Part 1: Round and Round

Consider the circle $x^{2}+y^{2}=4$. We want to construct parametric curves that will trace this circle in different ways. Start with a parametric function of the form:

$$
\begin{aligned}
& x=a_{1} \cos \left(a_{2} t\right) \\
& y=a_{3} \sin \left(a_{4} t\right) \\
& 0 \leq t \leq 2 \pi \\
& \text { where } a_{n} \in \mathbb{R} \\
& \text { This means that the } a_{n} \text { 's } \\
& \text { can be any real number. }
\end{aligned}
$$

(1) Find a_{1} and a_{3} so that every point (x, y) lies on the circle $x^{2}+y^{2}=4$.
(2) Describe the motion of the particle if $a_{2}=a_{4}=1$. Use a sketch, and label the start and end points. Use a sentence to describe the motion.

(3) Describe the motion of the particle if $a_{2}=a_{4}=-1$. Use a sentence to describe the motion.
(4) Describe the motion of the particle if $a_{2}=a_{4}=2$. Use a sentence to describe the motion.
(5) Find a_{2} and a_{4} so that the particle goes counterclockwise five times around the circle, starting at $(2,0)$.
(6) Find a_{2} and a_{4} so that the particle goes clockwise three times around the circle, starting at $(2,0)$.

Part 2: Lissajous Figures

Again, start with a parametric function of the form:

$$
\begin{aligned}
& x=a_{1} \cos \left(a_{2} t\right) \\
& y=a_{3} \sin \left(a_{4} t\right) \\
& 0 \leq t \leq 2 \pi(\text { or } \infty) \quad \text { where } a_{n} \in \mathbb{R}
\end{aligned}
$$

These curves are called Lissajous figures, and are used in electrical engineering to see if two signals are "in sync". They can also be used in music to show whether a musical interval is in tune.

For the following problems, let $a_{1}=a_{3}=1$ so that we can investigate the effect of a_{2} and a_{4} on the function.
(1) Graph $x=\cos (1 t), y=\sin (2 t)$ on your calculator, graphing it below, and labelling the start and end points. Use a sentence to describe the motion.

(2) Graph $x=\cos (2 t), y=\sin (4 t)$ on your calculator. How is it the same as the previous graph, and how is it different? Use a sentence to describe the motion.
(3) Graph $x=\cos (3 t), y=\sin (6 t)$ on your calculator. How is it the same as the previous two graphs, and how is it different? Use a sentence to describe the motion.
(4) Fix $a_{2}=1$, and graph the funcitons with $a_{4}=1,2,3$.

$$
a_{4}=1
$$

$$
a_{4}=2
$$

$$
a_{4}=3
$$

Describe what happens as a_{4} increases. Use a sentence.

Predict what the figure will look like if $a_{2}=1$ and $a_{4}=5$. Include a careful sketch.

(5) Now fix $a_{4}=1$, and look (on your calculator) at graphs for $a_{2}=1,2,3,4$. What happens as a_{2} increases? Describe the effect carefully, using graphs to illustrate.

a_{2} is odd	a_{2} is even
$a_{2}=1$	$a_{2}=2$
$a_{2}=3$	$a_{2}=4$
If a_{2} is odd, you get ...	If a_{2} is even, you get ...

(6) Now (on your calculator) try $a_{2}=1$, and $a_{4}=\sqrt{2}$. Try $\operatorname{Tmax}=2 \pi$, then $4 \pi, 10 \pi$, and 20π, and so on. What would happen if Tmax was infinity? Sketch the final result below.

(7) Now try $a_{2}=\sqrt{5}$ and $a_{4}=\sqrt{2}$, again letting t get very large. Sketch the final result below.

(8) Now try $a_{2}=\sqrt{18}$ and $a_{4}=\sqrt{2}$. Graph it below. Explain why this one is different from the two previous examples. What would be the simplest possible values of a_{2} and a_{4} that would give the same final picture?

(9) I've said that Lissajou figures can be used to check whether musical intervals are in tune, whether they will sound good or bad. What would you guess would have to be the relationship between a_{2} and a_{4} for a musical interval to sound good? Start by thinking about the examples on the previous page - which would you guess would sound good, and which would sound bad? Alternately, which pictures do you think show that electrical signals are in sync, and which pictures show that electrical signals are not in sync?
(10) The figure with $a_{4}=1$, and $a_{2}=2$ has a familiar geometric shape - in fact, it's one of the conic sections. Graph it below. Use a trig identity ${ }^{1}$ for $\cos (2 t)$ to explain why the figure looks the way it does.

[^0]
[^0]: ${ }^{1}$ Look up the trig identities in the front of your book. Use substitution to convert the parametric equations to one Cartesian ($x-y$) equation.

