
Why the Multinomial, Geometric, and Poisson are Sound Probability Distributions 

 The definition of a probability distribution for any random variable has two parts.  First, the distribution 

needs to reflect all possible values of the random variable, paired with the corresponding probabilities of those 

values.  Second, the probabilities must sum to 1 (or 100%).  Let’s show you why the distributions from your last 

project satisfy these requirements pretty well. 

Multinomial Distribution 

 The formula for the multinomial distribution is as follows...assuming you have an experiment with n 

disjoint outcomes 1,2,...m, each with probability p1, p2,...pm, the probability of achieving x1 of type 1, x2 of type 

2, up to xm of type m, is 
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 It helps to see that this is a consequence of the binomial distribution; from there, the probability 

distribution is inevitable.  For example, the coefficient 
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, although it looks terribly complex, can be 

broken down fairly nicely using combinations.   

Since you have n things to assign, and each of those n things can be any of type 1, 2, up to m, first, start 

by placing the x1 of type 1.  You now have n – x1 places left to assign the rest.   Next up, place the type 2’s, of 

which you have x2.  After placing them, you have  n –  x1 –  x2 places left.  Continuing until you get to type m, 

you’ll find you only have xm places left, so you have no choice but to place those in the remaining spots.  

Mathematically, that last paragraph looks like this: 
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 However freakish that looks, don’t fret...it breaks down nicely: 
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 What?  You don’t think that’s nice?  OK, OK, OK...try this: 
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 Still don’t like it?  OK, let’s remove all of those cancelled terms: 
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 Look familiar?  Heck yeah!  It’s the multinomial coefficient!  That explains the first, somewhat awful 

looking factor.  The probability factors must follow immediately from a neat extension of the binomial theorem: 
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 In our case, however, we’ll use the multinomial theorem to expand ( )1 2
...

n

m
p p p+ + .  Now, if we 

expand that out, we’re gonna get lots and lots and lots of terms; each one of those terms will be one possible 

arrangement of type 1, type 2, up to type m outcomes.  Thus, the expansion of all of those terms represents the 

entire probability distribution of the multinomial.  And, since the outcomes are disjoint, 1 2 ... 1
m

p p p= + = = = , 

which means that ( )1 2 ... 1
n
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p p p+ + = , which proves our probability requirement in our distribution.   

A neat connection: the binomial coefficients gotten from the expansion of (p + q)
n follow the entries ion 

the n
th

 row of Pascal’s triangle.  The multinomial coefficients of (p1 + p2+... pm)
n follow the entries in the n

th
 

row of Pascal’s Pyramid, with m faces, each face being a Pascal’s Triangle.  Then, any entry in the pyramid at 

any depth would be found by adding the numbers along intersecting lines on corresponding faces.     

I discovered this in grad school, and was going to publish it (even had my advisor on board), but, like 

many good, useful, somewhat tricky ideas...it had already been published (by Martin Gardner, so I don’t feel so 

badly).  Still feels pretty cool to have “discovered” it, though.     

 

Poisson Distribution 

The Poisson distribution actually has its own little justification elsewhere on the enrichment page, but I 

thought it might be worthwhile for you to see why the probabilities sum to 1.  For a Poisson distribution, the 

random variables have values 0, 1, 2,... so there is no “top”, so to speak.  In order for us to sum the probabilities, 

therefore, we have to use the idea of an infinite sum, which is discussed in calculus classes.  Here’s that that 

sum would look like: 
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Let’s apply a little algebra first: factor out the e
-µµµµ factor from each term: 
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    Thinking forward, if we can get the quantity in parentheses to equal e
µµµµ, the distribution will sum 

to 1.  Here comes the calculus: we’re going to use something called a power series here; specifically, we’re 

going to use the Taylor Series expansion of e
x
: 
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 Letting x = µµµµ in the Taylor expansion above, we have that  
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 And there we have it...that right hand side is exactly what’s in parentheses below: 
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So, let’s substitute the left hand side in there, and see what we get: 
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And so, we’ve happily proved that the sum of the probabilities heads to 1, which makes the Poisson a 

bombproof probability distribution.   

 

Geometric Distribution 

 

To round out our little discussion, let’s prove that the geometric distribution p(x) = q
n – 1

p is a valid 

distribution for a discrete random variable.  The values of this random variable, like the Poisson, are 0,1,2..., 

and that makes it more interesting to prove that p + qp + q
2
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p sums to 1 as n heads off to 

infinity.  Here we go! 

Assume that p + qp + q
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p does indeed sum to a number as n grows without bound (this 

might seem like either a silly assumption or a brazen one, depending on your viewpoint.  Don’t worry; whatever 

your view, it does converge to a number): 

S = p + qp + q
2
p + q

3
p +...+ q

n – 1
p 

 

 Here’s the slick (and sometimes contentious) part: multiply that entire equation by q: 
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 Now, subtract this from the the original S = p + qp + q
2
p + q

3
p +...+ q

n – 1
p.  Many, many terms 

will cancel: 
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 At this point, remember that n is very, very large.  Also remember that q is a fraction between 0 

and 1.  That means that q
n
 is a number very, very close to zero...in fact, as n approaches infinity, q

n
 approaches 0.  

That means that the term q
n
p effectively equals 0: 
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 Now, divide both sides by (1 – q): 

S = 
p

 1 – q
 

 

At this point, remember that p + q = 1.  Thus, 1 – q = p.  That means that  
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 And this shows that the sum of the probabilities in the geometric distribution satisfies the “= 1” 

requirement.   

 

 

 

  

   


