1) Label the triangle (use x, y, r, θ) then list the following relationships using <u>your</u> labels: Pythagorean Theorem, slope the three standard trigonometric ratios (sine, cosine, tangent) and their inverses.

- 2b) Convert S 55° E to its equivalent <u>azimuth</u> and <u>negative standard angle</u>.
- 3a) Convert θ = 70° to its equivalent <u>bearing</u> and <u>negative standard angle</u>.
- 3b) Find the principle positive angle of 1240° _____. Find the principle positive angle of -3725° _____
- 4) The radius of the <u>Unit Circle</u> is 1.
 Label their Coordinate Points:

(1, 0); $(\sqrt{\frac{3}{4}}, \frac{1}{2})$; $(\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}})$; $(\frac{1}{2}, \sqrt{\frac{3}{4}})$; (0, 1) <u>With r = 1 solve for:</u> x = y =

slope (m) =

$$x^{2} + y^{2} =$$

Try using the above reference diagram to compute the following <u>WITHOUT</u> using a calculator.

5a)	sin 0° =	cos 0° =	tan O° =	sin 90° =	cos 90° =	tan 90° =
5b)	sin 30° =	cos 30° =	tan 30° =	sin 45° =	cos 45° =	tan 45° =
5c)	sin ⁻¹ 0 =	cos ⁻¹ 0 =	tan ⁻¹ 0 =	sin ⁻¹ 1 =	cos ⁻¹ 1 =	tan ⁻¹ 1 =
5d)	$\sin^{-1}(\frac{1}{2}) =$	$\cos^{-1}\sqrt{\frac{3}{4}} =$	tan⁻¹ √3 =	tan⁻¹ (1/√3) =	$\sin^{-1}\sqrt{\frac{1}{2}} =$	$\cos^{-1}(\frac{1}{2}) =$

Trigonometric Relations in the Unit Circle

Use Trigonometry to solve these problems. Answers must be clearly **legible**. Where possible write your answer as an **exact** integer or fraction. Otherwise use **two** decimal accuracy. Include **units** where applicable.

