1. Solve the following equations by hand. For quadratic equations, you may factor, take square roots, or use the quadratic formula to solve. Show your work and simplify.
a) $12-7(2 x-5)=3(3 x+7)$
b) $2 \frac{3 x+8}{5}+\frac{5 x}{2}=\frac{3 x+4}{5}+8$
c) Solve for $y$ : $a(y-7)=b y+c x^{2}$
d) $(x-2)^{2}=9$
e) $3 x^{2}+2 x=2$
f) $(2 x-5)(x+8)=0$
g) $3(2 x-5)(4 x+3)=18-6 x(3-2 x)$
h) Solve for t: $H=-\frac{1}{2} g t^{2}+v_{0} t+h_{0}$
2. State whether the graph represents a function. If it is a function, state the domain.
(a) $f(0)=$
(b) $f(-6)=$
(c) $f(6)=$
(d) $f(x)=6, x=$

3. Find the value of the function, $f(x)=-4 x-5$, at each given input.
a) $f(-2)=$
b) $f(0)=$
c) $f(b)=$
$f(x+h)=$
4. Let $f(x)=2 x^{2}+x$ and $g(x)=x^{2}+2$. Determine the following combination of functions.
a) $(f+g)(x)=$
b) $(f-g)(x)=$
c) $(f g)(x)=$
5. Let $f(x)=5-x$ and $g(x)=2 x+3$. Determine the following values.
a) $(f-g)(-3)=$
b) $(\mathrm{fg})(4)=$
6. Two positive numbers have their product as 78 . One number is seven more than the other. Let $x=$ number $1, y=$ number 2 . Write a pair of equations for this scenario. Solve the equations to determine the two numbers.
7. The length of a rectangle is three times the width. The area is 147 square centimeters. Let $L=$ length, $y=$ width. Write a pair of equations for this scenario. Solve the equations to determine the length and width of the rectangle.
8. One leg of a right triangle is twice the length of the other leg. The hypotenuse is 15 feet. Let $a=\operatorname{leg} 1 \& b=\operatorname{leg} 2$. Recall the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$. Write an equation(s) for this scenario. Solve the equation(s) to find the length of the two legs. Write your answers exactly (using a simplified radical).
9. Determine the equation of the line that passes through the points $(5,0)$ and $(-2,3)$. Write your answer is slope intercept form.
10. Use the zero or intersect method on your calculator to solve the following equation.

$$
3 x+2=|x+1|-4 \quad \text { Note: absolute value on the TI is abs( ). }
$$

12. Jill sells NASCAR decals at the race track for $\$ 2.50$ ea. She obtains them for $\$ 0.75$ ea. She also had to pay $\$ 200$ for a vendor license. Let $x=\#$ of decals.
(a) Write a linear equation for Jill's Expenses.
(b) Write a linear equation for Jill's Revenues.
(c) Write a linear equation for Jill's Profits.
(d) How many decals must Jill sell to breakeven?
(e) If Jill buys and sells 1000 decals what is her profit?
(f) If Jill wants to make a $\$ 1000$ profit, how many decals must she buy/sell?

## Mth 95 Review Activity for Exam 2

1. Solve the following equations by hand. For quadratic equations, you may factor, take square roots, or use the quadratic formula to solve. Show your work and simplify.
a) $12-7(2 x-5)=3(3 x+7)$

$$
x=26 / 23
$$

b) $2 \frac{3 x+8}{5}+\frac{5 x}{2}=\frac{3 x+4}{5}+8 \quad x=56 / 31$
c) Solve for $y$ : $a(y-7)=b y+c x^{2} \quad y=\frac{7 a+c x^{2}}{a-b}$
d) $(x-2)^{2}=9 \quad x=2 \pm 3$ or $x=5,-1$
e) $3 x^{2}+2 x=2 \quad \frac{-1 \pm \sqrt{7}}{3}$
f) $(2 x-5)(x+8)=0 \quad x=-8,5 / 2$
g) $3(2 x-5)(4 x+3)=18-6 x(3-2 x) \quad x=7 / 2,-3 / 2,4 x^{2}-8 x-21=0$
h) Solve for t: $H=-\frac{1}{2} g t^{2}+v_{0} t+h_{0} \quad-1 / 2 g t^{2}+V_{0} t+h_{0}-H=0 \quad t=\frac{+V_{0} \pm \sqrt{V_{0}^{2}+2 g\left(h_{0} t t\right)}}{+g}$
2. State whether the graph represents a function. If it is a function, state the domain.
fon (passed ULT) $D:-6<x \leqslant 6$
3)
(a) $f(0)=6$
(b) $f(-6)=\varnothing$
(c) $f(6)=0$
(d) $f(x)=6, x=0$

3. Find the value of the function, $f(x)=-4 x-5$, at each given input.
a) $f(-2)=3$
b) $f(0)=-5$
c) $f(b)=-4 b-5 \quad f(x+h)=-4(x+h)-5$
4. Let $f(x)=2 x^{2}+x$ and $g(x)=x^{2}+2$. Determine the following combination of functions.
a) $(f+g)(x)=$
$3 x^{2}+x+2$
b) $(f-g)(x)=$
c) $(f g)(x)=\left(2 x^{2}+x\right)\left(x^{2}+2\right)$ $x^{2}+x-2$
$2 x^{4}+x^{3}+4 x^{2}+2 x$
5. Let $f(x)=5-x$ and $g(x)=2 x+3$. Determine the following values.
a) $(f-g)(-3)=11$
b) $(f g)(4)=11$
6. Two positive numbers have their product as 78 . One number is seven more than the other. Let $x=$ number $1, y=$ number 2 . Write a pair of equations for this scenario. Solve the equations to determine the two numbers.

$$
x y=78, y=x+7 \quad x(x+7)=78 \quad x=6, y=13
$$

7. The length of a rectangle is three times the width. The area is 147 square centimeters. Let $L=$ length,$y=$ width. Write a pair of equations for this scenario. Solve the equations to determine the length and width of the rectangle.
$L=3 y$
$L y=147$
$3 y \cdot y=147$
$y=7, L=21$
8. One leg of a right triangle is twice the length of the other leg. The hypotenuse is 15 feet. Let $a=\operatorname{leg} 1 \& b=\operatorname{leg} 2$. Recall the Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$. Write an equation(s) for this scenario. Solve the equation(s) to find the length of the two legs. Write your answers exactly (using a simplified radical).

$$
a=2 b, a^{2}+b^{2}=15^{2} \quad(2 b)^{2}+b^{2}=225 \quad b=\sqrt{45}=3 \sqrt{5}, a=6 \sqrt{5}
$$

10. Determine the equation of the line that passes through the points $(5,0)$ and $(-2,3)$. Write your answer is slope intercept form.

$$
y=-\frac{3}{7} x+\frac{15}{7}
$$

11. Use the zero or intersect method on your calculator to solve the following equation.

$$
3 x+2=|x+1|-4 \quad \text { Note: absolute value on the } T I \text { is abs( ). } \quad x=-1.75=-7 / 4
$$

12. Jill sells NASCAR decals at the race track for $\$ 2.50$ ea. She obtains them for $\$ 0.75$ ea. She also had to pay $\$ 200$ for a vendor license. Let $x=\#$ of decals.
(a) Write a linear equation for Jill's Expenses. $E=0.75 x+200$
(b) Write a linear equation for Jill's Revenues. $R=2.50 \mathrm{X}$
(c) Write a linear equation for Jill's Profits. $P=R-E=2.50 x-[0.75 x+200]=1.75 x-200$
(d) How many decals must Jill sell to breakeven? $\sim 115$ decals
(e) If Jill buys and sells 1000 decals what is her profit? $\$ 1550$
(f) If Jill wants to make a $\$ 1000$ profit, how many decals must she buy/sell? $\sim 686$ decals
