. Thm.
(c) determin cos y
8) A truck with 100 cm tires is traveling down the hi-way at 75 kph . What are the truck tire's rpm?
9) How many radians will a 4 cm diameter pulley rotate to lift cable 1 meter?
10) Solve $x+\sin x=5$. Solve Using the Graphing Calculator.

$$
x=
$$

\qquad Explain why must x be in radians and cannot be in degrees?

Use these identities to simplify the following trigonometric expressions/equations to a single term:

$\sin ^{2} x+\cos ^{2} x=1$	$\tan x=\frac{\sin x}{\cos x}$	$\cot x=\frac{1}{\tan x}$	$\sec x=\frac{1}{\cos x}$	$\csc x=\frac{1}{\sin x}$

11) Simplify: $\sin ^{2} x \csc x=$
12) Simplify: $\sec w-\sin w \tan w=$
13) Simplify: $\sec y-\frac{\tan y}{\csc y}=$
14) Simplify: $\csc ^{2} x-\cot ^{2} x=$
15) Algebraically solve for x : $2 \cos x=-5 \tan x+2 \sec x x \in[0,2 \pi]$
16) Algebraically solve for x : $\sec ^{2} x-1=\sqrt{3}(-1+\tan x)+\tan x x \in[0,2 \pi]$
17) Give this graph in the form: $y=A \sin [b(x-h]+k$
18) Find the sine function with a wavelength of 100 m , a height from trough to crest of 20 m . Assume h or $\varphi=0$.
19) Find the sine function with a height from trough to crest of 20 m , and passing a buoy every 2 min . Assume h or $\varphi=0$.

Bonus Simplify $\frac{\sin ^{2} t}{\sec t-1}+\frac{\sin ^{2} t}{\sec t+1}=$

