To receive full credit: You must show your work, it must be clearly legible with answers simplified and boxed-in or circled. Inexact answers must be accurate to two decimal places and include units. (20 points)

1) A chain wraps partially around a gear to operate a lifting mechanism as shown.
(a) The gear rotates at 15 rpm . What is that in degrees $/ \mathrm{sec}$?
(b) The gear rotates at 15 rpm . How fast does the chain move in $\mathrm{ft} / \mathrm{sec}$?
2) Find a, z
$a=$ \qquad
z $=$ \qquad
3) Find x, z
\qquad
z = \qquad
4) Find x and a

\qquad
$x=$
28
a
5) Find a and x
6) Find a and b

$a=$	a θ	
	43°	b
$b=$	245	35°

7) Find a
$a=$ \qquad

37

$28^{\circ} z$ 245
$a=$ \qquad

Applications

8) Doug sets up a zip line with 150' of cable (pulled tight) and attaches it 40' up a vertical tree.
(a) What angle does the wire make with the ground?
(b) At what point will the wire attach to the ground?

9) A building casts a 150 ft shadow when the sun is 42° above the horizon $\left(\theta=42^{\circ}\right)$. How tall

10) Find the area of the parallelogram.
$a=$ \qquad
 is the building?
11) From the Fort to ' A ' is 30 km at a bearing of $\mathrm{N} 38^{\circ} \mathrm{W}$. Position ' C ' is 38 km from the fort and due east of ' A '. See diagram.

How far is it from position ' A ' to ' C '?

12) $a=59^{\circ}, b=66^{\circ}$
$x=130^{\prime}$; Find h.
$h=$ \qquad
13) Find a, x and y

$$
\begin{aligned}
& a= \\
& x= \\
& y=
\end{aligned}
$$

14) A race starts at 12:00 noon with the boat Crack O^{\prime} Noon heading at 20° azi at 6 knots. At $12: 45 \mathrm{pm}$ Crack O^{\prime} Noon tacks to 310° azi. On that heading she makes 8 knots. Assume Crack O^{\prime} Noon does not change course again. At 2 pm , how far (in a direct line, nautical miles) is she from her noon starting position?

15) A mother jogs away from an intersection at 6 mph while her son rushes away in the other direction at 10 mph . How far apart are they after 45 min ?
143°
16) Find the length of the zip line

17) Find the Area.

Area $=$ \qquad
18) Path 1: $3,107 \mathrm{ft} @ S 65^{\circ} \mathrm{W}$ Path 3: 6,892 ft @ S $62^{\circ} \mathrm{E}$

Path 2: $4,805 \mathrm{ft}$ @ $\mathrm{N} 17^{\circ} \mathrm{E}$
Path 4: $2,592 \mathrm{ft}$ @ $552^{\circ} \mathrm{W}$

Find the Distance and Heading back to the origin for Path 5.

19) Path 1: $4,960 \mathrm{ft} @ \mathrm{~N} 73^{\circ} \mathrm{E}$

Path 2: 3,500 ft @ NW
Path 3: 1 mile @ $885^{\circ} \mathrm{W}$
Find the Distance and Heading back to the origin for Path 4.
Find the enclosed area.
20) From Green Butte Lookout (GBL) to Rooster Rock Lookout (RRL) is 22.5 mi @ $\mathrm{S} 60^{\circ} \mathrm{E}$. GBL spots smoke at $\mathrm{N} 56^{\circ} \mathrm{E}$ while RRL spots the smoke at $\mathrm{N} 20^{\circ} \mathrm{W}$. Using GBL as the origin, find the (x, y) coordinates of the smoke.

1a) $15 \frac{\mathrm{rex}}{\mathrm{mm}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \frac{360 \mathrm{deg}}{1 \mathrm{rev}}=90 \mathrm{deg} / \mathrm{sec}$
1b) $15 \frac{\mathrm{rev}}{\mathrm{min}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \frac{0.5 \pi \mathrm{ft}}{1 \mathrm{rev}}=0.39 \mathrm{ft} / \mathrm{sec}$
2) $\tan a=96 / 138 \quad a=34,82^{\circ} \quad 96^{2}+138^{2}=z^{2} \quad z=168,11$
3) $\quad \tan 28^{\circ}=\frac{37}{x} \quad x=69.59^{\circ} \quad \sin 28^{\circ}=\frac{37}{z} \quad z=\underline{78.81}$
4) Lof $x=\underline{156.17} \quad a=33.65^{\circ}$
5) $\theta=102^{\circ}$ Lof $S \quad a=143.67$ LofS $b=170.82$
6) L of $S \quad a=98.33^{\circ}!\quad b=43.67^{\circ} \mathrm{L}$ of $S \quad x=31,41$
7) Lof $C \quad a=107.12^{\circ}$
8) (a) $\sin a=40^{\prime} / 150^{\prime} \quad a=15.47^{\circ} \quad$ (b) $x^{2}+40^{2}=150^{2} \quad x=144.57^{\prime}$
9) $\quad \tan 42^{\circ}=\frac{h}{150^{\circ}} \quad h=135.06^{\prime}$
10) $\quad A=b \cdot h \quad h=35^{\prime} \sin \theta \quad A=1819.92 \mathrm{sf}$
11)

12)
L of S

$$
\begin{array}{cc}
x=30 \sin 38^{\circ} & y^{2}+z^{2}=38^{2} \\
x^{2}+y^{2}=30^{2} & x+z=48.22 \mathrm{~km}
\end{array}
$$

13) $a=73^{\circ} \quad x=214.56 \quad y=192.54$
14) Dist $=12.29 \mathrm{nmi}$
15) L \& $C \quad 11.42 \mathrm{mi}$
16)

17) $y=168 \sin 17^{\circ}, x=168 \cos 17^{\circ} \quad A=\frac{100+100+y}{2} \cdot x$

$$
A=20011.59
$$

18) $\theta_{1}=-155^{\circ}, \theta_{2}=73^{\circ}, \theta_{3}=-28^{\circ}, \theta_{4}=-142^{\circ} \quad D=3053.94^{\circ}$

$$
\theta=-30.49^{\circ}
$$

Dir Home $=N 59.51^{\circ} \mathrm{W}$
19) $\theta_{1}=17^{\circ}, \theta_{2}=135^{\circ}, \theta_{3}=-175^{\circ} \quad D=4577.59^{\prime}$ Dir Hume S $40.8 P \mathrm{P}$

$$
A=17,464,715 \mathrm{sf}=0.63 \mathrm{sq}-\mathrm{mi}
$$

20) $\quad(x, y)=(12.36,8.34) \mathrm{mi}$
