We have found that, to estimate the sample size (n) needed to estimate the value of \hat{p}, we can use one of the following two formulae:
a) $n=\frac{\left(z_{\alpha / 2}\right)^{2} \hat{p} \hat{q}}{E^{2}}$, when a prior value of \hat{p} is known
b) $n=\frac{\left(z_{\alpha / 2}\right)^{2}}{E^{2}}(0.25)$, otherwise

They both are derived from the error calculation

$$
E=z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

but it might not be entirely clear as to why the 0.25 occurs in formula b). Let's find out:

When creating confidence intervals, we aim to make the interval as wide as possible (to ensure capturing the true parameter - in this case, a population proportion). Of course, we also want to be limited by practicality, so we aim to make the interval as wide as possible within certain constraints. For proportions, the constraints are 1) the confidence level (α) and the value of the sample proportion (\hat{p}). To construct a proper sample size, these same two constraints are necessary.

However, if we don't have a value for \hat{p}, yet still want to find a proper sample size, we need to substitute a value for \hat{p} to accommodate our needs. To be on the safe side, we should use a value for \hat{p} that maximizes the sample size (and also the confidence interval). Look again at the formula for sample size for a known value of \hat{p} :

$$
n=\frac{\left(z_{\alpha / 2}\right)^{2} \hat{p} \hat{q}}{E^{2}}
$$

The key to the 0.25 is in the $\hat{p} \hat{q}$ factor of that formula. We want to find values of \hat{p} and \hat{q} that maximize the value of the product $\hat{p} \hat{q}$. The key to this is recalling $\hat{q}=1-\hat{p}$, so $\hat{p} \hat{q}=\hat{p}(1-\hat{p})$. Thus, we have to maximize the function given by the rule $\hat{p} \hat{q}=\hat{p}(1-\hat{p})$. Looking at the graph of this parabola (a-HA!) we find that the maximum occurs when $\hat{p}=0.5$, which means that $\hat{q}=0.5$ as well ${ }^{1}$. Thus, the maximize \boldsymbol{n},

$$
n=\frac{\left(z_{\alpha / 2}\right)^{2} \hat{p} \hat{q}}{E^{2}}=\frac{\left(z_{\alpha / 2}\right)^{2}(0.5)(0.5)}{E^{2}}=\frac{\left(z_{\alpha / 2}\right)^{2}}{E^{2}}(0.25)
$$

[^0]
[^0]: ${ }^{1}$ If you have taken calculus, the maximum can be found using derivatives: if $f(\hat{p})=\hat{p}(1-\hat{p})$, then $f^{\prime}(\hat{p})=1-2 \hat{p}$. Setting $f(\hat{p})=0$ and solving for \hat{p} gives the desired result.

