Answers must be clearly legible, simplified and boxed or circled. Unless otherwise stated write answer as an exact integer or rational or use two decimal accuracy. Units required.

Compute and round according to the class rounding rules then circle the best answer
1a) $7.856+8.39+3.753 \approx$
A) 19.999
B) 20
C) 20.0
D) 20.00
E) None of these

1b) $147.852 \times 12 / 1.875 \times 5.284 \approx$
A) 4999.9999
B) 5000
C) $\underline{5000}$
D) $\underline{5000}$
E) None of these

2a) $52,368+10,611+10,000.0 \approx$
A) 72,979
B) $\underline{72980}$
C) 73,000
D) 73,000
E) None of these

2b) $22455 \times 1002 / \underline{15000} \approx$
A) 1499.994
B) 1500
C) 1500
D) 1.50×10^{3}
E) None of these
3) A rectangular lot is approximately $85^{\prime} \times 92^{\prime}$. Using those dimensions, Compute the area and round according to the rules we've used in class.
4) For the above problem, what accuracy (ft) is necessary in each dimension to expect the resulting area to be accurate to the nearest sq-ft?
85. \qquad $\mathrm{ft} \times 92$. \qquad $f t$
5) A circle has a radius approximately 17 cm . Using those dimensions, Compute the area and round according to the rules we've used in class.

Substitute and Compute using $b_{1}=5^{\prime} 4 \frac{33^{\prime \prime}}{}{ }^{\prime \prime}, b_{2}=7^{\prime} 9 \frac{3}{4}{ }^{\prime \prime}, h=4^{\prime} 8 \frac{77^{\prime \prime}}{}{ }^{\prime \prime}, D=12.5, P=13.0 \%$
6a) $\frac{b_{1}+b_{2}}{2} \cdot h=$
6b) $\frac{D}{\sqrt{1+P^{2}}}=$
7a) $60 \mathrm{Mw}=$
A) 6 thousand watts
B) 60 thousand watts
C) 600 thousand watts
D) 6 million watts
E) 60 million watts
E) None of These

7b) $55 \mathrm{~km}=$
A) 550 m
B) $5,500,000 \mathrm{~m}$
C) $5,500 \mathrm{~m}$
D) $55,000 \mathrm{~m}$
E) 0.055 m
E) None of These
8) A 19' ft pipe is cut into 7 equal pieces. Assuming no loss due to the cuts, what is the size of each piece to the nearest $16^{\text {th }}$ inch. Give answer as __ft _ $\overline{16}$ in
9) Convert to feet \& inches rounded to the nearest whole $16^{\text {th }}$ inch:
$8.587742 \mathrm{ft} \approx \ldots \mathrm{ft} \quad \overline{16} \mathrm{in}$
10) Write your answer in scientific notation rounded accordingly
(a) $\frac{1.2 \times 10^{5}+2.3 \times 10^{5}}{\left(5.4 \times 10^{-2}\right)\left(6.2 \times 10^{1}\right)} \approx$
(b) $\sqrt{\frac{1.34 \cdot 10^{8}-2.56 \cdot 10^{7}}{2 \pi \times 10^{2}}} \approx$

BONUS
Using $R=1^{\prime} 7^{\prime \prime}, r=9^{\prime \prime}$ and $H=2^{\prime} 6^{\prime \prime}$ compute V to the nearest cu-ft. $V=\frac{\pi H}{3}\left(R^{2}+R r+r^{2}\right)$

