Justification for the Sample Size Calculation for Proportions from Desired Margin of Error

We have found that, to estimate the sample size (n) needed to estimate the value of \hat{p} , we can use one of the following two formulae:

a)
$$n = \frac{(z_{\alpha/2})^2 \hat{p}\hat{q}}{E^2}$$
, when a prior value of \hat{p} is known b) $n = \frac{(z_{\alpha/2})^2}{E^2}$ (0.25), otherwise

They both are derived from the error calculation

$$E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

but it might not be entirely clear as to why the 0.25 occurs in formula b). Let's find out:

* * * * * * *

When creating confidence intervals, we aim to make the interval as wide as possible (to ensure capturing the true parameter – in this case, a population proportion). Of course, we also want to be limited by practicality, so we aim to make the interval as wide as possible *within certain constraints*. For proportions, the constraints are 1) the

confidence level (α) and the value of the sample proportion (p). To construct a proper sample size, these same two constraints are necessary.

However, if we don't have a value for \hat{p} , yet still want to find a proper sample size, we need to substitute a value for \hat{p} to accommodate our needs. To be on the safe side, we should use a value for \hat{p} that maximizes the sample size (and also the confidence interval). Look again at the formula for sample size for a known value of \hat{p} :

$$n = \frac{\left(z_{\alpha/2}\right)^2 \hat{p}\hat{q}}{E^2}$$

The key to the 0.25 is in the $\hat{p}\hat{q}$ factor of that formula. We want to find values of \hat{p} and \hat{q} that maximize the value of the product $\hat{p}\hat{q}$. The key to this is recalling $\hat{q} = 1 - \hat{p}$, so $\hat{p}\hat{q} = \hat{p}(1-\hat{p})$. Thus, we have to maximize the function given by the rule $\hat{p}\hat{q} = \hat{p}(1-\hat{p})$. Looking at the graph of this parabola (a-HA!) we find that the maximum occurs when $\hat{p} = 0.5$, which means that $\hat{q} = 0.5$ as well¹. Thus, the maximize \boldsymbol{n} ,

$$n = \frac{\left(z_{\alpha/2}\right)^2 \hat{p}\hat{q}}{E^2} = \frac{\left(z_{\alpha/2}\right)^2 (0.5)(0.5)}{E^2} = \frac{\left(z_{\alpha/2}\right)^2}{E^2} (0.25)$$

¹ If you have taken calculus, the maximum can be found using derivatives: if $f(\hat{p}) = \hat{p}(1-\hat{p})$, then $f'(\hat{p}) = 1-2\hat{p}$. Setting $f(\hat{p}) = 0$ and solving for \hat{p} gives the desired result.