MTH 253

As we have seen, a rectangular coordinate system is not the only point of view to represent functions. We have explored *parametric equations* as another alternative. This lab is intended to expand on a third point of view: *polar coordinates*.

Goals: What should you learn from this activity?

- a) To understand the concept of polar coordinates.
- b) To be able to convert from polar to rectangular coordinates.
- c) To be able to recognize some classes of functions expressed in polar coordinates.

Investigation 1: Expressing points in polar coordinates.

The polar coordinates of a point are determined by the point's distance from the **pole** (origin) and the angle between a **polar axis** and a ray connecting the point and the pole. Angles are measured positively in the *counterclockwise* direction.

If an xy-coordinate system is superimposed on the polar coordinate system, with the origins coinciding, then it is possible to determine a relationship between the rectangular coordinates of P, (x,y), and the polar coordinates of P, (r,θ) .

Based on the figures above, fill in the following boxes:

x =		r ² =			
y =		tan θ =			
	Note: tan ⁻¹ is quadrant dependent!				

1. Using these results, convert the following *rectangular* points to polar points:

l	(x, y)	(0,0)	(1,0)	(0,1)	(1,1)	(-1,2)	(-1,-1)
	(r, 0)						

2. Using these results, convert the following *polar* points to rectangular points angles are always measured in radians:

(r,θ)	(0,0)	(1,0)	(1,π)	(-1,0)	(-1,π/4)	(1,π/2)	(1,1)
(x, y)							

Investigation 2: Graphs

The **graph of a polar equation** $r = f(\theta)$ consists of all points, P, that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

1. Describe the graphs of the following equations. Use the TI-Calculator set in Polar mode.

a. r = a $0 \le \theta \le 2\pi$ for various choices of a

b. $\theta = \pi/3$

c. $r = a \theta$ $0 \le \theta \le 2\pi$ for various choices of a

- 2. The equation of a line is ax + by = c. Convert this to a polar equation and write the resulting equation in the form $r = f(\theta)$. Graph $r = f(\theta)$ and compare with ax + by = c.
- 3. We know that $y = m x^2$ represents a parabola. Convert this to a polar equation and write the resulting equation in the form $r = f(\theta)$. Graph $r = f(\theta)$ and compare with $y = m x^2$.
- 4. We know that $(x 1)^2 + y^2 = 1$ represents a circle of radius one, centered at (1, 0). Convert this to a polar equation and write the resulting equation in the form $r = f(\theta)$. Graph $r = f(\theta)$ and compare with $(x 1)^2 + y^2 = 1$.

- 5. How would you represent the graph of a circle centered at (a, 0) with radius a?
- 6. How would you represent the graph of a circle centered at (0, a) with radius a?

Investigation 3: Generalizing graphs of circles

- 1. Graph the equation $r = a \sin \theta + b \cos \theta$ for various choices of a and b. Describe the resulting curves.
- 2. Convert the above equation to rectangular coordinates by performing the following steps:
 - a. Multiply both sides of the equation by r.
 - b. Substitute rectangular coordinates for r and $\boldsymbol{\theta}$ into the equation.
 - c. Complete the square in both the x and y terms.
 - d. Verify that the resulting equation is the equation of a circle.

3. Explain the effect of different choices of a and b on the shape of the circle.

Investigation 4: Other classes of polar graphs

Examine the following classes of graphs. Use a variety of values for a and b. Summarize your results.

1. Cardioids and Limaçons

 $r = a \pm b \sin \theta$ $r = a \pm b \cos \theta$

2. Roses

 $r = a \cos n \theta$ $r = a \sin n \theta$

3. *Spirals*

 $r = \theta$ $r = 1/\theta$ $r = e^{\theta}$

4. Odds 'n Ends

$$r^2 = \sin 2\theta$$
 $r^2 = 4 \cos 2\theta$

$$r = 40 + 5 \sin(4\theta)$$