1. Solve the following equations <u>by hand</u>. For quadratic equations, you may factor, take square roots, or use the quadratic formula to solve. Show your work and <u>simplify</u>.

a)
$$12 - 7(2x - 5) = 3(3x + 7)$$

b)
$$2\frac{3x+8}{5} + \frac{5x}{2} = \frac{3x+4}{5} + 8$$

c) Solve for y:
$$a(y-7) = by + cx^2$$

d)
$$(x-2)^2=9$$

e)
$$3x^2 + 2x = 2$$

f)
$$(2x-5)(x+8)=0$$

g)
$$3(2x-5)(4x+3) = 18-6x(3-2x)$$

- h) Solve for t: $H = -\frac{1}{2} g t^2 + v_0 t + h_0$
- 2. State whether the graph represents a function. <u>If it</u> is a function, state the domain.

(b)
$$f(-6) =$$

(c)
$$f(6) =$$

(d)
$$f(x) = 6, x =$$

3. Find the value of the function, f(x) = -4x - 5, at each given input.

a)
$$f(-2) =$$

b)
$$f(0) =$$

$$f(x + h) =$$

4. Let $f(x) = 2x^2 + x$ and $g(x) = x^2 + 2$. Determine the following combination of functions.

a)
$$(f + q)(x) =$$

b)
$$(f - g)(x) =$$

c)
$$(fg)(x) =$$

5. Let f(x) = 5 - x and g(x) = 2x + 3. Determine the following values.

a)
$$(f - g)(-3) =$$

b)
$$(fg)(4) =$$

- 6. Two positive numbers have their product as 78. One number is seven more than the other. Let x = number 1, y = number 2. Write a pair of equations for this scenario. Solve the equations to determine the two numbers.
- 7. The length of a rectangle is three times the width. The area is 147 square centimeters. Let L = length, y = width. Write a pair of equations for this scenario. Solve the equations to determine the length and width of the rectangle.
- 9. One leg of a right triangle is twice the length of the other leg. The hypotenuse is 15 feet. Let a = leg 1 & b = leg 2. Recall the Pythagorean Theorem ($a^2 + b^2 = c^2$). Write an equation(s) for this scenario. Solve the equation(s) to find the length of the two legs. Write your answers exactly (using a simplified radical).
- 10. Determine the equation of the line that passes through the points (5, 0) and (-2, 3). Write your answer is slope intercept form.
- 11. Use the zero or intersect method on your calculator to solve the following equation.

$$3x + 2 = |x + 1| - 4$$
 Note: absolute value on the TI is abs().

- 12. Jill sells NASCAR decals at the race track for \$2.50 ea. She obtains them for \$0.75 ea. She also had to pay \$200 for a vendor license. Let x = # of decals.
 - (a) Write a linear equation for Jill's Expenses.
 - (b) Write a linear equation for Jill's Revenues.
 - (c) Write a linear equation for Jill's Profits.
 - (d) How many decals must Jill sell to breakeven?
 - (e) If Jill buys and sells 1000 decals what is her profit?
 - (f) If Jill wants to make a \$1000 profit, how many decals must she buy/sell?

Solve the following equations by hand. For quadratic equations, you may factor, take square roots, or use the quadratic formula to solve. Show your work and simplify.

a)
$$12 - 7(2x - 5) = 3(3x + 7)$$
 $x = \frac{26}{23}$

b)
$$2\frac{3x+8}{5} + \frac{5x}{2} = \frac{3x+4}{5} + 8$$
 $\chi = \frac{56}{31}$

c) Solve for y:
$$a(y-7) = by + cx^2$$
 $y = \frac{7a + cx^2}{a-b}$

d)
$$(x-2)^2=9$$
 $x=2\pm 3$ or $x=5,-1$

e)
$$3x^2 + 2x = 2$$
 $-\frac{1}{3}$

f)
$$(2x-5)(x+8)=0$$
 $x=-8$, $5/2$

g)
$$3(2x-5)(4x+3) = 18-6x(3-2x)$$
 $X = \frac{3}{2}, -\frac{3}{2}, 4x^2-8x-21=0$

h) Solve for t:
$$H = -\frac{1}{2}gt^2 + v_0t + h_0$$
 $-\frac{1}{2}gt^2 + v_0t + h_0 - H = 0$ $t = \frac{+v_0 \pm \sqrt{v_0^2 + 2g(k_0 + k_0)}}{+g}$

State whether the graph represents a function. If it is a function, state the domain.

(d)
$$f(x) = 6, x = 0$$

Find the value of the function, f(x) = -4x - 5, at each given input.

a)
$$f(-2) = 3$$

b)
$$f(0) = -5$$

a)
$$f(-2) = 3$$
 b) $f(0) = -5$ c) $f(b) = -4b - 5$ $f(x+h) = -4(x+h) - 5$

4. Let $f(x) = 2x^2 + x$ and $g(x) = x^2 + 2$. Determine the following combination of functions.

$$\alpha$$
) $(f + \alpha)(x) =$

b)
$$(f - q)(x) =$$

a)
$$(f+g)(x) =$$
 b) $(f-g)(x) =$ c) $(fg)(x) = (2x^2+x)(x^2+2)$

$$x^2 + x - 2$$

$$3x^{2}+x+2$$
 $x^{2}+x-2$ $2x^{4}+x^{3}+4x^{2}+2x$

5. Let f(x) = 5 - x and g(x) = 2x + 3. Determine the following values.

a)
$$(f - g)(-3) = 1$$

b)
$$(fg)(4) = 11$$

6. Two positive numbers have their product as 78. One number is seven more than the other. Let x = number 1, y = number 2. Write a pair of equations for this scenario. Solve the equations to determine the two numbers.

$$xy=78$$
, $y=X+7$ $X(X+7)=78$ $X=6$, $y=13$

$$x = 6$$
, $y = 13$

7. The length of a rectangle is three times the width. The area is 147 square centimeters. Let L = length, y = width. Write a pair of equations for this scenario. Solve the equations to determine the length and width of the rectangle.

One leg of a right triangle is twice the length of the other leg. The hypotenuse is 15 feet. Let a = leg 1 & b = leg 2. Recall the Pythagorean Theorem ($a^2 + b^2 = c^2$). Write an equation(s) for this scenario. Solve the equation(s) to find the length of the two legs. Write your answers exactly (using a simplified radical).

$$(2b)^2 + b^2 = 225$$

$$a = 2b$$
, $a^2 + b^2 = 15^2$ $(2b)^2 + b^2 = 225$ $b = \sqrt{45} = 3\sqrt{5}$, $a = 6\sqrt{5}$

Determine the equation of the line that passes through the points (5, 0) and (-2, 3). Write your answer is slope intercept form.

$$Y = -\frac{3}{7}X + \frac{15}{17}$$

Use the zero or intersect method on your calculator to solve the following equation.

$$3x + 2 = |x + 1| - 4$$
 Note: absolute value on the TI is abs().

$$X = -1.75 = -\frac{7}{4}$$

- 12. Jill sells NASCAR decals at the race track for \$2.50 ea. She obtains them for \$0.75 ea. She also had to pay \$200 for a vendor license. Let x = # of decals.
 - (a) Write a linear equation for Jill's Expenses. F=0.75x + 200

 - (c) Write a linear equation for Jill's Profits. P = R E = 2.50X [0.75X + 200] = 1.75X 200
 - (d) How many decals must Jill sell to breakeven? ~ 115 ducals
 - (e) If Jill buys and sells 1000 decals what is her profit? \$1550
 - (f) If Jill wants to make a \$1000 profit, how many decals must she buy/sell? ~686 decals