
A Justification for the Unbiasedness of x̄ , s2
, and p̂  

 During the first week of class, I led you through a little Excel exercise to illustrate the three statistics that 

are unbiased estimators of their parameter values.  x̄ does a great job of estimating µµµµ, s
2 
does the same for σσσσ

2
, and 

p̂  the same for p.  Remember what “does a great job estimating” means?   It means that the average values of 

these statistics are equal to the population parameters that they are targeting.   

 Back then, I challenged you to ask, “Why?”  Well, here’s why, one by one. 

 

Why x̄ is an unbiased estimator of µµµµ... 

  Back in MTH 243, you learned of a neat little idea called expectation.  This was a fancy name for the 

average of a random variable.  Well, we can apply that same idea to statistics, for statistics are really just 

random variables; they have to be, as their values are dependent upon the random sample from which they are 

calculated.   

 The notation for mathematical expectation was most likely not emphasized back in MTH 243.  

However, it’s not too hard to follow.  The mathematical expectation of any random variable x is written as E[x].  

Back in MTH 243, we defined this quantity to be equal to Σxp(x), or, the sum of the products of all of the 

values of the individual random variables’ values and their corresponding probabilities.  Thus, 

E[x] = Σxp(x)=x1p(x1)+ x2p(x2)+ x3p(x3)+...+ xnp(xn) 

   Here, we’ll show that E[x̄] = µµµµ:  

 

E[x̄] =  E[x1+ x2+ x3+...+ xn

n
]  

 

Replace x̄ with what x̄ is defined to be...the sum of 

the data divided by how many data points there are.   

   
 

 =  
1

n
  E[x1+ x2+ x3+...+ xn] 

 

Since the n denominator is a constant (and not a 

variable), the addition of the terms can happen first, 

and thus we can factor out the 
1

n
  and deal with it at 

the end of the computation. 
   
 

 =  
1

n
  [E[x1]+ E[x2]+ E[x3]+...+ E[xn]] 

 

 

Expectations distribute...just like sums.      

 

 
 

 =  
1

n
 [µµµµ + µµµµ + µµµµ + ... + µµµµ] 

 

This should make sense, since the expected value of 

each data point would be the average...that’s what an 

average is, right?  What you expect.  By the way, 

there are n µµµµ’s in those brackets, so...  
   
 

E[x̄] =  
1

n
  [nµµµµ] = µµµµ 

 

...and there we are! 

 



Why s
2
 is an unbiased estimator of σσσσ

2
... 

Let’s keep this ball a – rollin’ and show s
2
 unbiasedly estimates σ

2
.  For starters, you have to recall how 

the variance is defined: it measures average deviations from the mean of all data points.  However, if you 

remember, variance was the square of the standard deviation (we use the standard deviation much more 

frequently, in an applied setting), and was written as s
2
 =  

Σ(x – x̄)
2

n – 1
   .  Here’s the derivation of why you need 

that (n – 1) denominator instead of just n: 

       
E[s

2
] 

=  E[Σ(x – x̄)
2

n – 1
 ]  

 

 

Replace s
2
 with what s

2
 is defined to be, for starters.   

   
 

 =  
1

 n – 1
  E[Σ(x – x̄)

2
] 

 

Let’s factor out that pesky denominator, like we did 

with the average calculation above.   

   
 

 =  
1

 n – 1
  E[Σ(x

2
 – 2x x̄ + x̄

2
)] 

 

Now, the fun starts...distribute out that beautiful 

squared binomial.   

 

 
 

 =  
1

 n – 1
  E[Σx

2
 – Σ2x x̄ + Σx̄

2
)] 

 

The sum can distribute (it’s all addition), and then we 

have this gorgeousness...  

* * * * * 

We’re going to pause here and look at each of those three sums individually, since they can seem a little 

daunting, until you get them under a microscope.   

1. Σx
2
 we’ll just leave, for now, as Σx

2
 

2. Σ2x x̄.  This is cool.  Since 2 and  x̄ are constants, we can pull them through (factor them out) of the 

sum, so Σ2x x̄ = 2x̄Σx.  Now, remember that x̄ = 
Σx

n
  , by definition.  That means that Σx = nx̄.  So, 

2x̄Σx = 2x̄(nx̄), or 2nx̄
2
  

3. Σx̄
2
 is easier written as the square of x̄, added to itself n times.  So, it’s just nx̄

2
.   

* * * * * 

Taking all of these back into the computation, we’ll have the next step: 

=  
1

 n – 1
  E[Σx

2
 – 2n x̄

2
 + nx̄

2
)]  

=  
1

 n – 1
  E[Σx

2
 – n x̄

2
] 

 

 

 

That was cool, no?  It gets better (and a little more 

intricate, as well).  

= 
1

 n – 1
  [ΣE[x

2
] – E[ n x̄

2
]] 

 

This is the “distribution of expectation” idea, from above.   

 



It’s time for another aside here.  The statistical definition of variance that you’re used to seeing (or, at 

some point, saw) was σσσσ
2
 =  

Σ(x – µµµµ)
2

N
 .  Using the fact that E[X] = µµµµ, and that variance is in itself an expectation 

(it’s the expected, or average, deviation, remember?), we can rewrite it as follows: 

 

σσσσ
2
  = 

Σ(x – µµµµ)
2

N
 = E[(x – µµµµ)

2
  

 

 = E[x
2
 – 2xµµµµ + µµµµ

2
] 

 

 =  E[x
2
] – E[2xµµµµ ]+ E[µµµµ

2
] 

 

 = E[x
2
] – 2µµµµE[x ]+ E[µµµµ

2
], so 

 

σσσσ
2
  = E[x

2
] – 2µµµµ

2
+ µµµµ

2
  

 

 = E[x
2
] –µµµµ

2
 

 

From this last line, we can see that E[x
2
] = µµµµ

2 
+ σσσσ

2
.  Call this equation (1).  This is good, because we can 

also define another quantity we need in the same way: E[x̄
2
] = σσσσ̄

2 
+ µµµµ̄

2
.  Then, by the central limit theorem 

(which, if we haven’t, we will learn soon in MTH 244), we can rewrite it further as E[x̄
2
] = 

σσσσ
n

 
+ µµµµ

2
.  Call this 

equation (2).  We’ll now substitute (1) and (2) back into  
1

 n – 1
  [ΣE[x

2
] – E[ n x̄

2
]] to see what we get: 

= 
1

 n – 1
  [Σ(µµµµ

2 
+ σσσσ

2
) – n( 

σσσσ
n

 
+ µµµµ

2) ] 
 

 

Here’s the result of the substitution.  Now comes the 

algebra.  Yay!   

= 
1

 n – 1
  [nµµµµ

2 
+ n σσσσ

2
  –  σσσσ

  
– nµµµµ

2] 
 

= 
1

 n – 1
  (n – 1) σσσσ

2
     

 

= σσσσ
2
     

 

 

So, there you have it!  That last step is precisely why you must divide by (n – 1) instead of n in the 

formula for the sample standard deviation.  Don’t you feel better now?   

 

 

 

 

 



Why p̂ is an unbiased estimator of p... 

If you’re still with me, we still have one more proof to do.  This one’s way easier than that last one, 

though.  We need to prove that E[p̂] = p.  I’d like to do this one a little differently, if that’s OK with you all.  

Since we talking about proportions, we’re really talking about probabilities.  The idea of a sample proportion 

(which we will explore thoroughly in this class) is the idea of a binomial random variable.  Remember the 

binomial distribution? 

   

If you recall, the mean of the binomial distribution is µµµµ =np.  The meaning of this is helpful...we expect 

µµµµ successes in the population.  Therefore, 

 

E[p̂] 

 

=  E[x

n
]  

 

Replace p̂ with what p̂ is defined to be...the number 

of successes divided by the sample size.   

   
 

 =  
1

n
  E[x] 

 

 

Remember this move from the first proof? 

   
 

 =  
1

n
 µµµµ 

 

 

Hopefully, you agree with this.  If not, reread the line 

starting with “The meaning of this is helpful” above! 

 

 
 

 =  
1

n
 np 

 

 

By substitution.    

   
 

E[p̂] 

 

= p 

 

 

Now...was that so bad? 

 

Well, I feel better.  You now have seen why you sit in MTH 244, happily agreeing to do inferential 

statistics to learn more about these 3 parameters.  Don’t you feel better, too?  

You don’t have to answer that.   
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