1) Find the parametric equation for a line passing through (a, b) and (c, d).
2) Find the parametric equation for a line passing through $(-3,5)$ at $t=0$ and $(5,9)$ at $t=10$.
3) Find a parametric equation for a line segment from $(-3,5)$ to $(5,9)$ with (a) t $\varepsilon[0,1]$, (b) $\dagger \varepsilon[0, T],(c)+\varepsilon[0, \infty]$,
4) Find the parametric equation for a line segment oscillating between $(-1,-1) \&(1,1)$.
5) Find the parametric equation for a ray from the origin passing through (a, b) and accelerating.
6) Find $d y / d x$ for $x=t^{2}-1, y=2 t+1$ at $t=1$ in 3 ways: 1 st: Use $\left.\frac{d y / d t}{d x / d t}\right|_{t=1}$. 2nd: Convert to a function $y=f(x)$ and find $y^{\prime}(x 1)$. You must determine $x 1=x(1)$. 3rd: Eliminate \dagger and create an implicit equation. Use implicit differentiation to find $d y / d x$.
7) Find the arc length of $x=(1+t)^{2}, y=(1+t)^{3} t \varepsilon[0,1]$. Sketch the segment.
8) Show that $x=t^{3}-4 t, y=t^{2}$ intersects itself at $(0,4)$. Then find the angle of that intersection. Algebraically find all intercepts and horizontal/vertical critical points and their t-values.
9) Convert $x^{2}+y^{2}=r^{2}$ to a parametric form where $(x, y)=\frac{(r, r)}{\sqrt{2}}$ at $t=1$ and again at $t=10$.
10) Consider $x=f(t), y=g(t)$. How does that compare to $x=f(h(t)), y=g(h(t))$?
