1) Label the triangle (use x, y, r, θ) then list the following relationships using your labels: Pythagorean Theorem, slope the three standard trigonometric ratios (sine, cosine, tangent) and their inverses.

2a) Convert 100° azi to its equivalent bearing \qquad and positive standard angle \qquad .

2b) Convert $S 55^{\circ} \mathrm{E}$ to its equivalent azimuth \qquad and negative standard angle \qquad .

3a) Convert $\theta=70^{\circ}$ to its equivalent bearing \qquad and negative standard angle \qquad .

3b) Find the principle positive angle of 1240° \qquad . Find the principle positive angle of -3725° \qquad
4) The radius of the Unit Circle is 1 . Label their Coordinate Points:
$(1,0) ;\left(\sqrt{\frac{3}{4}}, \frac{1}{2}\right) ;\left(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}\right) ;\left(\frac{1}{2}, \sqrt{\frac{3}{4}}\right) ;(0,1)$

With $r=1$ solve for:

$$
x=\quad y=
$$

$$
\text { slope }(m)=
$$

$$
x^{2}+y^{2}=
$$

Trigonometric Relations in the Unit Circle
Y^

Try using the above reference diagram to compute the following WITHOUT using a calculator.

5a)

5b)

5c)

5d)

$\sin 0^{\circ}=$	$\cos 0^{\circ}=$	$\tan 0^{\circ}=$	$\sin 90^{\circ}=$	$\cos 90^{\circ}=$	$\tan 90^{\circ}=$
$\sin 30^{\circ}=$	$\cos 30^{\circ}=$	$\tan 30^{\circ}=$	$\sin 45^{\circ}=$	$\cos 45^{\circ}=$	$\tan 45^{\circ}=$
$\sin ^{-1} 0=$	$\cos ^{-1} 0=$	$\tan ^{-1} 0=$	$\sin ^{-1} 1=$	$\cos ^{-1} 1=$	$\tan ^{-1} 1=$
$\sin ^{-1}\left(\frac{1}{2}\right)=$	$\cos ^{-1} \sqrt{\frac{3}{4}}=$	$\tan ^{-1} \sqrt{3}=$	$\tan ^{-1}(1 / \sqrt{3})=$	$\sin ^{-1} \sqrt{\frac{1}{2}}=$	$\cos ^{-1}\left(\frac{1}{2}\right)=$

Use Trigonometry to solve these problems. Answers must be clearly legible. Where possible write your answer as an exact integer or fraction. Otherwise use two decimal accuracy. Include units where applicable.

1) Find H .

2) Find H .

3) Find the indicated side.

4) Fill-in the indicated angle in $x x \cdot x x^{\circ}$.

5) Find θ in DMS.

$\theta=\square$
6) Find B.

7) Find D.

$\mathrm{D}=$

8) Find the indicated side.

9) Fill-in the indicated angle in $x x . x^{\circ}$.

10) Convert grade to angle in DMS.

angle $=$

