To receive full credit show your work and it must be neat with answers simplified and boxed-in.

4)

)

)

Use algebra to solve these equations.

- 1) Solve for x: 3 4(2x 5) = 12x 77 2)
- 3) Solve for y: 12 3(2x + 5y) = 7x 5y
- Solve for x: $3x^2 2x = 96$

Solve for a: $A = \frac{a+b}{2}h$

- (b) Give the y-intercept of (a). y =
- (c) Give the slope of (a). m =
- (d) Graph: y = 1.2 x 8
- (e) Give the lines' intersection(,
- (f) Graph $y = 0.2x^2 2x 3$
- (g) Give the minimum coordinates of (f). (,
- (h) There are 2 roots for (f). Give their coordinates.

- 6) Use algebra to find the equation of the line which passes through:
 (a) (96, -40) & (-39, 5)
 (b) (1.2, -9.5) & (-2.8, 3.3)
- 7) Consider this Elk Population graph. Give a narrative interpretation of:
 (b) slope > 0
 (c) slope < 0
 (d) slope = 0
- 8) Consider this Distance vs. Time graph. Give a narrative interpretation of:
 (b) slope > 0
 (c) slope < 0
 (d) slope = 0
- 9) Consider this Flow vs. Pipe Size graph. Give a narrative interpretation of:
 (b) slope > 0
 (c) slope < 0
 (d) slope = 0
- 10) Given Medicine Dosage vs. Body Weight, which is the independent variable?
- 11) Given Fire Intensity vs. Humidity, which is the independent variable?
- 12) Assume the mosquito population is a function of time. Would this population be best modeled by a <u>linear</u> <u>function</u> or a <u>quadratic function</u>? Justify your answer.
- 13) Use your calculator to find the equation (in the form $y = ax^2 + bx + c$) that passes through the points (-5, -14.5), (0, 8), (7, -2.5)

14) Graph the following equations in the proscribed region:

- 15) a) Give the "best fit" linear equation for this data in slope-intercept form.
 - b) Using the equation, what is the <u>y-value</u> when x is 100?
 - c) Using the equation, what \underline{x} -value will yield y = 0?
- 16) The following data represents mercury concentration found in a lake's sediment.

Sediment Depth (cm)	5	10	15	20	25	30	35
Concentration (ppb)	140	109	85	66	52	40	31

- a) Which is the independent variable?
- b) Label your axes. Graph this data.
- c) Circle the best regression choice. linear quadratic (Why?)
- d) Give your regression equation: y =
- e) What is the predicted worst pollution concentration and at what depth is it expected to be found?
- f) Below what depth is contamination expected to be less than 10 ppb?

17) Here is some data giving average virus levels in the blood of people exposed to a nasty cold virus. 'Day' refers to days since noticing the symptoms and 'virus' refers to virus level on a scale of 100.

		Day	Virus
a)	Explain why a Quadratic Model would be a good model for the evolution of a cold.	0	10
		1	20
b)	At what <u>time</u> and with what <u>virus level</u> is the cold at its <u>worst</u> ?	2	38
		3	55
c)	The symptoms first appeared with a <u>virus level of 10</u> . Assuming the symptoms go	4	72
	away below a virus level of 10, at what time will the symptoms go away?	5	81
d)	At what time will the cold be <u>completely gone</u> ?		
e)	When did you actually catch the cold?		

×	Y
0	20
10	28
20	32
30	42
40	46
50	53

<u>ا</u>																
F																
F																
F	\square															
F	\square															
F	\vdash															
	1															
F																
⊢																
⊢	-	-	-		-	-	-	-	-		-	-	-	-	-	
	1															